A Rapid Review on the Use of Free and Open Source Technologies and Software Applied to Precision Agriculture Practices
Abstract
:1. Introduction
2. Methods
2.1. Information Sources
2.2. Search Strategy
2.3. Eligibility Criteria and Selection Procedure
- Works focused on precision agriculture;
- Works consisting of free and open-source software with full source code publicly available, preferably in a software repository such as GitHub, GitLab, or equivalent;
- Works published between 2012 and 2022;
- Source code must have been updated at least once in the last 3 years (counting down from October 2022);
- Works only in the English language.
- Applications not directly related to precision agriculture;
- Farming simulator applications, farm simulator games;
- Other games.
2.4. Data Items
- Source code repository;
- Year of publication;
- Programming language(s);
- User interface(s);
- Category;
- Keywords.
- A
- Crop and climate protection and diagnosis;
- B
- Nutrition and fertilization of crops;
- C
- Crop irrigation;
- D
- Soil management, planting, growing and harvesting crops;
- E
- Production management, machinery and equipment.
3. Results
3.1. Selection of Works
3.2. Characteristics of Selected Works
3.3. Description of Selected Works
3.3.1. A—Crop and Climate Protection and Diagnosis
3.3.2. B—Crop Nutrition and Fertilization
3.3.3. C—Crop Irrigation
3.3.4. D—Soil Management, Planting, Growing, and Harvesting the Crop
3.3.5. E—Management of Production, Animals, Machinery and Equipment
3.4. Summary of Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ICT | Information and communication technology |
AI | Artificial intelligence |
IoT | Internet of Things |
ITALLIC | Integrated Tool for AgData Lat Long Imputation and Cleaning |
UAS | Unmanned Aerial System |
OWL | OpenWeedLocator |
BovHEAT | Bovine Heat Detection and Analysis Tool |
Appendix A. Keywords for Selected Works
No. | Ref. | Keywords |
---|---|---|
1 | [28] | gnss; raspberry pi; autonomous robot; seed planting; low-cost. |
2 | [29] | automation; arduino; air quality; iot; monitoring. |
3 | [30] | crop yield; low-cost; weed detection; herbicide application; image analysis. |
4 | [31] | low-cost; multispectral imaging; uas; embedded electronics; optimization. |
5 | [32] | photogrammetry; phenotyping; uas; gis; orthomosaic. |
6 | [33] | automation; arduino; monitoring; raspberry pi; plant growth. |
7 | [34] | arduino; iot; irrigation; water use; automation. |
8 | [35] | decision support; geostatistics; spatial analysis; gis; temporal data. |
9 | [36] | uas; autonomous photography; faas; machine learning; edge computing. |
10 | [37] | automation; ordinary kriging; clustering analysis; yield map; data filtering. |
11 | [38] | iot; meteorological data; irrigation; water use; android. |
12 | [15] | thermal imaging; uas; vegetation index; image processing; raspberry pi. |
13 | [39] | data-driven plant breeding; data processing; data visualization; location data; big data. |
14 | [40] | object detection; crop spraying; energy-efficient; uas; computer vision. |
15 | [41] | automation; geovisualization; time series; vegetation index; satellite images. |
16 | [42] | spatial data; local analysis; map accuracy; outliers; data filtering. |
17 | [43] | decision support; vegetation index; monitoring; multispectral imaging; uas. |
18 | [44] | monitoring; dairy cow; data processing; automation; heat analysis. |
19 | [45] | irrigation; distributed systems; meteorological data; automation; water use. |
20 | [46] | deep learning; unmanned ground vehicles; monitoring; path planning; automation. |
21 | [47] | gis; geoprocessing; spatial analysis; geocomputing; path planning. |
References
- The Free Software Foundation. What is Free Software? 2022. Available online: https://www.gnu.org/philosophy/free-sw.html (accessed on 6 March 2023).
- Doering, D.; Vizzotto, M.; Bredemeier, C.; da Costa, C.; Henriques, R.; Pignaton, E.; Pereira, C. MDE-based development of a multispectral camera for precision agriculture. IFAC-PapersOnLine 2016, 49, 24–29. [Google Scholar] [CrossRef]
- Pearce, J.M. Emerging business models for open source hardware. J. Open Hardw. 2017, 1, 2. [Google Scholar] [CrossRef] [Green Version]
- Aravind, K.; Subramanian, R.B.; Subramanian, V.S.; Srivyassram, V.; Hayakawa, Y.; Pandian, S. An affordable build-your-own computer control system for electropneumatics education. In Proceedings of the 2017 Conference on Information and Communication Technology (CICT), Gwalior, India, 3–5 November 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Pedersen, S.M.; Lind, K.M. Precision Agriculture: Technology and Economic Perspectives; Springer: Cham, Switzerland, 2017. [Google Scholar] [CrossRef] [Green Version]
- Bhat, S.A.; Huang, N.F. Big data and AI revolution in precision agriculture: Survey and challenges. IEEE Access 2021, 9, 110209–110222. [Google Scholar] [CrossRef]
- Addicott, J.E. The Precision Farming Revolution: Global Drivers of Local Agricultural Methods; Palgrave Macmillan: Singapore, 2019. [Google Scholar] [CrossRef]
- Kpienbaareh, D.; Kansanga, M.; Luginaah, I. Examining the potential of open source remote sensing for building effective decision support systems for precision agriculture in resource-poor settings. GeoJournal 2019, 84, 1481–1497. [Google Scholar] [CrossRef]
- Niethammer, U.; Rothmund, S.; Schwaderer, U.; Zeman, J.; Joswig, M. Open source image-processing tools for low-cost UAV-based landslide investigations. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2011, XXXVIII-1/C22, 161–166. [Google Scholar] [CrossRef] [Green Version]
- Matilla, D.M.; Murciego, Á.L.; Bravo, D.M.J.; Mendes, A.S.; Leithardt, V.R.Q. Low cost center pivot irrigation monitoring systems based on IoT and LoRaWAN technologies. In Proceedings of the 2020 IEEE International Workshop on Metrology for Agriculture and Forestry (MetroAgriFor), Trento, Italy, 4–6 November 2020; pp. 262–267. [Google Scholar] [CrossRef]
- Sargent, A. If You Want to Go Far, Go Together: The Future of Open Source Agtech; Technical Report 1909; Nuffield Australia: Kyogle, NSW, Australia, 2020. [Google Scholar]
- Raeth, P.G. Transition of soil-moisture estimation theory to practical application. J. Eng. Comput. Innov. 2021, 6, 1–10. [Google Scholar] [CrossRef]
- Lenarduzzi, V.; Taibi, D.; Tosi, D.; Lavazza, L.; Morasca, S. Open source software evaluation, selection, and adoption: A systematic literature review. In Proceedings of the 2020 46th Euromicro Conference on Software Engineering and Advanced Applications (SEAA), Portoroz, Slovenia, 26–28 August 2020; pp. 437–444. [Google Scholar] [CrossRef]
- Cisternas, I.; Velásquez, I.; Caro, A.; Rodríguez, A. Systematic literature review of implementations of precision agriculture. Comput. Electron. Agric. 2020, 176, 105626. [Google Scholar] [CrossRef]
- de Oca, A.M.; Flores, G. A UAS equipped with a thermal imaging system with temperature calibration for crop water stress index computation. In Proceedings of the 2021 International Conference on Unmanned Aircraft Systems (ICUAS), Athens, Greece, 15–18 June 2021; pp. 714–720. [Google Scholar] [CrossRef]
- Martini, B.G.; Helfer, G.A.; Barbosa, J.L.V.; Espinosa Modolo, R.C.; da Silva, M.R.; de Figueiredo, R.M.; Mendes, A.S.; Silva, L.A.; Leithardt, V.R.Q. IndoorPlant: A model for intelligent services in indoor agriculture based on context histories. Sensors 2021, 21, 1631. [Google Scholar] [CrossRef]
- dos Santos, R.P.; Beko, M.; Leithardt, V.R. Modelo de machine learning em tempo real para agricultura de precisão. In Proceedings of the Anais da XXII Escola Regional de Alto Desempenho da Região Sul, Curitiba, PR, Brazil, 18–20 April 2022; SBC: Porto Alegre, RS, Brazil, 2022; pp. 69–70. [Google Scholar] [CrossRef]
- Cartaxo, B.; Pinto, G.; Soares, S. Rapid Reviews in Software Engineering. In Contemporary Empirical Methods in Software Engineering; Felderer, M., Travassos, G.H., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 357–384. [Google Scholar] [CrossRef]
- Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.D.; Horsley, T.; Weeks, L.; et al. PRISMA extension for scoping reviews (PRISMA-ScR): Checklist and explanation. Ann. Intern. Med. 2018, 169, 467–473. [Google Scholar] [CrossRef] [Green Version]
- Kitchenham, B.; Charters, S. Guidelines for Performing Systematic Literature Reviews in Software Engineering; Technical Report EBSE-2007-01; School of Computer Science and Mathematics, Keele University: Keele, UK, 2007. [Google Scholar]
- Cartaxo, B.; Pinto, G.; Soares, S. The Role of Rapid Reviews in Supporting Decision-Making in Software Engineering Practice. In Proceedings of the 22nd International Conference on Evaluation and Assessment in Software Engineering 2018, EASE’18, Christchurch, New Zealand, 28–29 June 2018; ACM: New York, NY, USA, 2018; pp. 24–34. [Google Scholar] [CrossRef]
- Martín-Martín, A.; Thelwall, M.; Orduna-Malea, E.; Delgado López-Cózar, E. Google Scholar, Microsoft Academic, Scopus, Dimensions, Web of Science, and OpenCitations’ COCI: A multidisciplinary comparison of coverage via citations. Scientometrics 2021, 126, 871–906. [Google Scholar] [CrossRef]
- Exterman, D. GitLab vs GitHub—A 2022 Comparison. Incredibuild. 2021. Available online: https://www.incredibuild.com/blog/gitlab-vs-github-comparison (accessed on 7 March 2023).
- Escamilla, E.; Klein, M.; Cooper, T.; Rampin, V.; Weigle, M.C.; Nelson, M.L. The Rise of GitHub in Scholarly Publications. In Proceedings of the Linking Theory and Practice of Digital Libraries, TPDL 2022, Padua, Italy, 20–23 September 2022; Silvello, G., Corcho, O., Manghi, P., Di Nunzio, G.M., Golub, K., Ferro, N., Poggi, A., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 187–200. [Google Scholar]
- Pace, L. 4G: History, Origin, and More. History-Computer. 2022. Available online: https://history-computer.com/4g-guide/ (accessed on 5 March 2023).
- Alkobi, J. The Evolution of Drones: From Military to Hobby & Commercial. Percepto. 2019. Available online: https://percepto.co/the-evolution-of-drones-from-military-to-hobby-commercial/ (accessed on 5 March 2023).
- Kaur, R.; Chahal, K.K. Exploring factors affecting developer abandonment of open source software projects. J. Softw. Evol. Process 2022, 34, e2484. [Google Scholar] [CrossRef]
- Rogers, H.; Fox, C. An open source seeding agri-robot. In Proceedings of the 3rd UK-RAS Conference, 2020, UKRAS ’20, Lincoln, UK, 17 April 2020; pp. 48–50. [Google Scholar] [CrossRef]
- Winkler, R. MeteoMex: Open infrastructure for networked environmental monitoring and agriculture 4.0. PeerJ Comput. Sci. 2021, 7, e343. [Google Scholar] [CrossRef] [PubMed]
- Coleman, G.; Salter, W.; Walsh, M. OpenWeedLocator (OWL): An open-source, low-cost device for fallow weed detection. Sci. Rep. 2022, 12, 170. [Google Scholar] [CrossRef] [PubMed]
- de Oca, A.M.; Flores, G. The AgriQ: A low-cost unmanned aerial system for precision agriculture. Expert Syst. Appl. 2021, 182, 115163. [Google Scholar] [CrossRef]
- Wang, H.; Duan, Y.; Shi, Y.; Kato, Y.; Ninomiya, S.; Guo, W. EasyIDP: A Python package for intermediate data processing in UAV-based plant phenotyping. Remote Sens. 2021, 13, 2622. [Google Scholar] [CrossRef]
- Arunachalam, A.; Andreasson, H. RaspberryPi-Arduino (RPA) powered smart mirrored and reconfigurable IoT facility for plant science research. Internet Technol. Lett. 2022, 5, e272. [Google Scholar] [CrossRef]
- Carrillo-Pasiche, P.; Miranda-Gutarra, A.; Ugarte, W. HydroTi: An Irrigation System for Urban Green Areas using IoT. In Proceedings of the 2022 IEEE XXIX International Conference on Electronics, Electrical Engineering and Computing (INTERCON), Lima, Peru, 11–13 August 2022; pp. 1–4. [Google Scholar] [CrossRef]
- Leroux, C.; Jones, H.; Pichon, L.; Guillaume, S.; Lamour, J.; Taylor, J.; Naud, O.; Crestey, T.; Lablee, J.L.; Tisseyre, B. GeoFIS: An open source, decision-support tool for precision agriculture data. Agriculture 2018, 8, 73. [Google Scholar] [CrossRef] [Green Version]
- Boubin, J.; Stewart, C. Softwarepilot: Fully autonomous aerial systems made easier. In Proceedings of the 2020 IEEE International Conference on Autonomic Computing and Self-Organizing Systems Companion (ACSOS-C), Washington, DC, USA, 17–21 August 2020; pp. 250–251. [Google Scholar] [CrossRef]
- e Freitas Coelho, L.A.; de Queiroz, D.M.; Valente, D.S.M.; de Carvalho Pinto, F.D.A. An open source spatial analysis system for embedded systems. Comput. Electron. Agric. 2018, 154, 289–295. [Google Scholar] [CrossRef]
- Júnior, W.M.; Valeriano, T.T.B.; de Souza Rolim, G. EVAPO: A smartphone application to estimate potential evapotranspiration using cloud gridded meteorological data from NASA-POWER system. Comput. Electron. Agric. 2019, 156, 187–192. [Google Scholar] [CrossRef]
- Onsongo, G.; Fritsche, S.; Nguyen, T.; Belemlih, A.; Thompson, J.; Silverstein, K.A. ITALLIC: A tool for identifying and correcting errors in location based plant breeding data. Comput. Electron. Agric. 2022, 197, 106947. [Google Scholar] [CrossRef]
- Qin, Z.; Wang, W.; Dammer, K.H.; Guo, L.; Cao, Z. Ag-YOLO: A real-time low-cost detector for precise spraying with case study of palms. Front. Plant Sci. 2021, 12, 2974. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Jiménez, S.I.; Marcial-Pablo, M.d.J.; Ojeda-Bustamante, W.; Sifuentes-Ibarra, E.; Inzunza-Ibarra, M.A.; Sánchez-Cohen, I. VICAL: Global Calculator to Estimate Vegetation Indices for Agricultural Areas with Landsat and Sentinel-2 Data. Agronomy 2022, 12, 1518. [Google Scholar] [CrossRef]
- Maldaner, L.F.; Molin, J.P.; Spekken, M. Methodology to filter out outliers in high spatial density data to improve maps reliability. Sci. Agric. 2022, 79, e20200178. [Google Scholar] [CrossRef]
- Rentadrone, H.B. GitHub. 2020. Available online: https://github.com/RentadroneCL/AI-Agro (accessed on 6 March 2023).
- Plenio, J.L.; Bartel, A.; Madureira, A.; Cerri, R.; Heuwieser, W.; Borchardt, S. Application note: Validation of BovHEAT—An open-source analysis tool to process data from automated activity monitoring systems in dairy cattle for estrus detection. Comput. Electron. Agric. 2021, 188, 106323. [Google Scholar] [CrossRef]
- Raeth, P.G. Moving beyond manual software-supported precision irrigation to human-supervised adaptive automation. Afr. J. Agric. Res. 2020, 16, 1548–1553. [Google Scholar] [CrossRef]
- Mazzia, V.; Salvetti, F.; Aghi, D.; Chiaberge, M. DeepWay: A deep learning waypoint estimator for global path generation. Comput. Electron. Agric. 2021, 184, 106091. [Google Scholar] [CrossRef]
- Muenchow, J.; Schratz, P.; Brenning, A. RQGIS: Integrating R with QGIS for Statistical Geocomputing. R J. 2017, 9, 409–428. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018. [Google Scholar]
- Gräler, B.; Pebesma, E.; Heuvelink, G. Spatio-Temporal Interpolation using gstat. R J. 2016, 8, 204–218. [Google Scholar] [CrossRef]
- Dos Santos, R.P.; Leithardt, V.R.Q.; Beko, M. Analysis of MQTT-SN and LWM2M communication protocols for precision agriculture IoT devices. In Proceedings of the 2022 17th Iberian Conference on Information Systems and Technologies (CISTI), Madrid, Spain, 22–25 June 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Hernández, E.S.; García, A.G.; Izquierdo, L.R.; González, J.T.; Silva, L.A.; Ovejero, R.G.; Leithardt, V.R.Q. LoRaWAN applied to agriculture: A use case for automated irrigation systems. In Proceedings of the New Trends in Disruptive Technologies, Tech Ethics and Artificial Intelligence, DiTTEt 2021, Salamanca, Spain, 15–17 September 2021; Springer International Publishing: Cham, Switzerland, 2022; Volume 1410, pp. 308–316. [Google Scholar] [CrossRef]
- Bradski, G. The OpenCV library. Dr. Dobb’s J. Softw. Tools Prof. Program. 2000, 25, 120–123. [Google Scholar]
- Harris, C.R.; Millman, K.J.; Van Der Walt, S.J.; Gommers, R.; Virtanen, P.; Cournapeau, D.; Wieser, E.; Taylor, J.; Berg, S.; Smith, N.J.; et al. Array programming with NumPy. Nature 2020, 585, 357–362. [Google Scholar] [CrossRef] [PubMed]
- Fachada, N. Supplementary materials for “A Rapid Review on the Use of Free and Open Source Technologies and Software Applied to Precision Agriculture Practices”. Zenodo 2023. [Google Scholar] [CrossRef]
- TIOBE Software BV. TIOBE Index. 2023. Available online: https://www.tiobe.com/tiobe-index/ (accessed on 3 March 2023).
- Plauska, I.; Liutkevičius, A.; Janavičiūtė, A. Performance Evaluation of C/C++, MicroPython, Rust and TinyGo Programming Languages on ESP32 Microcontroller. Electronics 2023, 12, 143. [Google Scholar] [CrossRef]
- Mohamed, K.S. IoT physical layer: Sensors, actuators, controllers and programming. In The Era of Internet of Things: Towards a Smart World; Springer International Publishing: Cham, Switzerland, 2019; pp. 21–47. [Google Scholar] [CrossRef]
- Yazdinejad, A.; Zolfaghari, B.; Azmoodeh, A.; Dehghantanha, A.; Karimipour, H.; Fraser, E.; Green, A.G.; Russell, C.; Duncan, E. A review on security of smart farming and precision agriculture: Security aspects, attacks, threats and countermeasures. Appl. Sci. 2021, 11, 7518. [Google Scholar] [CrossRef]
- Roussaki, I.; Doolin, K.; Skarmeta, A.; Routis, G.; Lopez-Morales, J.A.; Claffey, E.; Mora, M.; Martinez, J.A. Building an interoperable space for smart agriculture. Digit. Commun. Netw. 2023, 9, 183–193. [Google Scholar] [CrossRef]
- Chrismanto, A.R.; Purwadi, J.; Wibowo, A.; Santoso, H.B.; Delima, R.; Balisa, D. Comparison Testing Functional and Usability System Mapping Land Agriculture On Platform Web and Mobile. IAIC Trans. Sustain. Digit. Innov. (ITSDI) 2021, 2, 140–157. [Google Scholar] [CrossRef]
- Jeppesen, J.H.; Jacobsen, R.H.; Jørgensen, R.N.; Toftegaard, T.S. Towards data-driven precision agriculture using open data and open source software. arXiv 2022, arXiv:2204.05582. [Google Scholar]
Source | URL |
---|---|
Google Scholar | https://scholar.google.com |
GitHub | https://github.com |
GitLab | https://gitlab.com |
Source | Search Strings |
---|---|
Google Scholar | “open-source software” and “precision agriculture” |
-simulators-games-“farming simulator” | |
GitHub | “precision agriculture” |
GitLab | “precision agriculture” |
Info. Source | Identified | Excluded | Included |
---|---|---|---|
Google Scholar | 249 | 234 | 15 |
GitHub | 54 | 48 | 6 |
GitLab | 5 | 5 | 0 |
Totals | 308 | 287 | 21 |
No. | Ref. | Source(s) | Short Name | Interfaces | Cat. | Language(s) | Repository |
---|---|---|---|---|---|---|---|
1 | [28] | Scholar | Agri-robot | Text, Graphic | D | Python | github.com/Harry-Rogers/PiCar |
2 | [29] | Scholar | MeteoMex | Text | A | C/C++ | github.com/robert-winkler/MeteoMex |
3 | [30] | Scholar | OWL | Graphic | D | Python | github.com/geezacoleman/OpenWeedLocator |
4 | [31] | Scholar | AgriQ | Text, Graphic | D | Python | github.com/LAPyR/NDVI-with-modified-Mobius-cameras |
5 | [32] | Scholar | EasyIDP | Text, Graphic, | B | Python | github.com/UTokyo-FieldPhenomics-Lab/EasyIDP |
Library | |||||||
6 | [33] | Scholar | AGRO IoT | Text | A | C/C++, | github.com/ajayarunachalam/RPA |
Python | |||||||
7 | [34] | Scholar | HydroTi | Graphic | C | Java, | github.com/AnthonyFTL |
JavaScript | |||||||
8 | [35] | Scholar | GeoFIS | Graphic, Plugin | E | Java, C/C++, | www.geofis.org |
R | |||||||
9 | [36] | Scholar | SoftwarePilot | Text | A | Java, Python | github.com/boubinjg/softwarepilot |
10 | [37] | Scholar | DAGAPy | Text, Graphic | D | Python | github.com/LabDig/DAGAPy |
Library | |||||||
11 | [38] | Scholar | EVAPO | Graphic | C | Java | github.com/waltermaldonado/EVAPO |
12 | [15] | Scholar | UAS Thermal | Text, Graphic, | C | MATLAB, | github.com/LAPyR/Thermal-imaging-workflow-code |
Imaging | Library | Python | |||||
13 | [39] | Scholar | ITALLIC | Library | A | Python | github.com/getiria-onsongo/itallic |
14 | [40] | Scholar | Ag-YOLO | Text | A | C/C++ | github.com/rossqin/RQNet |
15 | [41] | Scholar | VICAL | Graphic | D | JavaScript | github.com/CenidRaspaRiego/VICAL |
16 | [42] | GitHub | MapFilter 2.0 | Graphic | A | Java | github.com/LeonardoAgricola/MapFilter2.0 |
17 | [43] | GitHub | AI Agro | Library | E | Python | github.com/RentadroneCL/AI-Agro |
18 | [44] | GitHub | BovHEAT | Text | E | Python | github.com/bovheat/bovheat |
19 | [45] | GitHub | Adaptive | Text | C | Python, | github.com/SoothingMist/Embeddable-Software-for-Irrigation-Control |
Irrigation | C/C++ | ||||||
20 | [46] | GitHub | Deepway | Library | E | Python | github.com/fsalv/DeepWay |
21 | [47] | GitHub | RQGIS | Plugin, Library | E | R, Python | github.com/r-spatial/RQGIS3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
dos Santos, R.P.; Fachada, N.; Beko, M.; Leithardt, V.R.Q. A Rapid Review on the Use of Free and Open Source Technologies and Software Applied to Precision Agriculture Practices. J. Sens. Actuator Netw. 2023, 12, 28. https://doi.org/10.3390/jsan12020028
dos Santos RP, Fachada N, Beko M, Leithardt VRQ. A Rapid Review on the Use of Free and Open Source Technologies and Software Applied to Precision Agriculture Practices. Journal of Sensor and Actuator Networks. 2023; 12(2):28. https://doi.org/10.3390/jsan12020028
Chicago/Turabian Styledos Santos, Rogério P., Nuno Fachada, Marko Beko, and Valderi R. Q. Leithardt. 2023. "A Rapid Review on the Use of Free and Open Source Technologies and Software Applied to Precision Agriculture Practices" Journal of Sensor and Actuator Networks 12, no. 2: 28. https://doi.org/10.3390/jsan12020028
APA Styledos Santos, R. P., Fachada, N., Beko, M., & Leithardt, V. R. Q. (2023). A Rapid Review on the Use of Free and Open Source Technologies and Software Applied to Precision Agriculture Practices. Journal of Sensor and Actuator Networks, 12(2), 28. https://doi.org/10.3390/jsan12020028