Photoselective Protective Netting Improves “Honeycrisp” Fruit Quality
Abstract
:1. Introduction
2. Results
2.1. Canopy Light Interception
2.2. Spectral Composition of Transmitted and Scattered Light Through Netting
2.3. Light Spectra under Colored Nets
2.4. Fruit Quality and Disorder Incidence
2.5. Fruit Quality Quantitative Characteristics
3. Discussion
3.1. Light Manipulation by Use of Photoselective Colored Nets
3.2. Effect of Photoselective Colored Netting on Disorder Incidence and Apple Fruit Quality
4. Materials and Methods
4.1. Experimental Sites, Plant Material, and Colored Shading Nets
4.2. Canopy Light Interception Measurements in the Orchard
4.3. Light Spectral Composition under Netting
4.4. Fruit Quality Evaluation
4.5. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
PAR | photosynthetic active radiation |
UV | ultraviolet |
LI | light interception |
EC | evaporative overcooling |
SF | shading factor |
avr | average |
BP | bitter pit |
SSC | soluble solids content |
TA | titratable acidity |
References
- Houston, L.; Capalbo, S.; Seavert, C.; Dalton, M.; Bryla, D.; Sagili, R. Specialty Fruit Production in the Pacific Northwest: Adaptation Strategies for a Changing Climate. Clim. Change 2018, 146, 159–171. [Google Scholar] [CrossRef] [Green Version]
- Kalcsits, L.; Musacchi, S.; Layne, D.R.; Schmidt, T.; Mupambi, G.; Serra, S.; Mendoza, M.; Asteggiano, L.; Jarolmasjed, S.; Sankaran, S.; et al. Above and Below-Ground Environmental Changes Associated with the Use of Photoselective Protective Netting to Reduce Sunburn in Apple. Agric. For. Meteorol. 2017, 237, 9–17. [Google Scholar] [CrossRef] [Green Version]
- Mupambi, G.; Anthony, B.M.; Layne, D.R.; Musacchi, S.; Serra, S.; Schmidt, T.; Kalcsits, L.A. The Influence of Protective Netting on Tree Physiology and Fruit Quality of Apple: A Review. Sci. Hortic. 2018, 236, 60–72. [Google Scholar] [CrossRef]
- Mupambi, G.; Musacchi, S.; Serra, S.; Kalcsits, L.A.; Layne, D.R.; Schmidt, T. Protective Netting Improves Leaf-Level Photosynthetic Light Use Efficiency in ‘Honeycrisp’ Apple under Heat Stress. HortScience 2018, 53, 1416–1422. [Google Scholar] [CrossRef] [Green Version]
- Mupambi, G.; Layne, D.R.; Kalcsits, L.A.; Musacchi, S.; Serra, S.; Schmidt, T.; Hanrahan, I. Use of Protective Netting in Washington State Apple Production; Washington State University Extension: Pullman, WA, USA, 2019. [Google Scholar]
- Evans, R.G.; Kroeger, M.W.; Mahan, M.O. Evaporative Cooling of Apples by Overtree Sprinkling. Appl. Eng. Agric. 1995, 11, 93–99. [Google Scholar] [CrossRef]
- Schrader, L.; Zhang, J.; Sun, J. Environmental Stresses That Cause Sunburn of Apple. Acta Hortic. 2003, 618, 397–405. [Google Scholar] [CrossRef]
- Racsko, J.; Schrader, L.E. Sunburn of Apple Fruit: Historical Background, Recent Advances and Future Perspectives. Crit. Rev. Plant Sci. 2012, 31, 455–504. [Google Scholar] [CrossRef]
- Gindaba, J.; Wand, S.J.E. Comparative Effects of Evaporative Cooling, Kaolin Particle Film, and Shade Net on Sunburn and Fruit Quality in Apples. HortScience 2005, 40, 592–596. [Google Scholar] [CrossRef]
- Kim, Y.K.; Xiao, C.L. Distribution and Incidence of Sphaeropsis Rot in Apple in Washington State. Plant Dis. 2008, 92, 940–946. [Google Scholar] [CrossRef] [Green Version]
- Reig, G.; Donahue, D.J.; Jentsch, P. The Efficacy of Four Sunburn Mitigation Strategies and Their Effects on Yield, Fruit Quality, and Economic Performance of Honeycrisp Cv. Apples under Eastern New York (USA) Climatic Conditions. Int. J. Fruit Sci. 2020, 20, 541–561. [Google Scholar] [CrossRef]
- Scott, B. The Use of Netting for Hail Protection-Design and Management Considerations for Pome Fruit Orchards. Acta Hortic. 1989, 240, 147–150. [Google Scholar] [CrossRef]
- Widmer, A. Light Intensity and Fruit Quality under Hail Protection Nets. Acta Hort. 2001, 557, 421–426. [Google Scholar] [CrossRef]
- Shahak, Y.; Gussakovsky, E.E.; Cohen, Y.; Lurie, S.; Stern, R.; Kfir, S.; Naor, A.; Atzmon, I.; Doron, I.; Greenblat-Avron, Y. ColorNets: A New Approach for Light Manipulation in Fruit Trees. Acta Hortic. 2004, 636, 609–616. [Google Scholar] [CrossRef]
- Shahak, Y.; Gussakovsky, E.E.; Gal, E.; Ganelevin, R. ColorNets: Crop Protection and Light-Quality Manipulation in One Technology. Acta Hortic. 2004, 659, 143–151. [Google Scholar] [CrossRef]
- Iglesias, I.; Alegre, S. The Effect of Anti-Hail Nets on Fruit Protection, Radiation, Temperature, Quality and Profitability of ‘Mondial Gala’ Apples. J. Appl. Hort. 2006, 8, 91–100. [Google Scholar]
- Shahak, Y.; Ratner, K.; Giller, Y.E.; Zur, N.; Or, E.; Gussakovsky, E.E.; Stern, R.; Sarig, P.; Raban, E.; Harcavi, E.; et al. Improving Solar Energy Utilization, Productivity and Fruit Quality in Orchards and Vineyards by Photoselective Netting. Acta Hortic. 2008, 772, 65–72. [Google Scholar] [CrossRef]
- Shahak, Y.; Gal, E.; Offir, Y.; Ben-Yakir, D. Photoselective Shade Netting Integrated with Greenhouse Technologies for Improved Performance of Vegetable and Ornamental Crops. Acta Hortic. 2008, 797, 75–80. [Google Scholar] [CrossRef]
- Solomakhin, A.; Blanke, M.M. Coloured Hailnets Alter Light Transmission, Spectra and Phytochrome, as Well as Vegetative Growth, Leaf Chlorophyll and Photosynthesis and Reduce Flower Induction in Apple. Plant Growth Regul. 2008, 56, 211–218. [Google Scholar] [CrossRef]
- Manja, K.; Aoun, M. The Use of Nets for Tree Fruit Crops and Their Impact on the Production: A Review. Sci. Hortic. 2019, 246, 110–122. [Google Scholar] [CrossRef]
- Castellano, S.; Mugnozza, G.S.; Russo, G.; Briassoulis, D.; Mistriotis, A.; Hemming, S.; Waaijenberg, D. Plastic Nets in Agriculture: A General Review of Types and Applications. Appl. Eng. Agric. 2008, 24, 799–808. [Google Scholar] [CrossRef]
- Tasin, M.; Demaria, D.; Ryne, C.; Cesano, A.; Galliano, A.; Anfora, G.; Ioriatti, C.; Alma, A. Effect of Anti-Hail Nets on Cydia pomonella Behavior in Apple Orchards. Entomol. Exp. Appl. 2008, 129, 32–36. [Google Scholar] [CrossRef]
- Sauphanor, B.; Severac, G.; Maugin, S.; Toubon, J.F.; Capowiez, Y. Exclusion Netting May Alter Reproduction of the Codling Moth (Cydia pomonella) and Prevent Associated Fruit Damage to Apple Orchards. Entomol. Exp. Appl. 2012, 145, 134–142. [Google Scholar] [CrossRef]
- Candian, V.; Pansa, M.G.; Santoro, K.; Spadaro, D.; Tavella, L.; Tedeschi, R. Photoselective Exclusion Netting in Apple Orchards: Effectiveness against Pests and Impact on Beneficial Arthropods, Fungal Diseases and Fruit Quality. Pest Manag. Sci. 2020, 76, 179–187. [Google Scholar] [CrossRef] [PubMed]
- Do Amarante, C.V.T.; Steffens, C.A.; Argenta, L.C. Yield and Fruit Quality of ‘Gala’ and ‘Fuji’ Apple Trees Protected by White Anti-Hail Net. Sci. Hortic. 2011, 129, 79–85. [Google Scholar] [CrossRef]
- Brkljača, M.; Rumora, J.; Vuković, M.; Jemrić, T. The Effect of Photoselective Nets on Fruit Quality of Apple cv. ‘Cripps Pink’. Agric. Conspec. Sci. 2016, 81, 87–90. [Google Scholar]
- Ordóñez, V.; Molina-Corral, F.J.; Olivas-Dorantes, C.L.; Jacobo-Cuéllar, J.L.; González-Aguilar, G.; Espino, M.; Sepulveda, D.; Olivas, G.I. Comparative Study of the Effects of Black or White Hail Nets on the Fruit Quality of ‘Golden Delicious’ Apples. Fruits 2016, 71, 229–238. [Google Scholar] [CrossRef]
- Musacchi, S.; Serra, S. Apple Fruit Quality: Overview on Pre-Harvest Factors. Sci. Hortic. 2018, 234, 409–430. [Google Scholar] [CrossRef]
- Blanke, M.M. The Structure of Colored Hail Nets Affects Light Transmission, Light Spectrum, Phytochrome and Apple Fruit Coloration. Acta Hortic. 2009, 817, 177–184. [Google Scholar] [CrossRef]
- Briassoulis, D.; Mistriotis, A.; Eleftherakis, D. Mechanical Behaviour and Properties of Agricultural Nets—Part I: Testing Methods for Agricultural Nets. Polym. Test. 2007, 26, 822–832. [Google Scholar] [CrossRef]
- Briassoulis, D.; Mistriotis, A. Integrated Structural Design Methodology for Agricultural Protecting Structures Covered with Nets. Biosyst. Eng. 2010, 105, 205–220. [Google Scholar] [CrossRef]
- Bastías, R.M.; Losciale, P.; Chieco, C.; Rossi, F.; Corelli-Grappadelli, L. Physiological Aspects Affected by Photoselective Nets in Apples: Preliminary Studies. Acta Hortic. 2011, 907, 217–220. [Google Scholar] [CrossRef]
- Bastías, R.M.; Ruíz, K.; Manfrini, L.; Pierpaoli, E.; Zibordi, M.; Morandi, B.; Losciale, P.; Torrigiani, P.; Corelli-Grappadelli, L. Effects of Photoselective Nets on Phenolic Composition in Apple Fruits. Acta Hortic. 2012, 939, 77–83. [Google Scholar] [CrossRef]
- Schettini, E.; De Salvador, F.R.; Scarascia Mugnozza, G.; Vox, G. Coloured Covering Materials for Peach Protected Cultivation. Acta Hortic. 2011, 952, 201–208. [Google Scholar] [CrossRef]
- Guerrero, V.M.; Orozco, J.A.; Romo, A.; Gardea, A.A. The Effect of Hail Nets and Ethephon on Color Development of ‘Redchief Delicious’ Apple Fruit in the Highlands of Chihuahua, Mexico. J. Am. Pomol. Soc. 2002, 56, 132. [Google Scholar]
- Brglez Sever, M.; Tojnko, S.; Unuk, T. Impact of Various Types of Anti-Hail Nets on Light Exposure in Orchards and Quality Parameters of Apples-A Review. Agricultura 2015, 12, 25–31. [Google Scholar] [CrossRef] [Green Version]
- Luby, J.; Bedford, D.S. Honeycrisp Apple. Regents of the University of Minnesota. International Classification A01H 005/00. U.S. Patent PP7, 197, 1990. [Google Scholar]
- Rosenberger, D.A.; Schupp, J.R.; Hoying, S.A.; Cheng, L.; Watkins, C.B. Controlling Bitter Pit in ‘Honeycrisp’ Apples. HortTechnology 2004, 14, 342–349. [Google Scholar] [CrossRef] [Green Version]
- Embree, C.G.; Myra, M.T.; Nichols, D.S.; Wright, A.H. Effect of Blossom Density and Crop Load on Growth, Fruit Quality, and Return Bloom in ‘Honeycrisp’ Apple. HortScience 2007, 42, 1622–1625. [Google Scholar] [CrossRef]
- Cline, J.A.; Gardner, J. Commercial Production of Honeycrisp Apples in Ontario; Ministry of Agriculture, Food and Rural Affairs: Guelph, ON, Canada, 2005.
- Mann, H.; Bedford, D.; Luby, J.; Vickers, Z.; Tong, C. Relationship of Instrumental and Sensory Texture Measurements of Fresh and Stored Apples to Cell Number and Size. HortScience 2005, 40, 1815–1820. [Google Scholar] [CrossRef] [Green Version]
- Baugher, T.A.; Schupp, J.R. Relationship between ‘Honeycrisp’ Crop Load and Sensory Panel Evaluations of the Fruit. J. Am. Pomol. Soc. 2010, 64, 226. [Google Scholar]
- DeLong, J.; Prange, R.; Harrison, P.; Nichols, D.; Wright, H. Determination of Optimal Harvest Boundaries for Honeycrisp™ Fruit Using a New Chlorophyll Meter. Can. J. Plant Sci. 2004, 94, 361–369. [Google Scholar] [CrossRef]
- Schupp, J.R.; Fallahi, E.; Chun, I.J. Effect of Particle Film on Fruit Sunburn, Maturity and Quality of ‘Fuji’ and ‘Honeycrisp’ Apples. HortTechnology 2002, 12, 87–90. [Google Scholar] [CrossRef] [Green Version]
- Munné-Bosch, S.; Vincent, C. Physiological Mechanisms Underlying Fruit Sunburn. CRC Crit. 2019, 38, 140–157. [Google Scholar]
- Kalcsits, L.; Mattheis, J.; Giordani, L.; Reid, M.; Mullin, K. Fruit Canopy Positioning Affects Fruit Calcium and Potassium Concentrations, Disorder Incidence, and Fruit Quality for ‘Honeycrisp’ Apple. Can. J. Plant Sci. 2019, 99, 761–771. [Google Scholar] [CrossRef]
- Stampar, F.; Hudina, M.; Usenik, V.; Sturm, K.; Zadravec, P. Influence of Black and White Nets on Photosynthesis, Yield and Fruit Quality of Apple (Malus domestica Borkh.). Acta Hortic. 2001, 557, 357–361. [Google Scholar] [CrossRef]
- Solomakhin, A.; Blanke, M.M. Can Coloured Hailnets Improve Taste (Sugar, Sugar:Acid Ratio), Consumer Appeal (Colouration) and Nutritional Value (Anthocyanin, Vitamin C) of Apple Fruit? LWT Food Sci. Technol. 2010, 43, 1277–1284. [Google Scholar] [CrossRef]
- McCaskill, M.R.; McClymont, L.; Goodwin, I.; Green, S.; Partington, D.L. How Hail Netting Reduces Apple Fruit Surface Temperature: A Microclimate and Modelling Study. Agric. For. Meteorol. 2016, 226, 148–160. [Google Scholar] [CrossRef]
- Fruk, G.; Fruk, M.; Vuković, M.; Buhin, J.; Jatoi, M.A.; Jemrić, T. Colouration of Apple cv. ‘Braeburn’ Grown under Anti-Hail Nets in Croatia. AHR 2016, 19, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Chouinard, G.; Veilleux, J.; Pelletier, F.; Larose, M.; Philion, V.; Joubert, V.; Cormier, D. Impact of Exclusion Netting Row Covers on ‘Honeycrisp’ Apple Trees Grown under Northeastern North American Conditions: Effects on Photosynthesis and Fruit Quality. Insects 2019, 10, 214. [Google Scholar] [CrossRef] [Green Version]
- Elsysy, M.; Serra, S.; Schwallier, P.; Musacchi, S.; Einhorn, T. Net Enclosure of ‘Honeycrisp’ and ‘Gala’ Apple Trees at Different Bloom Stages Affects Fruit Set and Alters Seed Production. Agronomy 2019, 9, 478. [Google Scholar] [CrossRef] [Green Version]
- Robinson, T.; Hoying, S.; Sazo, M.M.; DeMarree, A.; Dominguez, L. A Vision for Apple Orchard Systems of the Future. N.Y. Fruit Q. 2013, 21, 11–16. [Google Scholar]
- Lopez, G.; Boini, A.; Manfrini, L.; Torres-Ruiz, J.M.; Pierpaoli, E.; Zibordi, M.; Losciale, P.; Morandi, B.; Corelli-Grappadelli, L. Effect of Shading and Water Stress on Light Interception, Physiology and Yield of Apple Trees. Agric. Water Manag. 2018, 210, 140–148. [Google Scholar] [CrossRef]
- Rom, C.R. Light Thresholds for Apple Tree Canopy Growth and Development. HortScience 1991, 26, 989–992. [Google Scholar] [CrossRef] [Green Version]
- Anthony, B.; Serra, S.; Musacchi, S. Optimization of Light Interception, Leaf Area and Yield in “WA38”: Comparisons among Training Systems, Rootstocks and Pruning Techniques. Agronomy 2020, 10, 689. [Google Scholar] [CrossRef]
- Oren-Shamir, M.; Gussakovsky, E.; Eugene, E.; Nissim-Levi, A.; Ratner, K.; Ovadia, R.; Giller, Y.; Shahak, Y. Coloured Shade Nets Can Improve the Yield and Quality of Green Decorative Branches of Pittosporum variegatum. J. Hortic. Sci. Biotechnol. 2001, 76, 353–361. [Google Scholar] [CrossRef]
- Sica, C.; Picuno, P. Spectro-Radiometrical Characterization of Plastic Nets for Protected Cultivation. Acta Hortic. 2008, 801, 245–252. [Google Scholar] [CrossRef]
- Kong, Y.; Avraham, L.; Perzelan, Y.; Alkalai-Tuvia, S.; Ratner, K.; Shahak, Y.; Fallik, E. Pearl Netting Affects Postharvest Fruit Quality in ‘Vergasa’ Sweet Pepper via Light Environment Manipulation. Sci. Hortic. 2013, 150, 290–298. [Google Scholar] [CrossRef]
- Basile, B.; Giaccone, M.; Cirillo, C.; Ritieni, A.; Graziani, G.; Shahak, Y.; Forlani, M. Photoselective Hail Nets Affect Fruit Size and Quality in Hayward Kiwifruit. Sci. Hortic. 2012, 141, 91–97. [Google Scholar] [CrossRef]
- Sivakumar, D.; Jifon, J.; Soundy, P. Spectral Quality of Photoselective Shade Nettings Improves Antioxidants and Overall Quality in Selected Fresh Produce after Postharvest Storage. Food Rev. Int. 2018, 34, 290–307. [Google Scholar] [CrossRef]
- Hemming, S.; Dueck, T.; Janse, J.; van Noort, F. The Effect of Diffuse Light on Crops. Acta Hortic. 2007, 801, 1293–1300. [Google Scholar] [CrossRef] [Green Version]
- Lakso, A.N.; Musselman, R.C. Effects of Cloudiness on Interior Diffuse Light in Apple Trees. Soc. Hortic. Sci. 1976, 101, 642–644. [Google Scholar]
- Wagenmakers, P.S. Light Relations in Orchard Systems. Ph.D. Dissertation, Wageningen Agricultural University, Wageningen, The Netherlands, 1995; p. 151. [Google Scholar]
- Aoun, M.; Manja, K. Effects of a Photoselective Netting System on Fuji and Jonagold Apples in a Mediterranean Orchard. Sci. Hortic. 2020, 263, 109104. [Google Scholar] [CrossRef]
- Baraldi, R.; Rossi, F.; Facini, O.; Fasolo, F.; Rotondi, A.; Magli, M.; Nerozzi, F. Light Environment, Growth and Morphogenesis in a Peach Tree Canopy. Physiol. Plant. 1994, 91, 339–345. [Google Scholar] [CrossRef]
- Batschauer, A. Photoreceptors of Higher Plants. Planta 1998, 206, 479–492. [Google Scholar] [CrossRef] [PubMed]
- Smith, H. Phytochromes and Light Signal Perception by Plants—An Emerging Synthesis. Nature 2000, 407, 585–591. [Google Scholar] [CrossRef] [PubMed]
- Demotes-Mainard, S.; Péron, T.; Corot, A.; Bertheloot, J.; Le Gourrierec, J.; Pelleschi-Travier, S.; Crespel, L.; Morel, P.; Huché-Thélier, L.; Boumaza, R.; et al. Plant Responses to Red and Far-Red Lights, Applications in Horticulture. Environ. Exp. Bot. 2016, 121, 4–21. [Google Scholar] [CrossRef]
- Combes, D.; Sinoquet, H.; Varlet-Grancher, C. Preliminary Measurement and Simulation of the Spatial Distribution of the Morphogenetically Active Radiation (MAR) within an Isolated Tree Canopy. Ann. For. Sci. 2000, 57, 497–511. [Google Scholar] [CrossRef] [Green Version]
- Bastías, R.M.; Corelli-Grappadelli, L. Light Quality Management in Fruit Orchards: Physiological and Technological Aspects. Chil. J. Agric. Res. 2012, 72, 574–581. [Google Scholar] [CrossRef]
- Ballaré, C.L.; Scopel, A.L.; Sánchez, R.A. Far-Red Radiation Reflected from Adjacent Leaves: An Early Signal of Competition in Plant Canopies. Science 1990, 247, 329–332. [Google Scholar] [CrossRef]
- De Wit, M.; Keuskamp, D.H.; Bongers, F.J.; Hornitschek, P.; Gommers, C.M.; Reinen, E.; Martínez-Cerón, C.; Fankhauser, C.; Pierik, R. Integration of Phytochrome and Cryptochrome Signals Determines Plant Growth during Competition for Light. Curr. Biol. 2016, 26, 3320–3326. [Google Scholar] [CrossRef] [Green Version]
- Leduc, N.; Roman, H.; Barbier, F.; Péron, T.; Huché-Thélier, L.; Lothier, J.; Demotes-Mainard, S.; Sakr, S. Light Signaling in Bud Outgrowth and Branching in Plants. Plants 2014, 3, 223–250. [Google Scholar] [CrossRef] [Green Version]
- Shahak, Y. Photoselective Netting: An Overview of the Concept, Research and Development and Practical Implementation in Agriculture. Acta Hortic. 2014, 1015, 155–162. [Google Scholar] [CrossRef]
- Rapparini, F.; Rotondi, A.; Baraldi, R. Blue Light Regulation of the Growth of Prunus persica Plants in a Long Term Experiment: Morphological and Histological Observations. Trees 1999, 14, 169–176. [Google Scholar] [CrossRef]
- Bastias, R.; Manfrini, L.; Corelli-Grappadelli, L. Exploring the Potential Use of Photoselective Nets for Fruit Growth Regulation in Apple. Chil. J. Agric. Res. 2012, 72, 224–231. [Google Scholar] [CrossRef]
- Inoue, S.I.; Kinoshita, T.; Matsumoto, M.; Nakayama, K.I.; Doi, M.; Shimazaki, K.I. Blue Light-Induced Autophosphorylation of Phototropin Is a Primary Step for Signaling. Proc. Natl. Acad. Sci. USA 2008, 105, 5626–5631. [Google Scholar] [CrossRef] [Green Version]
- Dayioglu, A.; Hepaksoy, S. Effects of Shading Nets on Sunburn and Quality of ‘Granny Smith’ Apple Fruits. Acta Hortic. 2015, 1139, 523–528. [Google Scholar] [CrossRef]
- Felicetti, D.A.; Schrader, L.E. Postharvest Changes in Pigment Concentrations in ‘Fuji’ Apples with ‘Fuji’ Stain. Sci. Hortic. 2010, 125, 283–288. [Google Scholar] [CrossRef]
- Schrader, L.E. Scientific Basis of a Unique Formulation for Reducing Sunburn of Fruits. HortScience 2011, 46, 6–11. [Google Scholar] [CrossRef]
- Do Amarante, C.V.T.; Steffens, C.A.; Argenta, L.C. Radiation, Yield, and Fruit Quality of ‘Gala’ Apples Grown under White Hail Protection Nets. Acta Hortic. 2012, 934, 1067–1074. [Google Scholar] [CrossRef]
- De Freitas, S.T.; do Amarante, C.V.; Dandekar, A.M.; Mitcham, E.J. Shading Affects Flesh Calcium Uptake and Concentration, Bitter Pit Incidence and Other Fruit Traits in “Greensleeves” Apple. Sci. Hortic. 2013, 161, 266–272. [Google Scholar] [CrossRef]
- Dussi, M.C.; Giardina, G.; Sosa, D.; Junyent, R.G.; Zecca, A.; Reeb, P. Shade Nets Effect on Canopy Light Distribution and Quality of Fruit and Spur Leaf on Apple cv. Fuji. Span. J. Agric. Res. 2005, 3, 253–260. [Google Scholar] [CrossRef]
- Chen, W.; Zhang, M.; Zhang, G.; Li, P.; Ma, F. Differential Regulation of Anthocyanin Synthesis in Apple Peel under Different Sunlight Intensities. Int. J. Mol. Sci. 2019, 20, 6060. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Solomakhin, A.A.; Blanke, M.M. Overcoming Adverse Effects of Hailnets on Fruit Quality and Microclimate in an Apple Orchard. J. Sci. Food Agric. 2007, 87, 2625–2637. [Google Scholar] [CrossRef] [PubMed]
- Treder, W.; Mika, A.; Buler, Z.; Klamkowski, K. Effects of Hail Nets on Orchard Light Microclimate, Apple Tree Growth, Fruiting and Fruit Quality. Acta Sci. Pol. Hortorum Cultus 2016, 15, 17–27. [Google Scholar]
- Ubi, B.E. External Stimulation of Anthocyanin Biosynthesis in Apple Fruit. J. Food Agric. Environ. 2004, 2, 65–70. [Google Scholar]
- Yue, C.; Tong, C. Consumer Preferences and Willingness to Pay for Existing and New Apple Varieties: Evidence from Apple Tasting Choice Experiments. HortTechnology 2011, 21, 376–383. [Google Scholar] [CrossRef] [Green Version]
- Glenn, D.M.; Puterka, G.J. The Use of Plastic Films and Sprayable Reflective Particle Films to Increase Light Penetration in Apple Canopies and Improve Apple Color and Weight. HortScience 2007, 42, 91–96. [Google Scholar] [CrossRef] [Green Version]
- Corollaro, M.L.; Manfrini, L.; Endrizzi, I.; Aprea, E.; Demattè, M.L.; Charles, M.; Bergamaschi, M.; Biasioli, F.; Zibordi, M.; Corelli, G.; et al. The Effect of Two Orchard Light Management Practices on the Sensory Quality of Apple: Fruit Thinning by Shading or Photoselective Nets. J. Hortic. Sci. Biotechnol. 2015, 90, 99–108. [Google Scholar] [CrossRef]
- Harker, F.R.; Marsh, K.B.; Young, H.; Murray, S.H.; Gunson, F.A.; Walker, S.B. Sensory Interpretation of Instrumental Measurements 2: Sweet and Acid Taste of Apple Fruit. Postharvest Biol. Technol. 2002, 24, 241–250. [Google Scholar] [CrossRef]
- Bosco, L.C.; Bergamaschi, H.; Cardoso, L.S.; de Paula, V.A.; Marodin, G.A.B.; Nachtigall, G.R. Apple Production and Quality When Cultivated under Anti-Hail Cover in Southern Brazil. Int. J. Biometereol. 2015, 59, 773–782. [Google Scholar] [CrossRef] [Green Version]
- Chen, D.; Chen, H.W. Using the Köppen Classification to Quantify Climate Variation and Change: An Example for 1901–2010. Environ. Dev. 2013, 6, 69–79. [Google Scholar] [CrossRef]
- Zhang, J.; Niu, J.; Duan, Y.; Zhang, M.; Liu, J.; Li, P.; Ma, F. Photoprotection Mechanism in the ‘Fuji’ Apple Peel at Different Levels of Photo-Oxidative Sunburn. Physiol. Plant. 2015, 154, 54–65. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y. Seven Dimensions of Light in Regulating Plant Growth. Acta Hortic. 2016, 1134, 445–452. [Google Scholar] [CrossRef]
- Elkin, E. Beyond Binary Outcomes: PROC LOGISTIC to Model Ordinal and Nominal Dependent Variables. In Proceedings of the SAS Global Forum, Orlando, FL, USA, 22–25 April 2012; pp. 1–8. [Google Scholar]
- Lammertyn, J.; Aerts, M.; Verlinden, B.E.; Schotsmans, W.; Nicolaïi, B.M. Logistic Regression Analysis of Factors Influencing Core Breakdown in “Conference” Pears. Postharvest Biol. Technol. 2000, 20, 25–37. [Google Scholar] [CrossRef]
- Diaz, L.; Morales, M. Análisis Estadístico de Datos Categóricos, 1st ed.; Universidad Nacional de Colombia: Bogotá, Colombia, 2009. [Google Scholar]
Year | Net Color | Canopy Light Interception (%) | Significance by Month | ||
---|---|---|---|---|---|
May | June | July | |||
2015 | BLUE | 77.6 ± 2.1 | 76.2 ± 0.6 A | NS | |
RED | 75.2 ± 3.9 | 81.2 ± 1.2 A | NS | ||
PEARL | 79.4 ± 5.3 | 75.8 ± 3.9 A | NS | ||
CONTROL | 70.6 ± 8.9 | 59.2 ± 5.3 B | NS | ||
Significance | NS | ** | |||
2016 | BLUE | 75.2 ± 8.0 | 74.5 ± 6.1 | 78.4 ± 6.6 | NS |
RED | 75.0 ± 6.4 | 75.4 ± 2.5 | 76.6 ± 2.6 | NS | |
PEARL | 74.7 ± 6.6 | 79.1 ± 6.3 | 76.5 ± 8.3 | NS | |
CONTROL | 59.6 ± 3.5 | 60.8 ± 4.3 | 63.1 ± 2.8 | NS | |
Significance | NS | NS | NS |
Transmittance% at λ (nm) Across 4 Months | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Net Color | 370 nm | 420 nm | 453 nm | 483 nm | 519 nm | 589 nm | 643 nm | 660 nm | 750 nm | 817 nm | ||
Blue | 73.7 | 73.5 | 76.5 | A | 77.5 | A | 75.4 | 74.9 | 74.3 | 74.1 | 76.3 | 84.9 |
Pearl | 73.4 | 74.8 | 74.7 | AB | 74.9 | AB | 75.4 | 77.0 | 76.2 | 75.9 | 80.7 | 83.8 |
Red | 70.0 | 69.6 | 69.7 | B | 70.1 | B | 70.4 | 72.2 | 77.0 | 77.1 | 81.9 | 84.7 |
Significance of net color | NS | NS | * | * | NS | NS | NS | NS | NS | NS |
Scattering% at λ (nm) across 4 Months | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Net Color | 420 nm | 453 nm | 500 nm | 550 nm | 600 nm | 643 nm | 660 nm | 700 nm | 750 nm | 800 nm |
Blue | 19.3 | 19.7 A | 16.2 A | 9.4 B | 7.6 B | 6.8 C | 6.5 C | 6.2 C | 10.0 C | 17.3 C |
Pearl | 22.2 | 19.1 A | 15.7 A | 13.9 A | 12.5 A | 11.8 B | 11.5 B | 11.7 B | 17.9 B | 19.2 B |
Red | 18.7 | 15.1 B | 11.6 B | 9.3 B | 11.7 A | 15.1 A | 15.2 A | 15.9 A | 21.4 A | 22.9 A |
Significance | NS | ** | ** | *** | *** | *** | *** | *** | *** | *** |
Quincy Commercial Block (2016) | Light Intensity (µmol m−2 s−1) | Light Quality (ratios) | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Light Type | Color Nets-ctrl | N | PAR: 400–700 nm | UV: 305–380 nm | Blue: 410–470 nm | Red: 640–680 nm | Far Red: 690–750 nm | Blue/Red | Red/Far Red | PAR/UV | ||||||||
Total full light (transmitted) | BLUE | 48 | 1407.1 | B | 63.1 | B | 217.2 | B | 222.5 | B | 303.7 | B | 0.98 | A | 0.73 | B | 22.65 | |
RED | 47 | 1405.3 | B | 60.9 | B | 203.5 | B | 240.7 | B | 335.3 | B | 0.85 | C | 0.72 | C | 23.45 | ||
PEARL | 48 | 1470.4 | B | 64.5 | B | 220.9 | B | 237.1 | B | 329.7 | B | 0.93 | B | 0.72 | C | 23.09 | ||
Open field non-netted ctrl | 4 | 1888.1 | A | 90.0 | A | 292.6 | A | 301.7 | A | 407.7 | A | 0.97 | A | 0.74 | A | 21.33 | ||
Significance | *** | *** | *** | *** | *** | *** | *** | NS | ||||||||||
Scattered light (diffuse) | BLUE | 48 | 159.5 | B | 20.4 | B | 42.5 | B | 14.5 | D | 23.0 | C | 2.93 | A | 0.63 | B | 7.89 | C |
RED | 48 | 183.4 | AB | 19.6 | B | 32.8 | C | 36.1 | A | 59.5 | A | 0.91 | D | 0.60 | BC | 9.47 | B | |
PEARL | 48 | 213.0 | A | 21.0 | B | 44.7 | AB | 27.5 | B | 46.5 | B | 1.63 | C | 0.59 | C | 10.21 | A | |
Open field non-netted ctrl | 4 | 199.4 | A | 31.5 | A | 51.7 | A | 20.2 | C | 26.6 | C | 2.55 | B | 0.76 | A | 6.44 | D | |
Significance | *** | *** | *** | *** | *** | *** | *** | *** |
Color Nets | N | Fruit (N=) | Diameter (mm) | Weight (g) | Firmness (kg/cm2) | Starch Index | SSC (° Brix) | TA (% Malic Acid) | SSC/TA Ratio | |
---|---|---|---|---|---|---|---|---|---|---|
2015 | Control | 6 | 380 | 83.3 B | 232 B | 15.4 | 4.8 | 14.9 | 0.71 | 20.9 |
Blue | 12 | 703 | 84.9 B | 245 B | 15.1 | 5.2 | 14.6 | 0.70 | 20.9 | |
Pearl | 12 | 709 | 88.5 A | 275 A | 15.2 | 5.1 | 14.8 | 0.70 | 21.1 | |
Red | 12 | 745 | 86.9 AB | 259 AB | 15.1 | 4.9 | 14.8 | 0.70 | 21.1 | |
Significance | ** | ** | NS | NS | NS | NS | NS | |||
2016 | Control | 6 | 144 | 97.9 | 385 | 14.5 | 4.1 | 15.2 A | 0.69 AB | 22.0 A |
Blue | 12 | 315 | 98.8 | 397 | 13.9 | 4.8 | 14.4 B | 0.70 AB | 20.8 AB | |
Pearl | 12 | 320 | 100.2 | 397 | 14.4 | 4.2 | 14.6 B | 0.73 A | 20.1 B | |
Red | 12 | 349 | 98.1 | 387 | 14.1 | 4.5 | 14.4 B | 0.66 B | 21.7 A | |
Significance | NS | NS | NS | NS | ** | ** | ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Serra, S.; Borghi, S.; Mupambi, G.; Camargo-Alvarez, H.; Layne, D.; Schmidt, T.; Kalcsits, L.; Musacchi, S. Photoselective Protective Netting Improves “Honeycrisp” Fruit Quality. Plants 2020, 9, 1708. https://doi.org/10.3390/plants9121708
Serra S, Borghi S, Mupambi G, Camargo-Alvarez H, Layne D, Schmidt T, Kalcsits L, Musacchi S. Photoselective Protective Netting Improves “Honeycrisp” Fruit Quality. Plants. 2020; 9(12):1708. https://doi.org/10.3390/plants9121708
Chicago/Turabian StyleSerra, Sara, Stefano Borghi, Giverson Mupambi, Hector Camargo-Alvarez, Desmond Layne, Tory Schmidt, Lee Kalcsits, and Stefano Musacchi. 2020. "Photoselective Protective Netting Improves “Honeycrisp” Fruit Quality" Plants 9, no. 12: 1708. https://doi.org/10.3390/plants9121708
APA StyleSerra, S., Borghi, S., Mupambi, G., Camargo-Alvarez, H., Layne, D., Schmidt, T., Kalcsits, L., & Musacchi, S. (2020). Photoselective Protective Netting Improves “Honeycrisp” Fruit Quality. Plants, 9(12), 1708. https://doi.org/10.3390/plants9121708