Development of a Multisensor-Based Non-Contact Anthropometric System for Early Stunting Detection
Abstract
:1. Introduction
2. Materials and Methods
2.1. System Block Diagram
2.2. Design and Planning
2.3. Measurement Trial
3. Results
3.1. Prototype of Developed Anthropometric System
3.2. Body Mass Measurement Components
3.3. Height Measurement Components
3.3.1. Characterization of HC-SR04 Ultrasonic Sensor for Height Measurement
3.3.2. Characterization of Sharp IR GP2Y0A21 Sensor for Height Measurement
3.4. Characterization of Sharp IR GP2Y0A21 Sensor for Head Circumference
3.5. Characterization of MLX90614-DCI Sensor for Body Temperature Measurement
3.6. Anthropometric System Testing
3.6.1. Body Temperature Measurement
3.6.2. Height Measurement
3.6.3. Head Circumference Measurement
3.6.4. Body Mass Measurement
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Titaley, C.R.; Ariawan, I.; Hapsari, D.; Muasyaroh, A.; Dibley, M.J. Determinants of the Stunting of Children Under Two Years Old in Indonesia: A Multilevel Analysis of the 2013 Indonesia Basic Health Survey. Nutrients 2019, 11, 1106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arora, A. Joint Child Malnutrition Estimates (UNICEF-WHO-The World Bank)—2021. Available online: https://data.unicef.org/resources/jme-report-2021/ (accessed on 6 October 2022).
- Akseer, N.; Kandru, G.; Keats, E.C.; Bhutta, Z.A. COVID-19 pandemic and mitigation strategies: Implications for maternal and child health and nutrition. Am. J. Clin. Nutr. 2020, 112, 251–256. [Google Scholar] [CrossRef] [PubMed]
- Roberton, T.; Carter, E.D.; Chou, V.B.; Stegmuller, A.R.; Jackson, B.D.; Tam, Y.; Sawadogo-Lewis, T.; Walker, N. Early estimates of the indirect effects of the COVID-19 pandemic on maternal and child mortality in low-income and middle-income countries: A modelling study. Lancet Glob. Health 2020, 8, e901–e908. [Google Scholar] [CrossRef]
- UNICEF: An Additional 6.7 Million Children under 5 Could Suffer from Wasting This Year due to COVID-19. Available online: https://www.unicef.org/press-releases/unicef-additional-67-million-children-under-5-could-suffer-wasting-year-due-covid-19 (accessed on 16 February 2022).
- Efrizal, W. Berdampakkah Pandemi COVID-19 terhadap Stunting di Bangka Belitung? J. Kebijak. Kesehat. Indones. JKKI 2020, 9, 154–157. [Google Scholar] [CrossRef]
- Widiastuti, A.; Winarso, S.P. Program Pmt Dan Grafik Pertumbuhan Balita Pada Masa Pandemi Covid. J. Sains Kebidanan 2021, 3, 30–35. [Google Scholar] [CrossRef]
- Minetto, M.A.; Pietrobelli, A.; Busso, C.; Bennett, J.P.; Ferraris, A.; Shepherd, J.A.; Heymsfield, S.B. Digital Anthropometry for Body Circumference Measurements: European Phenotypic Variations throughout the Decades. J. Pers. Med. 2022, 12, 906. [Google Scholar] [CrossRef]
- Fryar, C.D.; Gu, Q.; Ogden, C.L.; Flegal, K.M. Anthropometric Reference Data for Children and Adults: United States, 2011–2014. Vital Health Stat. 3 Anal. Stud. 2016, 39, 1–46. [Google Scholar]
- Casadei, K.; Kiel, J. Anthropometric Measurement. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022; Available online: http://www.ncbi.nlm.nih.gov/books/NBK537315/ (accessed on 12 September 2022).
- WHO Child Growth Standards: Length/Height-for-Age, Weight-for-Age, Weight-for-Length, Weight-for-Height and Body Mass Index-for-Age: Methods and Development. Available online: https://www.who.int/publications-detail-redirect/924154693X (accessed on 6 October 2022).
- Jamil, A.; Herodian, S.; Saulia, L. RGB-D sensor application for static anthropometry measurement. IOP Conf. Ser. Earth Environ. Sci. 2020, 542, 012036. [Google Scholar] [CrossRef]
- Umiatin; Erlandita, S.M.; Indrasari, W. Design baby mass and height monitoring system based on Arduino and Android application. AIP Conf. Proc. 2019, 2169, 030013. [Google Scholar] [CrossRef]
- Erinle, T.J.; Oladebeye, D.H.; Ademiloye, I.B. Parametric Design of Height and Weight Measuring System. Syst. Des. Mach. Des. 2020, 8, 13. [Google Scholar] [CrossRef]
- Aarthi, M.A. Automatic Human Height Detector—A Review. Int. J. Res. Appl. Sci. Eng. Technol. 2021, 9, 846. [Google Scholar]
- Ye, Y.; Zhang, C.; He, C.; Wang, X.; Huang, J.; Deng, J. A Review on Applications of Capacitive Displacement Sensing for Capacitive Proximity Sensor. IEEE Access 2020, 8, 45325–45342. [Google Scholar] [CrossRef]
- Moheimani, R.; Hosseini, P.; Mohammadi, S.; Dalir, H. Recent Advances on Capacitive Proximity Sensors: From Design and Materials to Creative Applications. C 2022, 8, 26. [Google Scholar] [CrossRef]
- Zhmud, V.A.; Kondratiev, N.O.; Kuznetsov, K.A.; Trubin, V.G.; Dimitrov, L.V. Application of ultrasonic sensor for measuring distances in robotics. J. Phys. Conf. Ser. 2018, 1015, 032189. [Google Scholar] [CrossRef] [Green Version]
- Rukshna, R.A.; Anusha, S.; Bhuvaneswarri, E.; Devashena, T. Interfacing of Proximity Sensor With My-RIO Toolkit Using LabVIEW. Int. J. Sci. Res. Dev. 2015, 3, 562–566. [Google Scholar]
- Albances, X.; Binungcal, D.; Nikko Cabula, J.; Cajayon, C.; Cabatuan, M. RGB-D Camera Based Anthropometric Measuring System for Barong Tagalog Tailoring. In Proceedings of the 2019 IEEE 11th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management (HNICEM), Laoag, Philippines, 29 November–1 December 2019; pp. 1–6. [Google Scholar]
- Martono, K.T.; Nurhayati, O.D.; Indrasto, E.Y.; Adhy, S. Design and build a head circumference measurement system for toddlers. J. Phys. Conf. Ser. 2021, 1858, 012031. [Google Scholar] [CrossRef]
- Beaumont, C.A.A.; Knoops, P.G.M.; Borghi, A.; Jeelani, N.U.O.; Koudstaal, M.J.; Schievano, S.; Dunaway, D.J.; Rodriguez-Florez, N. Three-dimensional surface scanners compared with standard anthropometric measurements for head shape. J. Cranio-Maxillofac. Surg. 2017, 45, 921–927. [Google Scholar] [CrossRef]
- Martini, M.; Klausing, A.; Lüchters, G.; Heim, N.; Messing-Jünger, M. Head circumference—A useful single parameter for skull volume development in cranial growth analysis? Head Face Med. 2018, 14, 3. [Google Scholar] [CrossRef] [Green Version]
- Leah, L.; Gupta, K.; Wagio, P. Enhancing Performance of Low-Cost Sensors Using an Infant Care Usecase. IT J. Res. Dev. 2022, 7, 111–123. [Google Scholar] [CrossRef]
- Pratama, F.S.; Muslim, I.; Zul, M.I. Digitalization of Human Head Anthropometry Measurement Using Pixels Measurement Method. Int. J. Inf. Technol. Electr. Eng. 2019, 2, 63–70. [Google Scholar] [CrossRef] [Green Version]
- PMK_No__2_Th_2020_ttg_Standar_Antropometri_Anak.pdf. Available online: http://hukor.kemkes.go.id/uploads/produk_hukum/PMK_No__2_Th_2020_ttg_Standar_Antropometri_Anak.pdf (accessed on 8 October 2022).
- Guideline: Assessing and Managing Children at Primary Health-Care Facilities to Prevent Overweight and Obesity in the Context of the Double Burden of Malnutrition. Available online: https://www.who.int/publications-detail-redirect/9789241550123 (accessed on 15 September 2022).
- Kassie, G.W.; Workie, D.L. Exploring the association of anthropometric indicators for under-five children in Ethiopia. BMC Public Health 2019, 19, 764. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ly, M.H.; Khang, N.M.; Nhi, T.T.; Dang, T.T.; Dinh, A. A Non-contact Human Body Height and Weight Measurement Approach Using Ultrasonic Sensor. In Proceedings of the 7th International Conference on the Development of Biomedical Engineering in Vietnam (BME7), Ho Chi Minh, Vietnam, 27–29 June 2018; Springer: Singapore, 2020; pp. 31–37. [Google Scholar]
- Kim, J.; Lee, W.H.; Kim, S.H.; Na, J.Y.; Lim, Y.-H.; Cho, S.H.; Cho, S.H.; Park, H.-K. Preclinical trial of noncontact anthropometric measurement using IR-UWB radar. Sci. Rep. 2022, 12, 8174. [Google Scholar] [CrossRef] [PubMed]
Object | Thermogun (°C) | Sensor MLX90614DCI (°C) |
---|---|---|
Cheek | 35.8 | 35.92 |
Palm | 36.4 | 36.50 |
37 °C Water | 37.2 | 37.28 |
38 °C Water | 38.5 | 38.57 |
39 °C Water | 39.1 | 39.22 |
40 °C Water | 40.3 | 40.43 |
Participant No | Age (Years) | Sex | Temperature (°C/Mean ± SD) | ||
---|---|---|---|---|---|
Conventional | Prototype | Error (%) | |||
1 | 4 | Female | 36.3 ± 0 | 36.3 ± 0 | 0.08 |
2 | 5 | Female | 36.5 ± 0 | 35.5 ± 0 | 0.08 |
3 | 4 | Male | 36.5 ± 0 | 36.5 ± 0.01 | 0.03 |
4 | 5 | Male | 36.6 ± 0 | 36.6 ± 0 | 0.03 |
5 | 3 | Female | 36.1 ± 0 | 36.1 ± 0.03 | 0.08 |
Average error | 0.06 |
Participant No | Age (Years) | Sex | Body Height (Cm/Mean ± SD) | ||||
---|---|---|---|---|---|---|---|
Conventional | Prototype (US) | Prototype (IR) | Error (US/%) | Error (IR/%) | |||
1 | 53 | Female | 98 ± 0 | 100.0 ± 1.94 | 98.3 ± 0.01 | 2.07 | 0.29 |
2 | 5 | Female | 117.5 ± 0 | 118.8 ± 0 | 117.7 ± 0.01 | 1.13 | 0.16 |
3 | 4 | Male | 108 ± 0 | 111.0 ± 2.25 | 108.2 ± 0 | 2.79 | 0.15 |
4 | 5 | Male | 113.5 ± 0 | 114.9 ± 4.98 | 113.7 ± 0 | 1.31 | 0.15 |
5 | 3 | Female | 86 | 89.1 ± 0.12 | 86.8 ± 0.11 | 3.64 | 0.91 |
Average error | 2.19 | 0.33 |
Participant No | Age (Years) | Sex | Head Circumference (Cm/Mean ± SD) | ||
---|---|---|---|---|---|
Conventional | Prototype | Error (%) | |||
1 | 4 | Female | 49.0 ± 0 | 49.4 ± 0.03 | 0.71 |
2 | 5 | Female | 52.5 ± 0 | 52.9 ± 0.01 | 0.91 |
3 | 4 | Male | 54.0 ± 0 | 54.2 ± 0 | 0.44 |
4 | 5 | Male | 55.0 ± 0 | 54.3 ± 0 | 0.51 |
5 | 3 | Female | 48.0 ± 0 | 48.4 ± 0.02 | 0.92 |
Average error | 0.70 |
Participant No | Age (Years) | Sex | Body Mass (Kg/Mean ± SD) | ||
---|---|---|---|---|---|
Conventional | Prototype | Error (%) | |||
1 | 4 | Female | 13.5 ± 0 | 13.6 ± 0.04 | 0.59 |
2 | 5 | Female | 18.4 ± 0 | 18.4 ± 0.06 | 0.33 |
3 | 4 | Male | 21.1 ± 0 | 21.4 ± 0.23 | 1.37 |
4 | 5 | Male | 16.5 ± 0 | 16.6 ± 0 | 0.48 |
5 | 3 | Female | 11.1 ± 0 | 11.3 ± 0.03 | 1.81 |
Average error | 0.92 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Umiatin, U.; Indrasari, W.; Taryudi, T.; Dendi, A.F. Development of a Multisensor-Based Non-Contact Anthropometric System for Early Stunting Detection. J. Sens. Actuator Netw. 2022, 11, 69. https://doi.org/10.3390/jsan11040069
Umiatin U, Indrasari W, Taryudi T, Dendi AF. Development of a Multisensor-Based Non-Contact Anthropometric System for Early Stunting Detection. Journal of Sensor and Actuator Networks. 2022; 11(4):69. https://doi.org/10.3390/jsan11040069
Chicago/Turabian StyleUmiatin, Umiatin, Widyaningrum Indrasari, Taryudi Taryudi, and Abdul Fatah Dendi. 2022. "Development of a Multisensor-Based Non-Contact Anthropometric System for Early Stunting Detection" Journal of Sensor and Actuator Networks 11, no. 4: 69. https://doi.org/10.3390/jsan11040069
APA StyleUmiatin, U., Indrasari, W., Taryudi, T., & Dendi, A. F. (2022). Development of a Multisensor-Based Non-Contact Anthropometric System for Early Stunting Detection. Journal of Sensor and Actuator Networks, 11(4), 69. https://doi.org/10.3390/jsan11040069