Application of Gum Arabic and Methyl Cellulose Coatings Enriched with Thyme Oil to Maintain Quality and Extend Shelf Life of “Acco” Pomegranate Arils
Abstract
:1. Introduction
2. Results
2.1. Physiological Response
2.1.1. Weight Loss
2.1.2. Respiration Rate
2.1.3. Aril Firmness
2.2. Physiochemical and Textural Properties
2.2.1. Colour
2.2.2. Titratable Acidity, Total Soluble Solids and TSS/TA
2.3. Microbial Quality
2.4. Phytochemical and Antioxidant Content
2.4.1. Phytochemical Content
2.4.2. Antioxidant Content
3. Discussion
3.1. Physiological Response
3.1.1. Weight Loss
3.1.2. Respiration Rate
3.1.3. Aril Firmness
3.2. Physiochemical and Textural Properties
3.2.1. Colour
3.2.2. Titratable Acidity, Total Soluble Solids and TSS/TA
3.3. Microbial Quality
3.4. Phytochemical and Antioxidant Content
3.4.1. Phytochemical Content
3.4.2. Antioxidant Content
4. Materials and Methods
4.1. Fruit Supply
4.2. Preparation of Raw Materials and Experimental Layout
4.2.1. Preparation of Coating Solutions
4.2.2. Aril Processing
4.2.3. Experimental Layout
4.3. Physiological Response
4.3.1. Weight Loss
4.3.2. Headspace Gas Composition
4.4. Physico-Chemical and Textural Properties
4.4.1. Colour
4.4.2. Aril Firmness
4.4.3. Titratable Acidity and Total Soluble Solids
4.5. Microbial Quality
4.6. Phytochemical and Antioxidant Content
4.6.1. Phytochemical Content
4.6.2. Antioxidant Content
4.7. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chandra, R.; Babu, D.K.; Jadhav, V.T.; da Silva, J.A.T. Origin, history and domestication of pomegranate. Pomegranate. Fruit Veg. Cereal Sci. Biotechnol. 2010, 4, 1–6. [Google Scholar]
- Fawole, O.A.; Makunga, N.P.; Opara, U.L. Antibacterial, antioxidant and tyrosinase-inhibition activities of pomegranate fruit peel methanolic extract. BMC Complement. Altern. Med. 2012, 12, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akhtar, S.; Ismail, T.; Fraternale, D.; Sestili, P. Pomegranate peel and peel extracts: Chemistry and food features. Food Chem. 2015, 174, 417–425. [Google Scholar] [CrossRef] [PubMed]
- Lansky, E.P.; Newman, R.A. Punica granatum (pomegranate) and its potential for prevention and treatment of inflammation and cancer. J. Ethnopharmacol. 2007, 109, 177–206. [Google Scholar] [CrossRef] [PubMed]
- Caleb, O.J.; Opara, U.L.; Witthuhn, C.R. Modified atmosphere packaging of pomegranate fruit and arils: A review. Food Bioprocess. Technol. 2012, 5, 15–30. [Google Scholar] [CrossRef]
- Caleb, O.J.; Opara, U.L.; Mahajan, P.V.; Manley, M.; Mokwena, L.; Tredoux, A.G.J. Effect of modified atmosphere packaging and storage temperature on volatile composition and postharvest life of minimally processed pomegranate arils (cvs. Acco and Herskawitz). Postharvest Biol. Technol. 2013, 79, 54–61. [Google Scholar] [CrossRef]
- Ashtari, M.; Khademi, O.; Soufbaf, M.; Afsharmanesh, H.; Sarcheshmeh, M.A.A. Effect of gamma irradiation on antioxidants, microbiological properties and shelf life of pomegranate arils cv. ‘Malas Saveh’. Sci. Hortic. 2019, 244, 365–371. [Google Scholar] [CrossRef]
- Artés-Hernández, F.; Villaescusa, R.; Tudela, J.A. Modified atmosphere packaging of pomegranate. J. Food Sci. 2000, 65, 1112–1116. [Google Scholar] [CrossRef]
- Ncama, K.; Magwaza, L.S.; Mditshwa, A.; Tesfay, S.Z. Plant-based edible coatings for managing postharvest quality of fresh horticultural produce: A review. Food Packag. Shelf Life 2018, 16, 157–167. [Google Scholar] [CrossRef]
- Falguera, V.; Quintero, J.P.; Jiménez, A.; Muñoz, J.A.; Ibarz, A. Edible films and coatings: Structures, active functions and trends in their use. Trends Food Sci. Technol. 2011, 22, 292–303. [Google Scholar] [CrossRef]
- Valencia-Chamorro, S.A.; Palou, L.; Del Río, M.A.; Pérez-Gago, M.B. Antimicrobial edible films and coatings for fresh and minimally processed fruits and vegetables: A review. Crit. Rev. Food Sci. Nutr. 2011, 51, 872–900. [Google Scholar] [CrossRef]
- Riva, S.C.; Opara, U.L.; Fawole, O.A. Recent developments on postharvest application of edible coatings on stone fruit: A review. Sci. Hortic. 2019, 262, 10–23. [Google Scholar] [CrossRef]
- Vargas, M.; Pastor, C.; Chiralt, A.; McClements, D.J.; González-Martínez, C. Recent advances in edible coatings for fresh and minimally processed fruits. Crit. Rev. Food Sci. Nutr. 2008, 48, 496–511. [Google Scholar] [CrossRef] [PubMed]
- Motlagh, S.; Ravines, P.; Karamallah, K.; Ma, Q. The analysis of Acacia gums using electrophoresis. Food Hydrocoll. 2006, 20, 848–854. [Google Scholar] [CrossRef]
- Valiathan, S.; Athmaselvi, K. Gum arabic based composite edible coating on green chillies. Int. Agrophysics 2018, 32, 193–202. [Google Scholar] [CrossRef]
- Maqbool, M.; Ali, A.; Ramachandran, S.; Smith, D.R.; Alderson, P.G. Control of postharvest anthracnose of banana using a new edible composite coating. Crop. Prot. 2010, 29, 1136–1141. [Google Scholar] [CrossRef]
- Ali, A.; Maqbool, M.; Ramachandran, S.; Alderson, P.G. Gum arabic as a novel edible coating for enhancing shelf-life and improving postharvest quality of tomato (Solanum lycopersicum L.) fruit. Postharvest Biol. Technol. 2010, 58, 42–47. [Google Scholar] [CrossRef]
- Malmiri, J.H.; Osman, A.; Tan, C.P.; Abdul, R. Evaluation of effectiveness of three cellulose derivative-based edible coatings on changes of physico-chemical characteristics of ‘Berangan’ banana (Musa sapientum cv. Berangan) during storage at ambient conditions. Int. Food Res. J. 2011, 18, 1381–1386. [Google Scholar]
- Maftoonazad, N.; Ramaswamy, H.S.; Marcotte, M. Shelf-life extension of peaches through sodium alginate and methyl cellulose edible coatings. Int. J. Food Sci. Technol. 2008, 43, 951–957. [Google Scholar] [CrossRef]
- Saba, M.K.; Amini, R. Nano-ZnO/carboxymethyl cellulose-based active coating impact on ready-to-use pomegranate during cold storage. Food Chem. 2017, 232, 721–726. [Google Scholar] [CrossRef]
- Sánchez-González, L.; Vargas, M.; González-Martínez, C.; Chiralt, A.; Cháfer, M. Use of essential oils in bioactive edible coatings: A review. Food Eng. Rev. 2011, 3, 1–16. [Google Scholar] [CrossRef]
- Sellamuthu, P.S.; Sivakumar, D.; Soundy, P. Antifungal activity and chemical composition of thyme, peppermint and citronella oils in vapour phase against avocado and peach postharvest pathogens. J. Food Saf. 2013, 33, 86–93. [Google Scholar] [CrossRef]
- Sivakumar, D.; Bautista-Baños, S. A review on the use of essential oils for postharvest decay control and maintenance of fruit quality during storage. Crop. Prot. 2014, 64, 27–37. [Google Scholar] [CrossRef]
- Bill, M.; Sivakumar, D.; Korsten, L.; Thompson, A.K. The efficacy of combined application of edible coatings and thyme oil in inducing resistance components in avocado (Persea americana Mill.) against anthracnose during post-harvest storage. Crop. Prot. 2014, 64, 159–167. [Google Scholar] [CrossRef] [Green Version]
- Sellamuthu, P.S.; Mafune, M.; Sivakumar, D.; Soundy, P. Thyme oil vapour and modified atmosphere packaging reduce anthracnose incidence and maintain fruit quality in avocado. J. Sci. Food Agric. 2013, 93, 3024–3031. [Google Scholar] [CrossRef]
- Emiroğlu, Z.K.; Yemiş, G.P.; Coşkun, B.K.; Candoğan, K. Antimicrobial activity of soy edible films incorporated with thyme and oregano essential oils on fresh ground beef patties. Meat Sci. 2010, 86, 283–288. [Google Scholar] [CrossRef]
- Tullio, V.; Nostro, A.; Mandras, N.; Dugo, P.; Banche, G.; Cannatelli, M.; Cuffini, A.; Alonzo, V.; Carlone, N. Antifungal activity of essential oils against filamentous fungi determined by broth microdilution and vapour contact methods. J. Appl. Microbiol. 2007, 102, 1544–1550. [Google Scholar] [CrossRef]
- Maftoonazad, N.; Ramaswamy, H. Postharvest shelf-life extension of avocados using methyl cellulose-based coating. Food Sci. Technol. 2005, 38, 617–624. [Google Scholar] [CrossRef]
- Ali, A.; Hei, G.K.; Keat, Y.W. Efficacy of ginger oil and extract combined with gum arabic on anthracnose and quality of papaya fruit during cold storage. J. Food Sci. Technol. 2016, 53, 1435–1444. [Google Scholar] [CrossRef] [Green Version]
- Hasheminejad, N.; Khodaiyan, F. The effect of clove essential oil loaded chitosan nanoparticles on the shelf life and quality of pomegranate arils. Food Chem. 2020, 309, 1–10. [Google Scholar] [CrossRef]
- Sánchez-González, L.; Pastor, C.; Vargas, M.; Chiralt, A.; González-Martínez, C.; Cháfer, M. Effect of hydroxypropylmethylcellulose and chitosan coatings with and without bergamot essential oil on quality and safety of cold-stored grapes. Postharvest Biol. Technol. 2011, 60, 57–63. [Google Scholar] [CrossRef] [Green Version]
- Caleb, O.J.; Mahajan, P.V.; Opara, U.L.; Witthuhn, C.R. Modelling the respiration rates of pomegranate fruit and arils. Postharvest Biol. Technol. 2012, 64, 49–54. [Google Scholar] [CrossRef]
- Nei, D.; Uchino, T.; Sakai, N.; Tanaka, S.-I. Effect of high temperature on the apparent activation energy of respiration of fresh produce. Postharvest Biol. Technol. 2005, 37, 277–285. [Google Scholar] [CrossRef]
- Yousuf, B.; Srivastava, A.K. Flaxseed gum in combination with lemongrass essential oil as an effective edible coating for ready-to-eat pomegranate arils. Int. J. Biol. Macromol. 2017, 104, 1030–1038. [Google Scholar] [CrossRef]
- Martínez-Romero, D.; Castillo, S.; Guillén, F.; Díaz-Mula, H.M.; Zapata, P.J.; Valero, D.; Serrano, M. Aloe vera gel coating maintains quality and safety of ready-to-eat pomegranate arils. Postharvest Biol. Technol. 2013, 86, 107–112. [Google Scholar] [CrossRef]
- Oz, A.T.; Ulukanli, Z. Application of edible starch-based coating including glycerol plus oleum nigella on arils from long-stored whole pomegranate fruits. J. Food Process. Preserv. 2012, 36, 81–95. [Google Scholar] [CrossRef]
- Dang, Q.F.; Yan, J.Q.; Li, Y.; Cheng, X.J.; Liu, C.S.; Chen, X.G. Chitosan acetate as an active coating material and its effects on the storing of Prunus avium L. J. Food Sci. 2010, 75, S125–S131. [Google Scholar] [CrossRef]
- López-Rubira, V.; Conesa, A.; Allende, A.; Artés, F. Shelf life and overall quality of minimally processed pomegranate arils modified atmosphere packaged and treated with UV-C. Postharvest Biol. Technol. 2005, 37, 174–185. [Google Scholar] [CrossRef]
- Hussein, Z.; Caleb, O.J.; Jacobs, K.; Manley, M.; Opara, U.L. Effect of perforation-mediated modified atmosphere packaging and storage duration on physicochemical properties and microbial quality of fresh minimally processed ‘Acco’ pomegranate arils. Food Sci. Technol. 2015, 64, 911–918. [Google Scholar] [CrossRef]
- Díaz-Mula, H.M.; Serrano, M.; Valero, D. Alginate coatings preserve fruit quality and bioactive compounds during storage of sweet cherry fruit. Food Bioprocess. Technol. 2011, 5, 2990–2997. [Google Scholar] [CrossRef]
- Valero, D.; Serrano, M. Postharvest Biology and Technology for Preserving Fruit Quality, 1st ed.; CRC Press: Boca Raton, FL, USA, 2010; pp. 7–214. [Google Scholar]
- Öz, T.A.; Eker, T. Effects of edible coating on minimally processed pomegranate fruits. J. Process. Energy Agric. 2017, 21, 197–200. [Google Scholar] [CrossRef] [Green Version]
- Azarakhsh, N.; Osman, A.; Ghazali, H.M.; Tan, C.P.; Adzahan, N.M. Effects of gellan-based edible coating on the quality of fresh-cut pineapple during cold storage. Food Bioprocess. Technol. 2014, 7, 2144–2150. [Google Scholar] [CrossRef]
- Gonçalves, B.; Silva, A.P.; Moutinho-Pereira, J.; Bacelar, E.; Rosa, E.; Meyer, A.S. Effect of ripeness and postharvest storage on the evolution of colour and anthocyanins in cherries (Prunus avium L.). Food Chem. 2007, 103, 976–984. [Google Scholar] [CrossRef]
- Varasteh, F.; Arzani, K.; Barzegar, M.; Zamani, Z. Changes in anthocyanins in arils of chitosan-coated pomegranate (Punica granatum L. cv. Rabbab-e-Neyriz) fruit during cold storage. Food Chem. 2012, 130, 267–272. [Google Scholar] [CrossRef]
- Kumar, P.; Sethi, S.; Sharma, R.R.; Srivastav, M.; Varghese, E. Effect of chitosan coating on postharvest life and quality of plum during storage at low temperature. Sci. Hortic. 2017, 226, 104–109. [Google Scholar] [CrossRef]
- Hong, K.; Xie, J.; Zhang, L.; Sun, D.; Gong, D. Effects of chitosan coating on postharvest life and quality of guava (Psidium guajava L.) fruit during cold storage. Sci. Hortic. 2012, 144, 172–178. [Google Scholar] [CrossRef]
- Maqbool, M.; Ali, A.; Alderson, P.G.; Mohamed, M.T.M.; Siddiqui, Y.; Zahid, N. Postharvest application of gum arabic and essential oils for controlling anthracnose and quality of banana and papaya during cold storage. Postharvest Biol. Technol. 2011, 62, 71–76. [Google Scholar] [CrossRef]
- Foodstuff, Cosmetics and Disinfectant Act 54; Republic of South Africa Department of Health: Pretoria, South Africa, 1972.
- Mahfoudhi, N.; Hamdi, S. Use of almond gum and gum Arabic as novel edible coating to delay postharvest ripening and to maintain sweet cherry (Prunus avium) quality during storage. J. Food Process. Preserv. 2014, 39, 1499–1508. [Google Scholar] [CrossRef]
- Ghasemnezhad, M.; Zareh, S.; Rassa, M.; Sajedi, R.H. Effect of chitosan coating on maintenance of aril quality, microbial population and PPO activity of pomegranate (Punica granatum L. cv. Tarom) at cold storage temperature. J. Sci. Food Agric. 2013, 93, 368–374. [Google Scholar] [CrossRef]
- Narayanapurapu, P.T.R. Effect of composite edible coatings and abiotic stress on postharvest quality of fruits. Ph.D. Thesis, McGill University, Montréal, Canada, 2012. [Google Scholar]
- Meighani, H.; Ghasemnezhad, M.; Bakshi, D. Evaluation of biochemical composition and enzyme activities in browned arils of pomegranate fruits. Int. J. Hortic. Sci. Technol. 2014, 1, 53–65. [Google Scholar]
- Thanissery, R.; Kathariou, S.; Smith, D.P. Rosemary oil, clove oil, and a mix of thyme-orange essential oils inhibit Salmonella and Campylobacter in vitro. J. Appl. Poult. Res. 2014, 23, 221–227. [Google Scholar] [CrossRef]
- Candir, E.; Ozdemir, A.E.; Aksoy, M.C. Effects of chitosan coating and modified atmosphere packaging on postharvest quality and bioactive compounds of pomegranate fruit cv. ‘Hicaznar’. Sci. Hortic. 2018, 235, 235–243. [Google Scholar] [CrossRef]
- Holcroft, D.M.; Gil, M.I.; Kader, A.A. Effect of carbon dioxide on anthocyanins, phenylalanine ammonia lyase and glucosyltransferase in the arils of stored pomegranates. J. Am. Soc. Hortic. Sci. 1998, 123, 136–140. [Google Scholar] [CrossRef]
- Miguel, G.; Dandlen, S.; Antunes, D.; Neves, A.; Martins, D. The effect of two methods of pomegranate (Punica granatum L.) juice extraction on quality during storage at 4 °C. J. Biomed. Biotech. 2004, 5, 332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gil, M.I.; García-Viguera, C.; Artés, F.; Tomás-Barberán, F.A. Changes in pomegranate juice pigmentation during ripening. J. Sci. Food Agric. 1995, 68, 77–81. [Google Scholar] [CrossRef]
- Barman, K.; Asrey, R.; Pal, R. Putrescine and carnauba wax pretreatments alleviate chilling injury, enhance shelf life and preserve pomegranate fruit quality during cold storage. Sci. Hortic. 2011, 130, 795–800. [Google Scholar] [CrossRef]
- Yahia, E.M.; Contreras-Padilla, M.; González-Aguilar, G. Ascorbic acid content in relation to ascorbic acid oxidase activity and polyamine content in tomato and bell pepper fruits during development, maturation and senescence. Food Sci. Technol. 2001, 34, 452–457. [Google Scholar] [CrossRef] [Green Version]
- González-Aguilar, G.A.; Villa-Rodriguez, J.A.; Ayala-Zavala, J.F.; Yahia, E.M. Improvement of the antioxidant status of tropical fruits as a secondary response to some postharvest treatments. Trends Food Sci. Technol. 2010, 21, 475–482. [Google Scholar] [CrossRef]
- Wang, S.Y.; Gao, H. Effect of chitosan-based edible coating on antioxidants, antioxidant enzyme system, and postharvest fruit quality of strawberries (Fragaria x aranassa Duch.). LWT Food Sci. Technol. 2013, 52, 71–79. [Google Scholar] [CrossRef]
- Nair, M.S.; Saxena, A.; Kaur, C. Effect of chitosan and alginate based coatings enriched with pomegranate peel extract to extend the postharvest quality of guava (Psidium guajava L.). Food Chem. 2018, 240, 245–252. [Google Scholar] [CrossRef]
- Elsabee, M.; Abdou, E.S. Chitosan based edible films and coatings: A review. Mater. Sci. Eng. C 2013, 33, 1819–1841. [Google Scholar] [CrossRef] [PubMed]
- Thaipong, K.; Boonprakob, U.; Crosby, K.; Cisneros-Zevallos, L.; Byrne, D.H. Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J. Food Compos. Anal. 2006, 19, 669–675. [Google Scholar] [CrossRef]
- Caleb, O.J.; Mahajan, P.V.; Al-Said, F.A.; Opara, U.L. Transpiration rate and quality of pomegranate arils as affected by storage conditions. CyTA J. Food 2013, 11, 199–207. [Google Scholar] [CrossRef]
- Chen, L.; Opara, U.L. Texture measurement approaches in fresh and processed foods—A review. Food Res. Int. 2013, 51, 823–835. [Google Scholar] [CrossRef]
- Hussein, Z.; Fawole, O.A.; Opara, U.L. Effects of bruising and storage duration on physiological response and quality attributes of pomegranate fruit. Sci. Hortic. 2020, 267, 1–7. [Google Scholar] [CrossRef]
- Belay, Z.A.; Caleb, O.J.; Opara, U.L. Impacts of low and super-atmospheric oxygen concentrations on quality attributes, phytonutrient content and volatile compounds of minimally processed pomegranate arils (cv. Wonderful). Postharvest Biol. Technol. 2017, 124, 119–127. [Google Scholar] [CrossRef]
- Fawole, O.A.; Opara, U.L.; Theron, K.I. Chemical and phytochemical properties and antioxidant activities of three pomegranate cultivars grown in South Africa. Food Bioprocess. Technol. 2012, 5, 2934–2940. [Google Scholar] [CrossRef]
- Atukuri, J.; Fawole, O.A.; Opara, U.L. Effect of exogenous fludioxonil postharvest treatment on physiological response, physico-chemical, textural, phytochemical and sensory characteristics of pomegranate fruit. J. Food Meas. Charact. 2017, 11, 1081–1093. [Google Scholar] [CrossRef]
Storage Duration (days) | |||||||
---|---|---|---|---|---|---|---|
Colour Attribute | Treatment | 0 | 1 | 4 | 8 | 12 | 16 |
Control | 25.41 | 27.68 ±0.67ab | 24.96 ± 0.16c–i | 24.83 ± 0.32c–i | 23.93 ± 0.54e–m | 24.65 ± 0.18c–l | |
a* | GA | 23.97 ± 0.37e–m | 25.28 ± 1.10c–h | 25.44 ± 0.85c–g | 24.09 ± 0.52e–m | 22.60 ± 0.37lm | |
GA + TO0.5% | 22.70 ± 0.29klm | 22.93 ± 0.46i–m | 23.95 ± 0.44e–m | 23.68 ± 0.19f–m | 24.30 ± 0.40d–l | ||
GA + TO0.25% | 22.99 ± 0.72i–m | 24.44 ± 0.79c–l | 24.26 ± 0.73d–m | 23.13 ± 0.54i–m | 23.50 ± 0.74g–m | ||
MC | 24.77 ± 0.55c–j | 22.23 ± 0.85m | 23.24 ± 0.60h–i | 26.25 ± 1.05a–d | 22.76 ± 0.55j–m | ||
MC + TO0.5% | 25.73 ± 0.34c–f | 27.80 ± 0.33a | 26.19 ± 1.07a–d | 24.82 ± 0.21c–j | 24.72 ± 0.82c–k | ||
MC + TO0.25% | 25.25 ± 0.17c–h | 26.40 ± 0.15abc | 23.43 ± 0.57g–m | 25.87 ± 0.26b–e | 24.75 ± 0.46c–k | ||
C* | Control | 27.56 | 22.22 ± 0.51f–k | 23.38 ± 0.91b–g | 23.72 ± 0.77b–f | 22.33 ± 0.46e–k | 21.05 ± 0.33jk |
GA | 21.28 ± 0.26ijk | 22.00 ± 0.09f–k | 22.58 ± 0.37d–k | 22.54 ± 0.12d–k | 22.72 ± 0.48c–j | ||
GA + TO0.5% | 21.59 ± 0.64h–k | 23.04 ± 0.61b–h | 22.92 ± 0.55c–i | 21.88 ± 0.46g–k | 22.19 ± 0.58f–k | ||
GA + TO0.25% | 23.29 ± 0.57b–h | 20.85 ± 0.83k | 21.68 ± 0.49g–k | 24.48 ± 0.90abc | 21.26 ± 0.43ijk | ||
MC | 24.22 ± 0.31a–d | 25.61 ± 0.08a | 24.20 ± 0.69a–d | 23.19 ± 0.28b–h | 23.09 ± 0.85b–h | ||
MC + TO0.5% | 24.05 ± 0.02a–e | 24.68 ± 0.09ab | 22.22 ± 0.46f–k | 24.25 ± 0.21a–d | 23.33 ± 0.43b–h | ||
MC + TO0.25% | 25.60 ± 0.59a | 23.14 ± 0.25b–h | 23.20 ± 0.15b–h | 22.39 ± 0.54e–k | 23.07 ± 0.17b–h | ||
Baseline | 22.15 | ||||||
Control | 21.28 ± 0.38a | ||||||
GA | 21.59 ± 0.38a | ||||||
GA + TO0.5% | 19.57 ± 0.42c | ||||||
h⁰ | GA + TO0.25% | 19.13 ± 0.39c | |||||
MC | 20.71 ± 0.23ab | ||||||
MC + TO0.5% | 21.23 ± 0.47a | ||||||
MC + TO0.25% | 19.80 ± 0.25bc | ||||||
Level of significance | Coating treatment (A) | Storage duration (B) | A × B | ||||
a* | <0.0001 | 0.0222 | <0.0001 | ||||
C* | <0.0001 | 0.0368 | <0.0001 | ||||
h⁰ | <0.0001 | 0.3498 | 0.2729 |
Storage Duration (Days) | ||||||
---|---|---|---|---|---|---|
Microbial Quality | Coating Treatment | 0 | 1 | 4 | 8 | 12 |
MC | 4.05 ± 0.01def | TMTC | TMTC | TMTC | ||
MC + TO0.5% | 3.78 ± 0.11e–h | 4.97 ± 0.04bc | 5.31 ± 0.04a | TMTC | ||
Yeast and mould counts (log CFU g−1) | MC + TO0.25% | TFTC | 4.70 ± 0.01c | 4.15 ± 0.01d | TMTC | |
GA | 3.67 ± 0.01h | 5.30 ± 0.00a | 5.29 ± 0.05ab | TMTC | ||
GA + TO0.5% | TFTC | 3.22 ± 0.02i | 3.70 ± 0.14gh | 4.05 ± 0.15de | ||
GA + TO0.25% | TFTC | 3.73 ± 0.01fgh | TMTC | TMTC | ||
CONTROL | 3.98 | 3.90 ± 0.02d–g | 4.01 ± 0.01d-g | TMTC | 4.05 ± 0.01def | |
Total plate counts (log CFU g−1) | MC | 5.87 ± 0.01c | TMTC | TMTC | TMTC | |
MC + TO0.5% | TMTC | TMTC | TMTC | TMTC | ||
MC + TO0.25% | 3.09 ± 0.02h | 4.99 ± 0.05d | 6.22 ± 0.01ab | TMTC | ||
GA | TMTC | 6.43 ± 0.00a | TMTC | TMTC | ||
GA + TO0.5% | 2.80 ± 0.01i | 4.53 ± 0.02e | 6.22 ± 0.01ab | TMTC | ||
GA + TO0.25% | 3.38 ± 0.00g | 4.54 ± 0.03e | 5.85 ± 0.04c | 6.11 ± 0.13bc | ||
CONTROL | 4.21 | 4.08 ± 0.08f | TMTC | TMTC | 5.83 ± 0.11c | |
Level of significance | Coating treatment × Storage duration | |||||
Yeast and mould counts | <0.0001 | |||||
Total plate counts | <0.0001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kawhena, T.G.; Tsige, A.A.; Opara, U.L.; Fawole, O.A. Application of Gum Arabic and Methyl Cellulose Coatings Enriched with Thyme Oil to Maintain Quality and Extend Shelf Life of “Acco” Pomegranate Arils. Plants 2020, 9, 1690. https://doi.org/10.3390/plants9121690
Kawhena TG, Tsige AA, Opara UL, Fawole OA. Application of Gum Arabic and Methyl Cellulose Coatings Enriched with Thyme Oil to Maintain Quality and Extend Shelf Life of “Acco” Pomegranate Arils. Plants. 2020; 9(12):1690. https://doi.org/10.3390/plants9121690
Chicago/Turabian StyleKawhena, Tatenda Gift, Alemayehu Ambaw Tsige, Umezuruike Linus Opara, and Olaniyi Amos Fawole. 2020. "Application of Gum Arabic and Methyl Cellulose Coatings Enriched with Thyme Oil to Maintain Quality and Extend Shelf Life of “Acco” Pomegranate Arils" Plants 9, no. 12: 1690. https://doi.org/10.3390/plants9121690