The Potential of Payment for Ecosystem Services for Crop Wild Relative Conservation
Abstract
:1. Introduction
2. CWR and Ecosystem Services
3. The Rationale for Payment for Ecosystem Services for CWR Conservation
4. Payment for Ecosystem Services Mechanisms for CWR Conservation
4.1. Who Will Pay for CWR Conservation?
4.2. Who Will Provide CWR Conservation Services?
4.3. Towards Designing a CWR PES Conservation Portfolio
4.4. Prioritizing CWR for Conservation
5. Assessing the Effectiveness of PES for CWR
5.1. Ecological Effectiveness
5.2. Economic Efficiency
5.3. Social Equity
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dempewolf, H.; Baute, G.; Anderson, J.; Kilian, B.; Smith, C.; Guarino, L. Past and future use of wild relatives in crop breeding. Crop Sci. 2017, 57, 1070–1082. [Google Scholar] [CrossRef]
- Tanksley, S.D.; McCouch, S.R. Seed Banks and Molecular Maps: Unlocking Genetic Potential from the Wild. Science 1997, 277, 1063–1066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khoury, C.K.; Carver, D.; Barchenger, D.W.; Barboza, G.; van Zonneweld, M.; Jarret, R.; Bohs, L.; Kantar, M.B.; Uchanski, M.; Mercer, K.; et al. Modeled distributions and conservation status of the wild relatives of chile peppers (Capsicum L). Divers. Distrib. 2019, 26, 209–225. [Google Scholar] [CrossRef] [Green Version]
- Hajjar, R.; Hodgkin, T. The use of wild relatives in crop improvement: A survey of developments over the past 20 years. Euphytica 2007, 156, 1–13. [Google Scholar] [CrossRef]
- Maxted, N.; Kell, S.P. Establishment of a Global Network for the In Situ Conservation of Crop Wild Relatives: Status and Needs; FAO Commission on Genetic Resources for Food and Agriculture: Rome, Italy, 2009; p. 266. [Google Scholar]
- Iltis, H.H. Serendipity in the Exploration of Biodiversity. What Good are Weedy Tomatoes? Wilson, E.O., Ed.; Biodiversity, National Academy Press: Washington, DC, USA, 1988; pp. 98–105. [Google Scholar]
- Hunter, D.; Heywood, V. Crop Wild Relatives: A Manual of In Situ Conservation, 1st ed.; Earthscan: London, UK, 2011. [Google Scholar]
- Pimentel, D.; Wilson, C.; McCullum, C.; Huang, R.; Dwen, P.; Flack, J.; Tran, Q.; Saltman, T.; Cliff, B. Economic and environmental benefits of biodiversity. BioScience 1997, 47, 747–757. [Google Scholar] [CrossRef]
- Brummitt, N.; Bachman, S. Plants under pressure a global assessment. In The First Report of the IUCN Sampled Red List Index for Plants; Royal Botanic Gardens: Kew, UK, 2015. [Google Scholar]
- Canadell, J.; Noble, I. Challenges of a changing Earth. Trends Ecol. Evol. 2001, 16, 664–666. [Google Scholar] [CrossRef]
- Bilz, M.; Kell, S.P.; Maxted, N.; Lansdown, R.V. European Red List of Vascular Plants; Publications Office of the European Union: Luxembourg, 2011. [Google Scholar]
- Jarvis, A.; Lane, A.; Hijmans, R.J. The effect of climate change on crop wild relatives. Agric. Ecosyst. Environ. 2008, 126, 13–23. [Google Scholar] [CrossRef]
- Ureta, C.; Martínez-Meyer, E.; Perales, H.R.; Álvarez-Buylla, E.R. Projecting the effects of climate change on the distribution of maize races and their wild relatives in Mexico. Glob. Chang. Biol. 2011, 18, 1073–1082. [Google Scholar] [CrossRef]
- Godfray, H.C.J.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Pretty, J.; Robinson, S.; Thomas, S.M.; Toulmin, C. Food Security: The Challenge of Feeding 9 Billion People. Science 2010, 327, 812–818. [Google Scholar] [CrossRef] [Green Version]
- Battisti, D.S.; Naylor, R.L. Historical Warnings of Future Food Insecurity with Unprecedented Seasonal Heat. Science 2009, 323, 240–244. [Google Scholar] [CrossRef] [Green Version]
- Lobell, D.B.; Burke, M.B.; Tebaldi, C.; Mastrandrea, M.D.; Falcon, W.P.; Naylor, R.L. Prioritizing Climate Change Adaptation Needs for Food Security in 2030. Science 2008, 319, 607–610. [Google Scholar] [CrossRef] [PubMed]
- Peng, S.; Huang, J.; Sheehy, J.E.; Laza, R.C.; Visperas, R.M.; Zhong, X.; Centeno, G.S.; Khush, G.S.; Cassman, K.G. Rice yields decline with higher night temperature from global warming. Proc. Natl. Acad. Sci. USA 2004, 101, 9971–9975. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zamir, D. Improving plant breeding with exotic genetic libraries. Nat. Genet. 2001, 2, 983–989. [Google Scholar] [CrossRef] [PubMed]
- Thalapati, S.; Batchu, A.K.; Neelamraju, S.; Ramanan, R. Os11Gsk gene from a wild rice, Oryza rufipogon improves yield in rice. Funct. Integr. Genet. 2012, 12, 277–289. [Google Scholar] [CrossRef] [PubMed]
- Ford-Lloyd, B.V.; Schmidt, M.; Armstrong, S.J.; Barazani, O.; Engels, J.; Hadas, R.; Hammer, K.; Kell, S.P.; Kang, D.; Khoshbakht, K.; et al. Crop Wild Relatives—Undervalued, Underutilized and under Threat? BioScience 2011, 61, 559–565. [Google Scholar] [CrossRef] [Green Version]
- Jayachandran, S.; de Laat, J.; Lambin, E.F.; Stanton, C.Y.; Audy, R.; Thomas, N.E. Cash for carbon: A randomized trial of payments for ecosystem services to reduce deforestation. Science 2017, 357, 267–273. [Google Scholar] [CrossRef] [Green Version]
- Börner, J.; Baylis, K.; Corbera, E.; Ezzine-de-Blas, D.; Honey-Rosés, J.; Persson, U.M.; Wunder, S. The effectiveness of payments for environmental services. World Dev. 2017, 96, 359–374. [Google Scholar] [CrossRef]
- Wunder, S.; Borner, J.; Ezzine-de-Blas, D.; Feder, S.; Pagiola, S. Payments for environmental services: Past performance and pending potentials. Annu. Rev. Resour. Econ. 2020, 12. [Google Scholar] [CrossRef]
- Wainwright, W.; Drucker, A.G.; Maxted, N.; Brehm, J.M.; Ng’uni, D.; Moran, D. Estimating in situ conservation costs of Zambian crop wild relatives under alternative conservation goals. Land Use Policy 2019, 81, 632–643. [Google Scholar] [CrossRef] [Green Version]
- Drucker, A.G.; Ramirez, M. Payments for agrobiodiversity conservation services: An overview of Latin American experiences, lessons learned and upscaling challenges. Land Use Policy 2020, 99, 104810. [Google Scholar] [CrossRef]
- Louafi, S.; Bazile, D.; Noyer, J.L. Conserving and cultivating agricultural genetic diversity: Transcending established divides. In Cultivating Biodiversity to Transform Agriculture; Etienne, H., Ed.; Springer [Allemagne]: Berlin/Heidelberg, Germany, 2013; pp. 181–230. [Google Scholar]
- Zhang, W.; Ricketts, T.H.; Kremen, C.; Carney, K.; Swinton, S.M. Ecosystem services and dis-services to agriculture. Ecol. Econ. 2007, 64, 253–260. [Google Scholar] [CrossRef] [Green Version]
- Brown, T.C.; Bergstrom, J.C.; Loomis, J.B. Defining, Valuing and Providing Ecosystem Goods and Services. Nat. Resour. J. 2007, 47, 329–376. [Google Scholar]
- Millennium Ecosystem Assessment (MEA) Ecosystems and Human Well-being: Biodiversity Synthesis; Island Press: Washington DC, USA, 2005.
- TEEB. The Economics of Ecosystems and Biodiversity Ecological and Economic Foundations; Kumar, P., Ed.; Earthscan: London, UK; Washington, DC, USA, 2010. [Google Scholar]
- Anikster, Y.; Feldman, M.; Horovitz, A. The Ammiad experiment. In Plant Genetic Conservation: The in Situ Approach; Maxted, N., Ford-Lloyd, B.V., Hawkes, J.G., Eds.; Chapman and Hall: London, UK, 1997; pp. 239–253. [Google Scholar]
- Takahashi, R.; Todo, Y. Coffee Certification and Forest Quality: Evidence from a Wild Coffee Forest in Ethiopia. World Dev. 2017, 92, 158–166. [Google Scholar] [CrossRef]
- Rawal, K.M. Natural hybridization among wild, weedy and cultivated Vigna unguiculata (L.) Walp. Euphytica 1975, 24, 699–707. [Google Scholar] [CrossRef]
- Tatum, L.A. The Southern Corn Leaf Blight Epidemic. Science 1971, 19, 1113–1116. [Google Scholar] [CrossRef]
- Fraser, E.D.G. Social Vulnerability and Ecological Fragility: Building Bridges between Social and Natural Sciences using the Irish Potato Famine as a Case Study. Conserv. Ecol. 2003, 7, 9. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.J.; Lee, H.R.; Jo, K.R.; Mortazavian, S.M.; Huigen, D.J.; Evenhuis, B.; Kessel, G.; Visser, R.G.; Jacobsen, E.; Vossen, J.H. Broad spectrum late blight resistance in potato differential set plants MaR8 and MaR9 is conferred by multiple stacked R genes. Theor. Appl. Genet. 2012, 124, 923–935. [Google Scholar] [CrossRef] [Green Version]
- Seiler, G.J.; Qi, L.L.; Marek, L.F. Utilization of sunflower crop wild relatives for cultivated sunflower improvement. Crop Sci. 2017, 57, 1083–1101. [Google Scholar] [CrossRef] [Green Version]
- International Treaty on Plant Genetic Resources for Food and Agriculture. Available online: http://www.fao.org/plant-treaty/en (accessed on 29 September 2020).
- The Nagoya Protocol on Access and Benefit-Sharing. Available online: https://www.cbd.int/abs (accessed on 29 September 2020).
- Nawaz, M.A.; Lin, X.; Chan, T.; Ham, J.; Shin, T.; Ercisli, S.; Golokhvast, K.S.; Lam, H.; Chung, G. Korean Wild Soybeans (Glycine soja Sieb & Zucc.): Geographic Distribution and Germplasm Conservation. Agronomy 2020, 10, 214. [Google Scholar]
- Del Rio, A.H.; Bamberg, J.B.; Huaman, Z.; Salas, A.; Vega, S.E. Assessing changes in the genetic diversity of potato gene banks. 2. In situ vs ex situ. Theor. Appl. Genet. 1997, 95, 199–204. [Google Scholar] [CrossRef]
- Greene, S.L.; Kisha, T.J.; Yu, L.-X.; Parra-Quijano, M. Conserving Plants in Gene Banks and Nature: Investigating Complementarity with Trifolium thompsonii Morton. PLoS ONE 2014, 9, e105145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thompson, J.N.; Burdon, J.J. Gene-for-gene coevolution between plants and parasites. Nature 1992, 360, 121–125. [Google Scholar] [CrossRef]
- Nevo, E.; Fu, Y.B.; Pavlicek, T.; Khalifa, S.; Tavasi, M.; Beiles, A. Evolution of wild cereals during 28 years of global warming in Israel. Proc.Natl.Acad.Sci.USA 2012, 109, 2412–2415. [Google Scholar] [CrossRef] [Green Version]
- Khoury, C.K.; Carver, D.; Kates, H.R.; Achicanoy, H.A.; van Zonneveld, M.; Thomas, E.; Heinitz, C.; Jarret, R.; Labate, J.A.; Reitsma, K.; et al. Distributions, conservation status, and abiotic stress tolerance potential of wild cucurbits (Cucurbita L.). Plants People Planet 2019, 2, 269–283. [Google Scholar] [CrossRef] [Green Version]
- Tyack, N.; Dempewolf, H. The economics of crop wild relatives under climate change. In Crop Wild Relatives and Climate Change; Redden, R., Yadav, S.S., Maxted, N., Dulloo, M.E., Guarino, L., Smith, P., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2015; pp. 281–291. [Google Scholar] [CrossRef]
- Castañeda-Álvarez, N.P.; Khoury, C.K.; Achicanoy, H.A.; Bernau, V.; Dempewolf, H.; Eastwood, R.J.; Guarino, L.; Harker, R.H.; Jarvis, A.; Maxted, N.; et al. Global conservation priorities for crop wild relatives. Nat Plants. 2016, 2, 16022. [Google Scholar] [CrossRef]
- Wunder, S. Payments for Environmental Services: Some Nuts and Bolts; CIFOR Occasional Paper No. 42; Center for International Forestry Research: Jakarta, Indonesia, 2005. [Google Scholar]
- Narloch, U.; Drucker, A.G.; Pascual, U. Payments for agrobiodiversity conservation services for sustained on-farm utilization of plant and animal genetic resources. Ecol. Econ. 2011, 70, 1837–1845. [Google Scholar] [CrossRef]
- Dempewolf, H.; Eastwood, R.J.; Guarino, L.; Khoury, C.K.; Müller, J.V.; Toll, J. Adapting agriculture to climate change: A global initiative to collect, conserve and use crop wild relatives. Agroecol. Sustain. Food Syst. 2014, 38, 369–377. [Google Scholar] [CrossRef] [Green Version]
- Bodansky, D. The Copenhagen Climate Change Conference: A Postmortem. Am. J. Int. Law 2010, 104, 230–240. [Google Scholar] [CrossRef] [Green Version]
- Roberts, L. Chemical prospecting: Hope for vanishing ecosystems? Science 1992, 256, 1142–1143. [Google Scholar] [CrossRef]
- Elkington, J. Towards the Sustainable Corporation: Win-Win-Win Business Strategies for Sustainable Development. Calif. Manag. Rev. 1994, 36, 90–100. [Google Scholar] [CrossRef]
- McDaniel, S.W.; Rylander, D.H. Strategic Green Marketing. J. Consum. Mark. 1993, 10, 4–10. [Google Scholar] [CrossRef]
- Houdet, J.; Trommetter, M.; Weber, J. Understanding changes in business strategies regarding biodiversity and ecosystem services. Ecol. Econ. 2012, 73, 37–46. [Google Scholar] [CrossRef]
- Raudsepp-Hearne, C.; Peterson, G.D.; Bennett, E.M. Ecosystem service bundles for analyzing tradeoffs in diverse landscapes. PNAS 2010, 107, 5242–5247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hasund, K.P. Indicator-based agri-environmental payments: A payment-by- result model for public goods with a Swedish application. Land Use Policy 2012, 30, 223–233. [Google Scholar] [CrossRef]
- Batisse, M. Developing and focusing the biosphere reserve concept. Nat. Resour. 1986, 22, 1–10. [Google Scholar]
- Cox, G.W. Conservation Ecology; W.C. Brown: Dubuque, IA, USA, 1993. [Google Scholar]
- Laguna, E. The plant micro-reserve initiative in the Valencian Community (Spain) and its use to conserve populations of crop wild relatives. Crop Wild Relat. 2004, 2, 10–13. [Google Scholar]
- Weitzman, M.L. The Noah’s ark problem. Econometrica 1998, 66, 1279–1298. [Google Scholar] [CrossRef]
- Metrick, A.; Weitzman, M.L. Conflicts and choices in biodiversity preservation. J. Econ. Perspect. 1998, 12, 21–34. [Google Scholar] [CrossRef] [Green Version]
- Crop Wild Relatives Global Atlas. Available online: www.cwrdiversity.org/distribution-map (accessed on 29 September 2020).
- Ramirez-Villegas, J.; Khoury, C.; Jarvis, A.; Debouck, D.G.; Guarino, L. A Gap Analysis Methodology for Collecting Crop Genepools: A Case Study with Phaseolus Beans. PLoS ONE 2010, 5, e13497. [Google Scholar] [CrossRef] [Green Version]
- Khoury, C.K.; Amariles, D.; Soto, J.S.; Diaz, M.V.; Sotelo, S.; Sosa, C.C.; Ramírez-Villegas, J.; Achicanoy, H.A.; Velásquez-Tibatá, J.; Guarino, L.; et al. Comprehensiveness of conservation of useful wild plants: An operational indicator for biodiversity and sustainable development targets. Ecol. Indic. 2019, 98, 420–429. [Google Scholar] [CrossRef]
- Miller, R.E.; Khoury, C.K. The Gene Pool Concept Applied to Crop Wild Relatives: An Evolutionary Perspective. In North American Crop Wild Relatives: Volume 1: Conservation Strategies; Greene, S.L., Williams, K.A., Khoury, C.K., Kantar, M.B., Marek, L.F., Eds.; Springer International Publishing AG: Switzerland, 2018; pp. 167–188. [Google Scholar] [CrossRef]
- FAO. Payments for Ecosystem Services and Food Security; FAo: Rome, Italy, 2011. [Google Scholar]
- Lira, R.; Tellez, O.; Davila, P. The effects of climate change on the geographic distribution of Mexican wild relatives of domesticated Cucurbitaceae. Genet. Resour. Crop Evol. 2008, 56, 691–703. [Google Scholar] [CrossRef]
- Pascual, U.; Muradian, R.; Rodríguez, L.C.; Duraiappah, A. Exploring the links between equity and efficiency in payments for environmental services: A conceptual approach. Ecol. Econ. 2010, 69, 1237–1244. [Google Scholar] [CrossRef]
- Fagandini Ruiz, F.; Bazile, D.; Drucker, A.G.; Tapia, M.; Chura, E. Geographical distribution of quinoa crop wild relatives in the Peruvian Andes: A participatory mapping initiative. Environ. Dev. Sustain. 2020, 1–22. [Google Scholar] [CrossRef]
- Argumedo, A. Collective Trademarks and Biocultural Heritage—Towards New Indications of Distinction for Indigenous Peoples in the Potato Park, Peru; International Institute for Environment and Development: London, UK, 2013. [Google Scholar]
- Louette, D.; Smale, M. Genetic Diversity and Maize Seed Management in a Traditional Mexican Community: Implications for In Situ Conservation of Maize; NRG Paper 96-03; CIMMYT: Mexico, D.F., Mexico, 1996. [Google Scholar]
- Benz, B.F.; Santana, F.; Piñeda, R.; Cevallos, J.; Robles, L.; De Niz, D. Characterization of mestizo plant use in the Sierra de Manantlán, Jalisco-Colima, Mexico. J. Ethnobiol. 1994, 14, 23–41. [Google Scholar]
Ecosystem Service | Examples |
---|---|
Supporting service | The conservation of CWR populations maintains genetic diversity and allows for the continuing evolution of the gene pool as a resource for future crop improvement, providing an important supporting service to help meet future demand for improved crop varieties and resilient agricultural systems [32]. |
Regulating services Provisioning services Cultural services | CWR can regulate certain ecosystem processes such as pest and disease control, pollination efficiency, nutrient cycling, decomposition, erosion control and carbon sequestration [27]. CWR provide a provisioning service of genetic resources when CWR germplasm is collected from wild populations and used by plant breeders to develop improved varieties. In addition, some CWR are harvested and directly used for food, spice, medicine, ceremony or other purposes [28]. CWR are a part of the world’s natural and cultural heritage with potential for ecotourism (e.g., wild coffee forests in Ethiopia) [33]. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tyack, N.; Dempewolf, H.; Khoury, C.K. The Potential of Payment for Ecosystem Services for Crop Wild Relative Conservation. Plants 2020, 9, 1305. https://doi.org/10.3390/plants9101305
Tyack N, Dempewolf H, Khoury CK. The Potential of Payment for Ecosystem Services for Crop Wild Relative Conservation. Plants. 2020; 9(10):1305. https://doi.org/10.3390/plants9101305
Chicago/Turabian StyleTyack, Nicholas, Hannes Dempewolf, and Colin K. Khoury. 2020. "The Potential of Payment for Ecosystem Services for Crop Wild Relative Conservation" Plants 9, no. 10: 1305. https://doi.org/10.3390/plants9101305
APA StyleTyack, N., Dempewolf, H., & Khoury, C. K. (2020). The Potential of Payment for Ecosystem Services for Crop Wild Relative Conservation. Plants, 9(10), 1305. https://doi.org/10.3390/plants9101305