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Abstract: Network slicing is widely regarded as the most critical technique for allocating network
resources to varied user needs in 5G networks. A Software Defined Networking (SDN) and Net-
work Function Virtualization (NFV) are two extensively used strategies for slicing the physical
infrastructure according to use cases. The most efficient use of virtual networks is realized by the
application of optimal resource allocation algorithms. Numerous research papers on 5G network
resource allocation focus on network slicing or on the best resource allocation for the sliced network.
This study uses network slicing and optimal resource allocation to achieve performance optimization
using requirement-based network slicing. The proposed approach includes three phases: (1) Slice
Creation by Machine Learning methods (SCML), (2) Slice Isolation through Resource Allocation
(SIRA) of requests via a multi-criteria decision-making approach, and (3) Slice Management through
Resource Transfer (SMART). We receive a set of Network Service Requests (NSRs) from users. After
receiving the NSRs, the SCML is used to form slices, and SIRA and SMART are used to allocate
resources to these slices. Accurately measuring the acceptance ratio and resource efficiency helps to
enhance overall performance. The simulation results show that the SMART scheme can dynamically
change the resource allocation according to the test conditions. For a range of network situations and
Network Service Requests (NSRs), the performance benefit is studied. The findings of the simulation
are compared to those of the literature in order to illustrate the usefulness of the proposed work.

Keywords: 5G network; network slicing; resource allocation; machine learning

1. Introduction

Mobile traffic on private and commercial 5G networks has increased dramatically in
recent years as the number of people using portable devices has grown. A wide range of
businesses and industries, including transport, healthcare, and the energy supply chain,
expect to gain from 5G networks in a few years. A highly complicated 5G architecture is
required to provide high-quality, always-reliable service to a large variety of User Equip-
ments (UEs) [1]. The Next Generation Mobile Networks (NGMN) Alliance has come up
with a concept called network slicing to make it easier for 5G networks to allocate resources
to user devices with varying performance requirements [2]. In order to partition the phys-
ical infrastructure and assure Quality of Service (QoS) for distinct sets of requirements,
we use virtual resources, a logical topology, traffic control, node and link provisioning
requirements, and security evaluation parameters [3]. The 3rd-Generation Partnership
Project (3GPP) created and authorized the 5G system design that allows for network slicing
in the initial iteration of 5G normative standards [4]. Radio Access Networks (RANs),
Transport Networks (TNs), and Core Networks (CNs) are the three main components of the
physical architecture that make up each logical network slice in the scheme [5]. The VNF
orchestration issue is described as an Integer Linear Program in [6], and a heuristic strategy
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is offered that takes into account the costs of deployment, energy, traffic, and propagation
delay. VNF insertion in large-scale systems has been addressed by the development of
WiNE (Wireless Network Embedding) [7]. In order to solve the VNF placement problem,
WiNE considers three distinct scenarios: linear requests, branching requests, and requests
with loops. In [8], we find an in-depth analysis of SDN and VNF network slicing, including
their foundational concepts, designs, and problems. Providing network slices is difficult
for many reasons, such as maximising resource efficiency, maximising acceptance ratio,
maximising data confidentiality, maximising latency, and supporting a wide diversity of
user needs [9].

Network slicing, as is well known, entails three key responsibilities: slice creation,
isolation, and management. Many of the network slicing orchestration frameworks con-
centrate on one of the single duties of network slicing. It is recognized that there is still
a requirement to build the orchestration framework to provide each service for all three
network slicing duties. Furthermore, when a single framework provides services in all three
elements of slicing, VNF managers have a competitive advantage in offering higher-quality
services to their clients. By consideration of the problems previously described in the
existing research, this investigation presents an orchestration architecture that takes care of
all three network slicing responsibilities. The main objectives and findings of our study are
as follows:

• To model a network orchestration framework that combines network slice generation,
isolation, and management to provide efficient and simple network slicing.

• To identify the best machine learning approach for slice creation where the perfor-
mance dataset is prepared based on the realistic characteristics of the use cases.

• To achieve the best possible distribution of physical infrastructure (PI) resources
among Network Service Requests (NSRs), it is necessary to develop a mechanism for
isolating network slices. The combination of Multi Criteria Decision Making (MCDM)
and Shortest Path Algorithms are utilised for the implementation.

• By the development of the inner slicing idea, which makes use of the resource transfer
approach for resource allocation, PI slice performance can be improved with the use
of a prepared slice management strategy.

The rest of this work is structured as follows: Section 2 presents a literature review;
Section 3 summarizes the proposed system model and mathematical background; Section 4
describes the proposed 5G mobile network orchestration framework; Section 5 discusses
dynamic slicing of 5G mobile network with case study; Section 6 concludes the work with
proposal for future extension.

2. Related Literature

Numerous research has been conducted recently on the issue of network slicing in 5G
mobile networks. Due to the fact that this proposed work combines machine learning and
optimal resource allocation algorithms in an orchestration framework for dynamic network
slicing, this section reviews pertinent research on both approaches.

2.1. Machine Learning Techniques for Network Slice Creation

An in-depth examination of all machine learning technologies is presented in [10–12],
along with a list of prospective domains where machine learning techniques may be
advantageous. A deep learning strategy is used to classify modulation, according to
the authors in [13], which provides a more accurate solution than other conventional
methods of classification. Using a Neural Network technique, the previously mentioned
problem was subsequently addressed in [14], and the findings demonstrate that as the
network size grows, the approach quickly converges to its optimal performance. A hybrid
learning algorithm for network slicing was proposed [15], which combines approaches
from Machine Learning and Deep Learning to achieve optimal results. In particular, this
method optimised the weight function by using Glowworm Swarm Optimisation and the
Deer Hunting Optimisation algorithm together. A multi-slice Deep Neural Network (DNN)
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for dynamic end-to-end slicing was proposed in [16], which incorporates two service level
agreements (SLAs), namely, violation rate-based SLA and resource bounds-based SLA, in
addition to other factors. To prepare the performance dataset for training, the method made
use of a live cellular network with traffic analysis on the gathered data. It was demonstrated
in [17] that two reinforcement learning-based algorithms could be used to optimise mode
selection in fog-radio access networks (F-RANs). The mode selection is determined by the
method, which is based on the immediate reward provided by the surroundings. In the
paper [18], the authors discuss the deep learning-based work that has been proposed to
improve the 5G RAN portion of the network, as well as how these works can be integrated
with the AI-enabled Open-RAN architecture.

2.2. Techniques for Network Slice Isolation and Management

The subject of resource allocation for RAN slicing is the focus of the research in [19–21].
Their research looked into how the heterogeneous cloud radio access network (H-CRAN)
architecture allocated both baseband and radio resources, according to the authors of the
paper. The issue is set up using the Mixed Integer Linear Programming (MILP) method,
and it is solved using the Lagrangian dual strategy, which is not convex. The problem of
allocating the resources of sensor network slices in the context of sensor network slices
were discussed in [22]. Their solution was to develop a standardized architecture for
controlling application acceptance and allocating slice resources. A heuristic technique is
used to solve the problem of joint optimization in this case. Radio Access Network (RAN)
and core network resource allocation are studied in [23], which present an end-to-end
quality of service architecture for 5G networks. Using complex network theory, the authors
of [24] propose a method for optimizing resource utilization while simultaneously reducing
expenditures on research and development. Two stages are recommended in the technique
that has been proposed: (i) creating virtual network functions, and (ii) choosing link paths
for the virtual network functions. In addition, the viability of the proposed method is
demonstrated by contrasting the simulation outcomes attained through the application of
the Simulated Annealing (SA), the LAVA, and the GLL-based VNF placement techniques.

In reference [25], it was proposed that a Network Topology Attribute and Network
Resource-Considered method (VNE-NTANRC) may be utilised in combination with a
Service Provider (SP) approach to mapping the connections between nodes. This algorithm
would consider five different network topology attributes and global network resources.
A study published in [26] investigated the topic of radio resource allocation in Fog Radio
Access Network (F-RAN) slicing. A Stackelberg game between the global radio resource
manager and the local radio resource manager is depicted as a “stacking” Stackelberg game
in the context of an organizational hierarchy. Among the several multi-criteria decision-
making techniques, the VIKOR method was utilised to rank the nodes in [27]. The process
of establishing a virtual network node is identical to that of a physical or logical network
node. Floyd’s method of link provisioning involves assigning the shortest possible path
to the slice request nodes. Using Stochastic Network Calculus (SNC), the delay bound
in 5G mobile networks for a specified traffic distribution and resource allocation was
determined [28].

Upper-tier First with Latency-bound Overprovisioning Prevention (UFLOP) is a
method created to optimise capacity and traffic sharing in two-tier 5G slicing networks
while meeting renters’ latency constraints [29]. Incoming traffic is analysed in accordance
with the services offered to tenants and the assets needed to supply resources, and any
necessary adjustments are then suggested by the method. [30] describes a technique for
service provisioning in RAN slicing that guarantees not only that QoS criteria, but also
those for bandwidth and compute capacity, are met. This technique is being utilised to
decrease the bandwidth required to provide services. It was suggested by [31] to solve the
issues of scalability, monitoring, and aggregation of slice-level measured data that arise
while tracking the efficiency of individual parts of a network.
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2.3. Motivation

Table 1 summarizes the literature on network slicing components, such as slice cre-
ation, isolation, and management, and includes all related works. In addition, to aid
comprehension, the table highlights the methodology, performance metrics, and work pa-
rameters used. The vast majority of papers use the same parameters and metrics to evaluate
performance. It has been found that the literature differs depending on the methodology
that was used as well as the network slicing components that were discussed. The majority
of the works in the table provide solutions for slice isolation; however, a few of the works
addressed slice creation on its own, and a few of the papers addressed slice management in
addition to slice isolation. As a result, we determined that introducing an orchestration
framework that addresses all three components of network slicing would be significant.
In the proposed framework, individual components of network slicing are addressed us-
ing the most appropriate techniques. For this study, we made use of a machine learning
technique called Random Forest to carry out the slice creation. After slice creation, we
employed a PROMETHEE-II-based resource allocation scheme to provide better resource
allocation to the requested service. Then, we use resource management to make sure that
resources are used effectively, and also, we give priority to uRLLC services. The proposed
framework’s performance is evaluated based on the component it addresses. Precision, F1
Score, and recall are used to measure performance for slice creation via machine learning,
whereas resource efficiency and acceptance rate are used to measure performance for slice
isolation and management.

Table 1. The literature Survey.

Ref. No. Methodology Adopted Components Performance Metrics Considered Attributes

[14] Reinforcement Learning Slice creation Learning Time and Revenue Number of Resources in base station, base sta-
tion capacity, Bandwidth, distribution

[15] Machine Learning and Deep
Learning Slice creation Accuracy Device type, packet loss rate, speed, duration,

bandwidth, jitter, delay rate

[16] Deep Learning Slice creation and
isolation Resource Efficiency and Violation Rate Traffic, PRB usage and CPU load

[17] Reinforcement Learning Slice isolation Power consumption Number of sensors, traffic and monitoring de-
vices

[32] Deep Reinforcement Learning Slice isolation CPU and bandwidth utilization CPU capacity, bandwidth, path length and num-
ber of requests

[19] Dynamic Programming Slice isolation Bandwidth and fairness Data rate, transmission power, link capacity and
bandwidth

[22] Dynamic Greedy Technique Slice isolation Residual energy consumption Transmission power, distance, path loss and
bandwidth

[24] Complex Network Theory Slice isolation Resource Efficiency and Acceptance Ratio CPU and bandwidth

[25] VNE-NTANRC algorithm Slice isolation Resource Efficiency and Acceptance Ratio CPU and bandwidth

[26] Stackelberg game approach Slice isolation Power consumption and delay Subchannels, devices, data rate and traffic

[27] VIKOR approach Slice isolation Resource Efficiency and Acceptance ratio CPU and bandwidth

[28] Stochastic Network Principles Slice isolation Resource Efficiency Delay rate, traffic rate, capacity and service type

[29] UFLOP mechanism Slice creation and
isolation

Provisioning ratio and traffic allocation
ratio CPU, bandwidth and delay time

[30] SABA scheme Slice isolation and
management Bandwidth consumption Delay rate, bandwidth, link capacity and service

type

[31] FlexRAN controller Slice isolation and
management RAM and CPU consumption CPU, Memory and bandwidth utilization
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Table 1. Cont.

Ref. No. Methodology Adopted Components Performance Metrics Considered Attributes

Proposed

Machine Learning for Slice
Creation, PROMETHEE for
Slice Isolation and Resource
Transfer for Slice Management

Slice creation, iso-
lation and man-
agement

Slice creation: Precision, Recall, and F1
Score
Slice isolation and management:
Resource Efficiency, Acceptance Rate

CPU capacity, link capacity, bandwidth, jitter, de-
lay rate, and closeness centrality

3. Network Model and Mathematical Foundations
3.1. Physical Infrastructure (PI) Model

PI’s physical structure is illustrated by a weighted undirected graph. The weighted
undirected graph is denoted as GPI = (NPI , EPI), where NPI represents a group of physical
nodes and EPI represents a group of physical links. There is a unique set of properties
for each graph node and link. Every individual node of a graph should be represented
with CPU Capacity (CPU), Link Capacity (LC), Security Level (SL), Delay Rate (DR) and
Jitter (JT). As an example, the parameters of the ith node of a graph should be specified
as a subset containing (CPUPI

i , LCPI
i , SLPI

i , DRPI
i , JTPI

i ), i ∈ NPI . The values for a node’s
relevant metrics are developed to match the true features of a 5G mobile network’s core
nodes. As with nodes, each link of a graph is specified with the subset reflecting the
associated network features, EPI

i (BWPI
ij , LPI

ij ), where BWPI
ij is the bandwidth between the

link i and j of PI and LPI
ij is the length of the link among the nodes i and j of PI.

3.2. Network Service Request (NSR) Model

In this analysis, it is assumed that the NSR parameters including the number of
nodes in each NSR, CPU capacity, bandwidth, security level, delay, and user device
type are assigned. Every NSR is represented by an undirected graph represented as,
GNSR = (NNSR, ENSR), where NNSR denoted the nodes of the graph and ENSR indi-
cates the edges between them. Each node in NSR should be specified as a subset contain-
ing (CPUNSR

i , LCNSR
i , SRNSR

i , LTNSR
i , DTNSR

i ), i ∈ NNSR where CPUNSR
i , LCNSR

i , SRNSR
i ,

LTNSR
i and DTNSR

i are the required CPU Capacity, Link Capacity, Security Level, Life Time
and Device Type of the ith node, respectively. The data transfer rate between nodes i and j
is calculated using the formula BWNSR

ij . We assume that the NSRs arrive during a single
transmission window [33]. Nodes and connections for the NSR are allotted and set up at
the beginning of each time period using the physical infrastructure. Every time a new NSR
comes in, the available resources in the underlying physical infrastructure is adjusted based
on the LTNSR of the prior request.

3.3. Problem Description

It makes sense that efficient network slicing maximises the use of physical network
resources while simultaneously lowering the cost of slice provisioning [27]. With these
limitations in mind, we may formulate the issue of minimising the cost of slice provisioning
as an integer linear programming model, as illustrated below.

min, ∑
nk∈NNSR

∑
ni∈NPI

xk
i (1 + SL(ni))CPU(nk)

+ ∑
em∈ENSR

∑
en∈EPI

am
n BW(em)

(1)

subject to, ∑
k

xk
i = 1, ∀i ∈ NNSR (2)

∑
i

xk
i ≤ 1, ∀i ∈ NPI (3)

xk
i CPU(nk) ≤ CPU(ni), ∀i ∈ NPI , ∀k ∈ NNSR (4)
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xk
i SR(nk) ≤ SL(ni), ∀i ∈ NPI , ∀k ∈ NNSR (5)

∑
em∈ENSR

am
n BW(em) ≤ BW(en), ∀en ∈ EPI (6)

xk
i is a binary variable. If the k-th node of NSR is served onto the i-th node of PI, then

xk
i = 1; otherwise, xk

i = 0. am
n is a binary variable. If the m-th link of NSR is served to the

n-th link of PI, then am
n = 1; otherwise, am

n = 0. In order to guarantee the integrity of the
nodes, network providers employ various additional measures. To enhance resource alloca-
tion and slice generation accuracy at nodes, we additionally take into account Link Capacity,
Delay Rate, and Jitter in addition to CPU Capacity and bandwidth. Constraint (2) specifies
that each request node must be associated with a physical node. The third constraint guar-
antees that a given physical node will only ever host a single node from the same request.
Limitation (4) shows the CPU Capacity. The security constraints of all nodes are guaranteed
by the fifth constraint. Constraint (6) ensures that the bandwidth requested by services
delivered over a physical link does not exceed the available bandwidth.

3.4. Network Node Attributes

Nodes in both the physical infrastructure and the NSR have varying parameter values;
therefore, they are seen as complicated networks. According to the core principles of
complex network theory, examining the significance of the nodes is required. Every node
in a complex network is affected by four critical features of this problem. The significance
of nodes in a network is evaluated in light of the values assigned to each node’s set of
associated parameters. The formulas for the elements are derived from the basic complex
network theory.

3.4.1. Node Capacity Element (NCE)

The capacity of a node is set by the amount of CPUs that are available at any given
time. If a node has more CPUs, it may be capable of providing service to more NSRs.
Because of this, a node with many CPUs should be given preference when provisioning
resources. As soon as the service of an NSR is completed, the value of the element is
updated instantaneously in the system. It is shown in the following equation that the NCE
of node i at the given time t is as follows

NCEt
i = CPU(NPI

i ) (7)

3.4.2. Node Topology Element (NTE) and Node Bandwidth Element (NBE)

Both NTE and NBE are determined by the physical node’s number of nearby con-
nections. NTE denotes the total number of neighbouring connections to a node, whereas
NBE denotes the total bandwidth of nearby links. A node with a higher NTE and NBE is
prioritized for provisioning in the network. The value of each element is updated as per
the life time of each NSR. Listed below are the equations for updating the factors at time t.

NTEt
i =

n

∑
j=1

aij,available, i 6= j (8)

NBEt
i =

n

∑
j=1

BWPI
ij , i 6= j (9)

where n is the number of nodes in the network, and if the ith node is connected to the jth

node and both are unserved, then aij,available will be 1; otherwise, it will be 0.
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3.4.3. Node Closeness Centrality Element (NCCE)

Using NCE, NTE, and NBE, we can examine the local information for every node.
However, the relevance of a node in a network can be assessed by the weight it is assigned
when determining the shortest path between any two other nodes. NCCE’s shortest route
information is used to determine a node’s global importance. That is why proximity to
other nodes increases a node’s centrality. The following is the formula to calculate NCCE
at a given time t:

NCCEt
i = {

nNodes

∑
j=1

Li,j}−1, i 6= j (10)

where Li,j is the shortest path among the vertices i and j.

4. Proposed Strategy

As seen in Figure 1, the planned work is divided into three phases, each with its own
set of responsibilities. Phase I focuses on the slice creation of physical infrastructure as well
as NSRs. Phase II is responsible for Slice Isolation which ensures that each NSR achieves
the optimal allocation of resources in PI. Phase III combines the findings of Phases I and II
and incorporates slice management through resource transfer. The following subsections
describe the procedures involved in each phase.

Figure 1. Proposed 5G mobile network orchestration for network slicing.

4.1. Slice Creation by Machine Learning Approaches

The field of artificial intelligence has made extensive use of machine learning in a vari-
ety of research applications that concentrate on system characterization.
Machine learning can play a vital role in the implementation of a resource provisioning
mechanism for network slicing. Machine learning algorithms can be classified into multiple
categories, such as supervised, unsupervised, and reinforcement learning. A supervised
learning approach employs a labelled data set for model training. The system knows
both the input data and the desired output data to be produced in a supervised manner.
Different machine learning algorithms such as K-Nearest Neighbour, Support Vector
Machine, Naive Bayes and Random Forest are used to perform classification [34–36].
Figure 2 shows the workflow of supervised machine-learning-based classification. As
shown in Figure 2, supervised learning algorithms divide the nodes into the eMBB, mMTC,
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and uRLLC slices after receiving KPIs from the network nodes. Each node’s KPIs are con-
tained in a single database, which must be split into two separate datasets for training and
validation. Classification of slices necessitates training the ML algorithm with a collection
of characteristics from multiple services. Since the predictive model can provide results for
new data after training, this allows for new known input values (KPIs) and new unknown
slices to be assigned. Therefore, once the ML algorithm has been trained, the predictive
model may correctly forecast or classify the requests for service. The ML algorithm is used
to classify network slices in Algorithm 1. These three types of slices will be sorted using
different methods of Supervised Machine Learning (SM) classification.

Figure 2. NSR placement process with NIRA and SPA.

Algorithm 1 Slice classification in 5G
Input: GPI

Output: eMBB, mMTC, uRLLC
1: Represent eMBB, mMTC, uRLLC as an empty vector of length vs.
2: Represent node, k = 0
3: Receive the node characteristics of NPI

4: Do the supervised ML Classification()
5: while k ≤ v do
6: XPredict of k
7: YPredict=Predict the slice of XPredict
8: if YPredict=eMBB then
9: eMBB← node k

10: else if YPredict=mMTC then
11: mMTC← node k
12: else
13: uRLLC← node k
14: end if
15: k = k + 1
16: end while
17: return eMBB, mMTC, uRLLC slices

4.1.1. K-Nearest Neighbour (KNN)

KNN is a straightforward method for storing all available cases and grouping them
according to their degree of similarity. A data sample with an unknown distribution is
classified using the class of KNN. If the majority of the sample’s nearest neighbours belongs
to the same class, the sample is classified as belonging to that class. KNN supports a wide
variety of distance functions, including Euclidean, Minkowski, and Manhattan. In this
scheme, the distance is calculated using the Euclidean distance function. The Euclidean
distance function is √√√√ k

∑
i=1

(xi − yi)2 (11)

where x and y are defined as a pair of samples.
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4.1.2. Support Vector Machine (SVM)

Classification problems can be solved using SVM and it classifies points into one
of two disjoint half spaces. Both linear and nonlinear data can be classified using SVM.
To perform the classification, we need to identify the hyperplane that separates the two
classes by the optimal (maximum) margin. The SVM hyperplane is denoted as

hw,b(x) = g(w2x + b) (12)

where w is a weight vector, x is an input vector and b is a bias vector.

4.1.3. Naive Bayes

A Naive Bayes classifier is a simple probabilistic classifier model and it is based on
the Bayes theorem. A Naive Bayes classifier assumes that the presence or absence of one
feature is unrelated to the other features existing in a class [37]. With the help of a set
of node features that are supplied at the time of training, this method is able to correctly
categorize the nodes of the network. The probability of Naive Bayes is

P(c|x) = P(x|c)P(c)
(P(x)

(13)

where P(c|x) is the posterior probability of class, P(x|c) is the likelihood probability of
class, P(c) is the class prior probability and P(x) is the predictor prior probability.

4.1.4. Random Forest (RF)

In a Random Forest, each decision is represented by a single tree. Each decision tree is
built on a randomly selected set of features. All new datasets are classified according to
the majority of trees, and all unknown data samples are assigned to one of these classes.
Using a group of classifiers h1(x), h2(x) . . . , hn(x), a training set is randomly selected from
the distribution of random vectors X and Y. The margin function is defined as follows:

mg(x, y) = avk I(hk(X) = Y)−maxj 6=yavk I(hk(X) = j) (14)

where I is the indicator function. The margin is the difference between the average number
of votes for the right class at X, Y and the average vote for any other class. The greater the
margin, the more confident and accurate the classification.

Slice classification is performed using the supervised machine learning algorithms
discussed above in the proposed network slicing process. Along with the appropriate
slices serving as the target, the performance dataset that contains the KPIs of the network
nodes is prepared. The effectiveness of the machine learning algorithms that have been
implemented is analyzed in order to determine whether or not the method is appropriate
for the dataset that has been prepared before it is proposed for the slice isolation and
management procedures.

4.2. Slice Isolation by Resource Allocation (SIRA) Scheme

This phase is responsible for allocating the nodes and links of the NSR slices in the
PI slices. According to SIRA, nodes in each slice of NSR and PI are prioritized first based
on node information. Based on complex network theory, each node of the network is
influenced by four elements (14)–(17); hence, the multi-criteria decision-making (MCDM)
technique is used to prepare the node ranking (NR) array. An established MCDM [38]
approach, PROMETHEE-II, can be used in this proposed study to create a node ranking
system called Node Centric SIRA (NC-SIRA). Dijikstra’s shortest path technique, referred
to as Link Centric SIRA (LC-SIRA), is used to connect the assigned nodes. The VNFs are
prepared for both the NC-SIRA and the LC-SIRA for the provisioning of nodes and links
for NSRs in PI.
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4.2.1. NC-SIRA-based Decision Making

Prior to receiving the NSR, the node ranking for slices of physical infrastructure
should be created. Upon receipt of the NSR, the node ranking for the slices of logical
structure is prepared. NCE, NTE, NBE, and NCCE all play an important part in the
process of determining the value of each node in the network that is connected to it. As
a result, it is imperative that the ranking must be constructed without compromising the
intricacies of the nodes’ configurations. It is necessary to use PROMETHEE-II in order to
create an array of nodes for node ranking based on each node’s four characteristics. This
technique takes into account the element’s individual preferences and disinterestedness.
The PROMETHEE-II method for allocating resources for nodes and that consists of the
following phases [39,40]:

(a) Making an evaluation table: Each node in the evaluation table has its factor values
saved in the evaluation table. In order to prepare Table 2, the factors of each node are
evaluated with their corresponding weight parameters. It is assumed that N = n1, n2, . . . , ni
and F = f1, f2, f3, f4 are the sets of nodes and factors, respectively.

Table 2. Evaluation table.

f1 f2 f3 f4

n1 f1(NCEt
n1) f2(NTEt

n1) f3(NBEt
n1) f4(NCCEt

n1)

n2 f1(NCEt
n2) f2(NTEt

n2) f3(NBEt
n2) f4(NCCEt

n2)

. . . . .

. . . . .

ni f1(NCEt
ni) f2(NTEt

ni) f3(NBEt
ni) f4(NCCEt

ni)

(b) Function of preferences planning: All nodes in a network are compared to each
other in a pairwise comparison for each factor in the network.

dk(ni, nj) = fk(ni)− fk(nj) (15)

where the preference function is introduced to convert the dk(ni, nj) unified value as below

Pk(a, b) = Gk[dk(ni, nj)] (16)

(c) Calculating a World Preference Index:

π(n, m) =
i

∑
k=1

Pk(a, b) ∗ wk (17)

where wk is a weight function of factor k which is assumed as greater than 0 and the sum of
the weights is equal to 1.

(d) Positive and negative outranking flows are calculated: The following two factors
are calculated to locate each node with respect to all other nodes.

φ+(a) =
1

i− 1 ∑
x∈A

π(a, x) (18)

φ−(a) =
1

i− 1 ∑
x∈A

π(x, a) (19)

where φ+(a) is obtained by ranking the nodes according to the nonincreasing values of
their respective positive flow values, whereas φ−(a) is obtained by ranking the nodes
according to the nondecreasing values of their respective negative flow values.
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(e) Net flow calculation:

φ(a) = φ+(a)− φ−(a) (20)

The highest value of φ(a) refers to the best node in the node ranking (NR). After
implementing NC-SIRA-based node allocation, the algorithm described in [40] is used to
return the details of the NSR nodes that have been assigned in PI. Every time a new NSR is
received, this procedure is carried out. The revised values of unsuccessful NSR (usNSR)
and successful NSR (sNSR) are obtained at the conclusion of the execution.

4.2.2. LC-SIRA-Based Decision Making

NSR nodes in the physical infrastructure must be routed in the most efficient manner
possible. The efficiency of the PI resources can be improved by providing the shortest
route for NSR nodes. There are some situations in which the shortest route can be linked
to existing NSRs. To do this, we need to first find all of the connections between NSR
nodes and then organise them in a static link array with the lengths of the paths between
them taken into account. This array can be used to connect NSRs in PI to each other.
Connection building is expected to correspond to each of the most direct routes, one
after the other. When it comes to link provisioning, the link array always uses the least
time-consuming option among the available methods.

4.2.3. Resource Allocation and Performance Assessment

In this analysis, we assume that all significant NSR nodes have been automatically
segmented as eMBB, mMTC, or uRLLC based on their corresponding data. An NSR must
be allowed to provide any kind of slice request at any time. To provide the best feasible
optimal provisioning for the NSR, the combined NC-SIRA and LC-SIRA are applied. All
NSRs which received between 0 and Tmax are assigned a node and connected to one another
through this combined process. The lifetime of the received NSR is used to update the rank
array and path array of the physical infrastructure to identify the best possible provisioning
for the next arrival of NSR. This leads to better performance and effectiveness of NSR
allocation under changing conditions in physical infrastructure. The proposed process,
depicted in Figure 3, begins with the allocation of resources for NSRs for the longest possible
time, denoted by the parameter (Tmax). Three key measures used to analyze the efficacy of
slice provisioning are the success rate, the resource efficiency and the execution time.

Figure 3. Sequence for resource allocation.
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In supervised machine learning, algorithms are trained on a labelled dataset.
This study investigates the classification of 5G network slices using a number of different
classification algorithms such as KNN, SVM, Naive Bayes, and RF. In order to evaluate the
performance of these algorithms, a dataset is divided into training and testing procedures.
Precision, recall, and F1 Score of the obtained results are used to assess the most appropri-
ate machine learning technique for the prepared performance dataset [34]. Regarding the
assessment of resource allocation, the performance of every network must be measured in
order to optimise the benefits to both the utility and its customers. Customers want utilities
to provide them with consistent and high-quality service. Meanwhile, network service
providers aim to maximize earnings while providing the highest degree of customer satis-
faction. The network’s performance is evaluated in this study by taking into consideration
the benefits gained by all stockholders. When determining the outcomes, performance
metrics such as the NSR acceptance ratio and resource efficiency are taken into account.

(i) NSR Acceptance Ratio (NAR): With this metric, we can see how well the chosen
network slicing strategy is working with the underlying physical infrastructure. It is
determined by dividing the number of successfully completed NSRs by the number of
unsuccessful NSRs over a certain period of time (Tmax), which is stated as

ηNAR =
sNSR
TNSR

(21)

where sNSR and TNSR refer to successful and total NSR, respectively.
(ii) Resource Efficiency (RE): This indicator is found by dividing the revenue pro-

duced by the physical infrastructure by the amount of resources spent on building it.
The amount of CPU power available on the nodes and the amount of link bandwidth
needed by NSRs can be used to figure out how much revenue will be made. The expected
cost of the investment is based on the actual infrastructure that will be needed for the goal.
The following are the mathematical expressions for calculating RE:

ηRE =
∑Tmax

t=0 NSRrevenue(t)

∑Tmax
t=0 PSIcost(t)

(22)

NSRrevenue(t) = ∑
i∈NNSR

CPUNSR
i + ∑

m∈ENSR

BWNSR
m (23)

PSIcost(t) = ∑
i∈NNSR

CPUNSR
i + ∑

m∈ENSR
∑

n∈EPI

Pn
m

∗BWNSR
m

(24)

where NSRrevenue(t) is the revenue of NSR served at time ‘t’, PSIcost(t) is the utilised
physical infrastructure for serving the NSR received at time ‘t’, and Pn

m is the number of
physical infrastructure edges in path ‘n’ for mapping the virtual link ‘m’.

4.3. Slice Management through Resource Transfer (SMART)

The VNF Manager (VNF-M) is the core of the SMART scheme since it is responsible
for making the ultimate determination of the success of NSRs after thoroughly checking
the available resources. VNF-M is responsible for four essential responsibilities related to
NSRs and physical resources, such as dynamic provisioning, inner slicing, reporting, and
priority provisioning as shown in Figure 4. In order to carry out the related duties, VNFs
are defined individually.
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Figure 4. Workflow diagram for slice management through resource transfer (SMART).

4.3.1. VNF for Dynamic Provisioning

The life time of the NSRs that are currently in service is being checked on a continual
basis. As soon as an NSR’s life cycle is over, VNF-M releases the physical resources that
have been occupied by the NSR, enabling the next generation of NSRs to profit from the
resources. For example, at time t = 0, the NSR1 with a life time of 3 consumes the resources
of PI and the occupied resources (i.e., e1, m1, and u1) are withdrawn at time t = 3 according
to its life cycle, as shown in Figure 3a.

4.3.2. VNF for Inner Slicing

This procedure begins when one of the slices (i.e., eMBB, uRLLC, or mMTC) of the
current NSR fails from provisioning. VNF-M searches for the potential of delivering service
to the failed nodes in the remaining two slices until it finds the resources in the associated
slice of PI which are treated as “Alien Nodes”. In other words, Alien Nodes are nodes
of unsuccessful NSR slices that have been provisioned in two unassociated slices which
are referred to as “Alien Slices”. The concept of inner slicing and Alien Nodes is depicted
in Figure 3b. As per the figure, the first part assumes that the eMBB nodes of the NSR
slice are unsuccessful and the remaining uRLLC and mMTC slices are successful. This
situation is realized by VNF-M which attempts to distribute resources from the mMTC
and uRLLC slices. To begin, the VNF-M tries to assign resources from the mMTC slice,
but if there are not enough resources available, it searches for resources for Alien Nodes in
uRLLC. The provisioned eMBB nodes are becoming the Alien Nodes of the mMTC slice.
The Alien Nodes are denoted as Ae1 and Ae2 which are allocated in mMTC. The eMBB
nodes use the resources of mMTC and uRLLC until they find the space in the eMBB slice of
PI. The same inner slicing is applicable in case of uRLLC or mMTC becomes unsuccessful.
An improvement in resource efficiency and acceptance ratio is achieved by transferring
available resources from successful slices to the failing slice.
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4.3.3. VNF for Reporting

When resource provisioning via inner slicing fails or when more than one slice of
an NSR fails, VNF-M reports the received NSRs as unsuccessful. According to Figure 3c, the
first half assumes that eMBB and uRLLC slices fail, but mMTC succeeds.
By reporting the NSR failure immediately, VNF-M avoids any more inner slicing op-
erations in the future. NSR fails at inner slicing as shown in the second section of Figure 3c.
VNF-M realizes that there are not enough resources in both Alien Slices when attempting
inner slicing.

4.3.4. VNF for Priority Provisioning

In the next provisioning cycle, the Alien Nodes in each slice are given the highest
priority because they are the most difficult to reach. When new NSRs seek resource
provisioning at physical resources, priority service is given to Alien Nodes in each slice
when the request is received. As illustrated in Figure 3d, when VNF-M detects that there are
Alien Nodes in the mMTC slice, it first searches for the release of Alien Nodes (i.e., Ae1 and
Ae2) supplied at the Alien Slice before receiving the new NSR when it goes to the next time
cycle. If the resources required by the Alien Nodes are not available, the nodes are either
kept in the same slice or are differently assigned to the appropriate slice, depending on
the situation. Essentially, the goal of this endeavour is to provide priority service to Alien
Nodes while simultaneously maintaining the Alien Slice in order to preserve resources for
their linked NSR slice nodes for the following cycle.

5. Simulation Results and Discussion
5.1. Simulation Parameters

The proposed work is divided into three phases of execution, which are as follows:
(i) slice creation using machine learning techniques (SCML), (ii) slice isolation using re-
source allocation (SIRA), and (iii) slice management using resource transfer (SMART).
The effectiveness of the approaches used in the various phases is assessed through the use
of the parameters associated with each approach. Table 3 lists the variables considered for
the test case, including the variety of physical infrastructure resources and the NSR for the
test scenario [24].

The scale-free network model proposed in [41] is used to create the graphs for the
physical infrastructure and NSR. The proposed research used Python to construct the
simulation platform.

5.2. Slice Creation through Machine Learning Techniques

The proposed work creates slices for both the PI and the NSR concurrently.
The performance datasets for physical infrastructure and NSR have been prepared sepa-
rately due to their distinct characteristics. For the purpose of preparing the performance
dataset, several key indicators are identified, including CPU Capacity, Link Capacity, Band-
width, Jitter, Delay Rate, and Closeness Centrality [15]. The datasets are classified into three
categories based on their fields: eMBB, mMTC, and uRLLC. A dataset with 1000 samples is
currently being assembled. Training and testing are conducted using a variety of supervised
machine learning techniques, including KNN, Naive Bayes, SVM, and Random Forest.
A 9:1 training-to-testing ratio is proposed for training. Precision, Recall, and F1 Score are
used to compare the efficiency of different training methods.

The machine learning techniques are implemented using the Python library.
The results for PI and NSR using various machine learning techniques are shown in
Table 4. As illustrated in the table, all techniques capable of achieving greater than 90%
training accuracy fall into one of three categories. When the overall percentage accuracy of
the performance dataset is considered, Random Forest training gives better results than
other techniques. Figure 5 illustrates how these four supervised machine learning tech-
niques perform under different training-to-testing ratios, which is further evidence of their



J. Sens. Actuator Netw. 2023, 12, 65 15 of 22

effectiveness. From the figure, it is clear that the Random Forest technique has a better
overall accuracy rate than other techniques.

Table 3. Simulation parameters.

Physical Infrastructure Network

Definitions Descriptions Range

NPI Total number of PI nodes 100, 200, 300

CPUPI CPU capacity of each PI node U(20,50)

LCPI Link capacity of each PI node U(20,50)

SLPI Security level of a PI node (0–1)

BWPI Bandwidth of each PI links U(20,50)

DRPI The rate of delay for each PI node (0–1)

JTPI The jitter for each PI node (0–1)

Network Service Request

Definitions Descriptions Range

TNSR The total number of NSRs U(5,35)

NNSR Nodes count in each NSR 20

CPUNSR CPU requirement of NSR node U(5,25)

LCNSR LC requirement of NSR node U(5,25)

BWNSR Bandwidth requirement of NSR node U(5,25)

SRNSR Security level of a NSR node (0–0.5)

LTNSR Life time of each NSR T(10,35)

Table 4. Classificationand accuracy reports.

ML Approach

90 % of Training Set and 10 % of Testing Set

eMBB mMTC uRLLC Overall

Precision Recall F1 Score Precision Recall F1 Score Precision Recall F1 Score (%)

KNN 0.93 0.95 0.97 0.97 0.92 0.94 0.94 0.97 0.96 95

Naive Bayes 0.96 0.95 0.95 1.00 0.98 0.99 0.92 0.96 0.94 96.3

SVM 0.96 0.95 0.95 1.00 1.00 1.00 0.95 0.96 0.95 97

Random Forest 0.94 1.00 0.97 1.00 1.00 1.00 1.00 0.93 0.97 98.3

Figure 5. Slice classification accuracy for different ML approaches.
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5.3. SIRA Scheme

This phase focuses on the allocation of resources for slice isolation, as shown in
Figure 3. This system is evaluated by considering clusters of 100, 200, and 300 NSR nodes
in different scenarios with 10, 20, and 30 NSR nodes, respectively. Table 2 shows the range
of values from which network features are randomly selected. In order to better measure
performance, the lengths of the graph’s edges are fixed at one unit each. Node-generated
values are classified using the Random Forest technique and made available as slices in PI
and NSR to allocate resources. By assigning the available resources of PI slices to NSR slices
in an appropriate manner, the SIRA scheme guarantees that the required NSRs will have
access to the necessary nodes and links. The obtained resource efficiency under different
system operating conditions is shown in Figure 6. Figure 6 summarises this generalisation
about NSRs and resource efficiency by demonstrating how an increase in the number of
NSRs reduces the network’s resource efficiency while an increase in the number of nodes
in the physical infrastructure raises efficiency. The resource efficiency calculation shows
that adding more nodes to a network makes the shortest way shorter, which makes better
use of the resources that are available.
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Figure 6. Resource efficiency for SIRA.

Additionally, more powerful and numerous nodes should be made available to accom-
modate the growing number of NSRs. Using the suggested method on an infrastructure
that includes 100 nodes, efficiencies of 0.759, 0.746, and 0.733 are achieved for NSRs of 10,
20, and 30, respectively, as shown in Figure 7. The number of PI nodes increases to 200 and
300, and efficiency with that resource rises as well, achieving a maximum of 0.79 under 5
NSRs; a total amount of 9429 CPUs are utilised. Likewise, in the same operational state,
bandwidth utilisation varies between a high of 29,662 and a low of 4300.

Comparisons are made between the proposed algorithm’s performance and that of
other algorithms in the literature, including those from the CN [24], SA [42], LAVA [43],
GLL [44], VIKOR [27]. The algorithms are run under similar operating conditions to facili-
tate comparison. Figure 7 depicts the algorithms’ resource efficiency results.
SIRA outperforms all other resource allocation methods in a wide range of operating
conditions and NSRs, as seen in Figure 7.

When compared to the MCDM-based node ranking algorithm, the VIKOR-CNSP
method of resource allocation provides significantly better performance. The performance
of NSR implementation, the SA-based approach, and LAVA were all superior to that of
GLL. An efficiency of 0.753 is observed for 300 PI nodes and 30 NSRs. The suggested
method for figuring out the acceptance rate is tested with NSRs ranging from 5 to 35. The
expected lifetimes of the NSRs are arbitrarily chosen. The outcomes of the algorithms’
effective execution across a range of physical infrastructure circumstances are depicted
in Figure 8. Even though there are more actual nodes, the acceptance ratio drops as the
overall NSR rises.
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Figure 8. Acceptance ratio of SIRA with other algorithms.

Because more nodes are present, a greater percentage of the population accepts it.
As NSR lifespans are shortened, the acceptance ratio also rises. The maximum acceptance
ratio that can be attained with the suggested method is 0.98 when just 10 NSRs are used
and 300 PI nodes are provided. A minimal acceptance ratio of 0.84 is achieved when
35 NSRs and 100 accessible nodes are used. It has been shown that the proposed algorithm
outperforms previous approaches under numerous operational conditions.

VIKOR-CNSP is the second-best algorithm, with results that are comparable to those of
the SIRA algorithm. For 35 NSRs under available nodes, the lowest acceptance ratios while
employing the LAVA and GLL techniques to allocate network resources are 0.48 and 0.60,
respectively. Algorithms are evaluated not only by their resource efficiency and acceptance
rate but also by how quickly they can be executed. This determines how quickly each
algorithm can complete a task. As shown in Figure 9, the execution times are compared
under a variety of physical infrastructure conditions as well as different NSRs.

The algorithm execution times increase proportionally as the number of NSRs and
the available physical infrastructure nodes increases. Under reduced NSRs and reduced
PI, the three algorithms listed above complete their tasks in the shortest amount of time.
When comparing the algorithms, SIRA’s resource allocation algorithm takes the shortest
amount of time compared to the other two under all working circumstances. Serving NSRs
in the 5–35 range with a 100-node physical infrastructure takes less than 10 ms. Also, the
response time for the same amount of NSRs used in 300 PI nodes is not higher than the
10 ms. The execution time of the VIKOR approach has not been included in the above figure
for comparison because the execution times of the VIKOR and SIRA procedures are nearly
identical. However, all the compared approaches solely deal with slice resource allocation,
whereas the suggested SIRA approach also deals with slice formation via machine learning.
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Figure 9. Execution time of SIRA with other algorithms.

5.4. SMART Scheme

In order to improve the performance of SIRA scheme-based resource allocation, our
SMART scheme is being implemented in its current form. As previously stated, this scheme
is responsible for four different tasks depending on the information it receives. With this
scheme, the unsuccessful NSRs are given the greatest amount of attention to improve
resource efficiency and acceptance ratios overall. The SMART scheme seeks to determine
the most effective method of turning unsuccessful NSRs into successful ones. This function
starts the node allocation process for unsuccessful NSRs when only one slice of an NSR
is unsuccessful among the three different types of NSR slices that are available. It is
necessary to treat the nodes in the unallocated slice of NSR as Alien Nodes, and the process
of searching for node provisioning in the other two PI slices is known as inner slicing.
The Alien Nodes are kept in unassociated slices until they are able to locate the provisioning
in their associated primary interface slice. SMART scheme performance is demonstrated
by executing the scheme under identical operating conditions, with nodes of PI ranging
from 100 to 300 and NSRs ranging from 5 to 35. Figure 10 depicts the resource efficiency
obtained under various conditions by using SIRA and SMART, as well as the results of
the study.
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Figure 10. Resource efficiency of SMART with SIRA.

On the basis of the graph, it is clear that the SMART scheme contributes to a reasonable
increase in resource efficiency. To serve 20 NSRs, it provides service to 142/126/132 nodes
in the eMBB, mMTC, and uRLLC networks. SIRA scheme, on the other hand, could serve
142 eMBB nodes, 126 mMTC nodes, and 132 uRLLC nodes with the same number of NSRs.
The SMART scheme achieves a greater improvement in serving eMBB, mMTC, and uRLLC
nodes than the SIRA scheme. This results in a physical infrastructure that can serve a
greater number of NSRs than any other resource allocation method. It can also be justified
by comparing the acceptance ratio and execution time of two schemes, which are depicted
in Figures 11 and 12, respectively, to see how they compare.
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According to the figures, the SMART scheme generates the optimal solution more
quickly than any other algorithm while maintaining a higher acceptance ratio.
Also, the figures demonstrate that the acceptance ratio of the SMART scheme has increased
significantly as a result of the scheme’s execution taking a comparatively short amount
of time. With 10 NSRs and 300 reachable PI nodes, the proposed method can achieve a
maximum acceptance ratio of 1. A minimal acceptance ratio of 0.89 is achieved when
35 NSRs and 100 accessible nodes are used. Moreover, the amount of CPU utilised and BW
consumed by SMART is increased compared to SIRA schemes as shown in Figure 13. This
current scheme can handle a maximum of 10,568 CPUs and a minimum of 3058 CPUs, and
for bandwidth, a maximum of 31,628 and a minimum of 8340 under the PI with 100 and
300 nodes.
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Figure 13. CPU and bandwidth utilization of SMART with SIRA.



J. Sens. Actuator Netw. 2023, 12, 65 20 of 22

6. Conclusions

The proposed research focused on three key aspects of resource allocation in 5G mobile
networks: slice creation, slice isolation, and slice management. The prepared performance
dataset addressed slice creation using machine learning techniques and discovered that
slice creation using the Random Forest technique produced comparatively better accuracy
than other techniques. Slice isolation was achieved using the SIRA scheme, which uses
NC-SIRA and LC-SIRA for node allocation and link establishment. For node allocation,
NC-SIRA used a PROMETHEE-II-based MCDM technique, while LC-SIRA used Dijkstra’s
algorithm. In addition, slice management was handled by the SMART scheme, which is
responsible for four key aspects of resource allocation: dynamic slicing, reporting, inner
slicing, and priority provisioning. The main goal of SMART is to turn a failed NSR slice into
a success by using an inner slicing approach based on Alien Node provisioning concepts.
The proposed schemes are put to the test under various network operating conditions
with varying PI and NSRs. Furthermore, the life time of the NSRs is taken into account,
allowing for effective dynamic slicing and priority provisioning. Also, the NSRs’ security
concerns and minimal SLA have been properly addressed by incorporating constraints
into the resource allocation process. Finally, the effectiveness of the proposed scheme is
supported by the literature findings. The scope of the proposed work can be enhanced to
address further SLA and security issues. It can also be extended to address the mobility
and energy management of user equipment.
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