Effect of Wheat Straw as a Cover Crop on the Chlorophyll, Seed, and Oilseed Yield of Trigonella foeunm graecum L under Water Deficiency and Weed Competition
Abstract
:1. Introduction
2. Results
2.1. Weed Characterization
2.2. Leaf Chlorophyll Content
3. Discussion
4. Materials and Methods
4.1. Treatment and Experiment Design
4.2. Field Preparation
4.3. Irrigation-Regime Treatment
4.4. Weed Characterization
4.4.1. Weed Density (Plant m−2)
4.4.2. Weed Biomass (g·m−2)
4.5. Leaf Chlorophyll Content and Yield Characterization
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Shapiro, K.; Gong, W.C. Natural products used for diabetes. J. Am. Pharm. Assoc. 2002, 42, 217–226. [Google Scholar] [CrossRef] [PubMed]
- Makai, S.; Balatincz, J. Study of Seed Produce and Protein Content of Fenugreek (Trigonella foenum-graecum L.); Institute of Crop Sciences, Institute of Food Sciences Pannon, University of Agricultural Sciences: Mosonmagyaróvár, Hungary, 1999. [Google Scholar]
- Chatterjee, S.; Variyar, P.S.; Sharma, A. Bioactive lipid constituents of fenugreek. Food Chem. 2010, 1, 349–353. [Google Scholar] [CrossRef]
- Mehrafarin, A.; Rezazdeh, S.H.; Naghdi, H.; Noormohammadi, C.H.; Zand, E.; Qaderi, A. A review on biology, ultivation and biotechnology of fenugreek (Trigonellafoenum-graccuml.) as a valuable medicina plant and multipurpose. J. Med. Plants 2011, 1, 6–24. [Google Scholar]
- Mullaicharam, A.R.; Deori, G.; Uma-Maheswari, R. Medicinal values of fenugreek—A review. Res. J. Pharm. Biol. Chem. Sci. 2013, 4, 1304–1313. [Google Scholar]
- Petropolos, G.A. Fenugreek—The Gennstrigonella; Tayloy and Francis: London, UK; New York, NY, USA, 2002; pp. 1–255. [Google Scholar]
- Soltani, A.; Waismoradi, A.; Heidari, M.; Rahmati, M. Effect of Water Deficit Stress and Nitrogen on Yield and Compatibility Metabolites on Tow Medium Maturity Corn Cultivars. Int. J. Agric. Crop Sci. 2013, 5, 737–740. [Google Scholar]
- Duham, W.U.S. Researchers Launch Big Prostate Cancer Study; Reuters: London, UK, 2001. [Google Scholar]
- Hsiao, T.C. Plant response to water stress. Ann. Rev. Plant Physiol. 1973, 24, 519–570. [Google Scholar] [CrossRef]
- Manoli, G.; Huang, C.-W.; Bonetti, S.; Domec, J.-C.; Marani, M.; Katul, G. Competition for light and water in a coupled soil-plant system. Adv. Water Resour. 2017, 108, 216–230. [Google Scholar] [CrossRef]
- Al-Ghobari, H.M.; Dewidar, A.Z. Integrating deficit irrigation into surface and subsurface drip irrigation as a strategy to save water in arid regions. Agric. Water Manag. 2018, 209, 55–61. [Google Scholar] [CrossRef]
- Dovrat, G.; Meron, E.; Shachak, M.; Golodets, C.; Osem, Y. Plant size is related to biomass partitioning and stress resistance in water-limited annual plant communities. J. Arid Environ. 2019, 165, 1–9. [Google Scholar] [CrossRef]
- Laurent, L.; Mårell, A.; Korboulewsky, N.; Saïd, S.; Balandier, P. How does disturbance affect the intensity and importance of plant competition along resource gradients? For. Ecol. Manag. 2017, 391, 239–245. [Google Scholar] [CrossRef]
- Wang, X.; Zhan, G. Vegetation pattern formation in seminal systems due to internal competition reaction between plants. J. Theor. Biol. 2018, 458, 10–14. [Google Scholar] [CrossRef] [PubMed]
- Ahari, D.S.; Kashi, A.K.; Hassandokht, M.R.; Amri, A.; Alizadeh, K. Assessment of drought tolerance in Iranian fenugreek landraces. J. Food Agric. Environ. 2009, 7, 414–419. [Google Scholar]
- Hussein, M.M.; Safinaz, S.Z. Influence of water stress on photosynthetic pigments of some Fenugreek Varieties. J. Appl. Sci. Res. 2013, 9, 5238–5245. [Google Scholar]
- Blum, A. Drought resistance, water use efficiency and yield potential–Are they compatible, dissonant, or mutually exclusive? Aust. J. Agric. Res. 2005, 56, 1159–1168. [Google Scholar] [CrossRef]
- Lahmod, N.R.; Eshkandi, O.H.; Al-Eqaili, S.N. Response of Maize to Skip Irrigation and Some of Growth Regulators and Sunflower Extract. Int. J. Curr. Microbiol. App. Sci. 2016, 5, 249–260. [Google Scholar] [CrossRef]
- Grebliunas, B.D.; Armstrong, S.D.; Perry, W.L. Changes in Water-Extractable Organic Carbon with Cover Crop Planting under Continuous Corn Silage Production. Air Soil Water Res. 2016, 9, ASWR.S30708. [Google Scholar]
- Alqaisy QF, H.; Lahmod, N.R.; Jasim, A.H. Role of Wheat Crop Residue and Tillage Systems on Maize Growth Under Water Stress and Weed Competition. Plant Arch. 2018, 18, 2585–2592. [Google Scholar]
- Chalker-Scott, L. Impact of mulches on landscape plants and the environment—A review. J. Environ. Hortic. 2007, 25, 239–249. [Google Scholar]
- Hobbs, P.R.; Ken, S.; Raj, G. The role of conservation agriculture in sustainable agriculture. Philos. Trans. R. Soc. B 2008, 363, 543–555. [Google Scholar] [CrossRef]
- Novara, A.; Pulido, M.; Rodrigo-Comino, J.; Prima, S.D.; Smith, P.; Gristina, L.; Gimenez-Morera, A.; Terol, E.; Salesa, D.; Keesstra, S. Long-term organic farming on a citrus plantation results in soil organic carbon recovery. Cuadernos Investigación Geográfica 2019, 45, 271–286. [Google Scholar] [CrossRef]
- Mahmood, A.; Ihsan, M.Z.; Khaliq, A.; Hussain, S.; Cheema, Z.A.; Naeem, M.; Daur, I.; Hussain, H.A.; Alghabari, F. Crop Residues Mulch as Organic Weed Management Strategy in Maize. Clean Soil Air Water 2015, 43, 317–324. [Google Scholar] [CrossRef]
- Al-Eqaili, S.N.; Lahmod, N.R.; Eshkandi, O.H. Weed Management in Sesame Field (Sesamum indicum L) Using Wheat Straw and Tillage or no Tillage Systems. Am. J. Agric. Biol. Sci. 2017, 12, 100–103. [Google Scholar] [CrossRef]
- Rodrigo-Comino, J.; Martínez-hernández, C.; Iserloh, T.; Cerdà, A. Contrasted Impact of Land Abandonment on Soil Erosion in Mediterranean Agriculture Fields. Pedosphere 2018, 28, 617–631. [Google Scholar] [CrossRef]
- Rodrigo-Comino, J.; Giménez-Morera, A.; Panagos, P.; Pourghasemi, H.R.; Pulido, M.; Cerdà, A. The potential of straw mulch as a nature-based solution for soil erosion in olive plantation treated with glyphosate: A biophysical and socioeconomic assessment. Land Degrad. Dev. 2019. [Google Scholar] [CrossRef]
- Roth, C.M.; James, P.S.; Gary, M.P. Allelopathy of sorghum on wheat under several tillage systems. Agron. J. 2000, 92, 855–860. [Google Scholar] [CrossRef]
- Subedi, K.D.; Ma, B.L. Nitrogen uptake and partitioning in stay—Green and leaf maize hybrids. Crop Sci. 2005, 45, 746–747. [Google Scholar] [CrossRef]
- AL-Grbawi, D.K.K.; Lahmod, N.R.; ALmusawi, A.H.A.A.; Lamara, S.M.H.A.; Lazawi, A.M.A.A. The role of soil mulching and tillage system on yield of broad bean under water stress condition and weed competition. Res. Iraqi J. Agric. 2017, 22, 235–248. [Google Scholar]
- Narwal, S.S.; Sarmah, M.K.; Nandal, D.P. Allelopathic effects of wheat residues on growth and yield of fodder crops. Allelopathy 1997, 4, 111–120. [Google Scholar]
- Lahmod, N.R. Allelopathic Effects of Sorghum (Sorghum bicolor L.) Moench on Companion Weeds and Subsequence Crop. Ph.D. Thesis, Field Crop Sciences College of Agricultural, University of Baghdad, Baghdad, Iraq, 2012. [Google Scholar]
- Rice, E.L. Allelopathy, 2nd ed.; Academic Press: Orlando, FL, USA, 1984; p. 424. [Google Scholar]
- Alsaadawi, I.S.; Dayan, F.E. Potentials and prospects of sorghum allelopathy in agroecosystems. Allelopath. J. 2009, 24, 255–270. [Google Scholar]
- Khaliq, A.; Matloob, A.; Aslam, F.; Bismillah, K.M. Influence of wheat straw and rhizosphere on seed germination, early seedling growth and bio-chemical attributes of Trianthema portulacastrum. Planta Daninha 2011, 29, 523–533. [Google Scholar] [CrossRef]
- Albehadili, A.A.; Alsaadawi, I.S.; Shaty, R.K. Allelopathic Effect of Wheat Residues on Mung bean and Companion Weeds. Iraq J. Agric. 2016, 21. [Google Scholar]
- Alsaadawi, I.S.; Al-Ekeelie, M.H.S.; Al-Hamzawi, M.K. Differential allelopathic potential of grain sorghum genotypes to weeds. Allelopath. J. 2007, 19, 153–160. [Google Scholar]
- Alsaadawi, I.S.; Khaliq, A.; Al-Temimi, A.O.; Matloob, A. Integration of sunflower (Helianthus annuus L.) residues with a pre-plant herbicide enhances weed suppression in broad bean (Vicia faba L.) fields. J. Planta Daninha 2011, 29, 849–859. [Google Scholar] [CrossRef]
- Lahmod, N.R.; Alsaadawi, I.S. Weed control in wheat using sorghum residues and less herbicide. Allelopath. J. 2014, 34, 277–286. [Google Scholar]
- Albehadili, A.A.; Alsaadawi, I.S.; Shaty, R.K. Allelopathic Effect of Root Exudates of Wheat Cultivars on Companion Weeds. Iraq J. Agric. 2016, 21. [Google Scholar]
- Janzen, H.H.; Kucey, R.M. C, N, and S mineralization of crop residues as influenced by crop species and nutrient regime. Plant Soil 1988, 106, 35–41. [Google Scholar] [CrossRef]
- Shrestha, R.; Turner, N.; Siddique, K.; Turner, D.; Speijers, J. A Water Deficit During Pod Development in Lentils Reduces Flower and Pod Numbers but Not Seed Size. Crop Pasture Sci. 2006, 57, 427–438. [Google Scholar] [CrossRef]
- Alsaadawi, I.S.; Khaliq, A.; Lahmod, N.R.; Matloob, A. Weed management in broad bean (Vicia faba L.) through allelopathic Sorghum bicolor (L.) Moench residues and reduced rate of a pre-plant herbicide. Allelopath. J. 2013, 32, 203–212. [Google Scholar]
- Stagnari, F.; Galieni, A.; Speca, S.; Cafiero, G.; Pisante, M. Effects of Straw Mulch on Growth and Yield of Durum Wheat during Transition to Conservation Agriculture in Mediterranean Environment. Field Crop Res. 2014, 167, 51–63. [Google Scholar] [CrossRef]
- Abbas, H. Impact of Overhead Irrigation on Nitrogen Dynamics and Marketable Yield of Potato. Ph.D. Thesis, Department of Biosystems Engineering University of Manitoba, Winnipeg, Canada, 2015; p. 121. [Google Scholar]
- Tourian, N.; Sinaki, J.M.; Hasani, M.; Madani, H. Changes in photosynthetic pigments concentration in wheat grass (Agropyron repens) cultivars response to drought stress and chitosan application. Intr. J. Plant Prod. 2013, 4, 1084–1091. [Google Scholar]
- Dayan, F.E. Factors modulating the levels of the allelochemical sorgoleone in Sorg hum bicolor. Planta 2006, 224, 339–346. [Google Scholar] [CrossRef] [PubMed]
- Kamara, A.; Akobundu, I.; Chikoye, D.; Jutzi, S. Selective Control of Weeds in an Arable Crop by Mulches from Some Multipurpose Trees in Southwestern Nigeria. Agrofor. Syst. 2000, 50, 17–26. [Google Scholar] [CrossRef]
- Khaliq, A.; Hussain, S.; Matloob, A.; Tanveer, A.; Aslam, F. Swine Cress (Cronopus didymus L. Sm.) Residues Inhibit Rice Emergence and Early Seedling Growth, Phillips. Agric. Sci. 2014, 96, 419–425. [Google Scholar]
- Valerio, M.; Lovelli, S.; Perniola, M.; Tommaso, T.D.; Ziska, L. The role of water availability on weed crop interactions in processing tomato for southern Italy. Acta Agric. Scand. Sect. B Soil Plant Sci. 2013, 63, 62–68. [Google Scholar] [CrossRef]
- Mahnna, B.; Seglar, B. Pioneer Management Information. A management and utilization for drought –stressed crops. J. Sci. Agric. 2002, 55, 56–62. [Google Scholar]
- Marino, R.; Gianfranceschi, L.; Frova, C.; Gorla, M.S. Gene expression profiling in response to water stress in maize developing kernels by DNA micro array. In Proceedings of the XL VIII Italian Society of Agriculture Genetics-SIFV-SIGA, Lecce, Italy, 15–18 September 2004. [Google Scholar]
- Yilmaz, E.; Akcay, S.; Gurbuz, T.; Dagdelen, N.; Sezgin, F. Effect of different water stress on the yield and yield components of second crop corn semiarid climaten. J. Food. Agric. Environ. 2010, 8, 415–421. [Google Scholar]
- Khaliq, A.; Matloob, A.; Hussain, A.; Hussain, S.; Aslam, F.; Zamir, S.I.; Chattha, M.U. Wheat Residue Management Options Affect Productivity, Weed Growth and Soil Properties in Direct-Seeded Fine Aromatic Rice. Clean Soil Air Water 2015, 43, 1259–1265. [Google Scholar] [CrossRef]
- Wagner, H.; Bladt, S.; Zgainski, E.M. Plant Drug Analysis: A thin Layer Chromatograply Atlas; Springer: Berlin/Heidelberg, Germany, 1984; pp. 51–54. [Google Scholar]
- Kleinwächter, M.; Selmar, D. New insights explain that drought stress enhances the quality of spice and medicinal plants: Potential applications. Agron. Sustain. Dev. 2015, 35, 121–131. [Google Scholar] [CrossRef]
- Delatorre-herrera, J.; Delfino, I.; Salinas, C.; Silva, H.; Cardemil, L. Irrigation restriction 513 effects on water use efficiency and osmotic adjustment in Aloe Vera plants (Aloe 514) barbadensis Miller). Agric. Water Manag. 2010, 97, 1564–1570. [Google Scholar] [CrossRef]
- Ramakrishna, A.; Ravishankar, G.A. Influence of abiotic stress signals on secondary, 609 metabolites in plants. Plant Signal Behav. 2011, 6, 1720–1731. [Google Scholar] [PubMed]
- Tattini, M.; Galardi, C.; Pinelli, P.; Massai, R.; Remorini, D.; Agati, G. Differential accumulation of flavonoids and hydroxycinnamates in leaves of Ligustrum vulgare under excess light and drought stress. New Phytol. 2004, 163, 547–561. [Google Scholar] [CrossRef]
- Moreira, L.R.S.; Filho, E.X.F. An overview of mannan structure and mannan-degrading enzyme systems. Appl. Microbiol. Biotechnol. 2008, 79, 165–178. [Google Scholar] [CrossRef] [PubMed]
- Jasim, A.H.; Ali, A.H.; Lilo, S.A. Effect of soil and foliar fertilizers and their interactions on some vegetative growth of fenugreek (Trigonella foeunm-graecum L.). J. Al-Qasim Green Univ. 2016, 0, 1–6. [Google Scholar]
- Saxton, K.E.; Rawls, W.J. Soil water characteristic estimates by texture and organic matter for hydrologic solutions. Soil Sci. Soc. Am. J. 2006, 70, 1569–1578. [Google Scholar] [CrossRef] [Green Version]
- AL-Dulaimi, G.A.; Younes, M.K. Assessment of Potable Water Quality in Baghdad City, Iraq. Air Soil Water Res. 2017, 10, 1178622117733441. [Google Scholar]
- Al-Mossawi, M.A.J. Biological Approach for Recycling Waste Water in Iraq. Air Soil Water Res. 2014, 7, ASWR.S17611. [Google Scholar]
- Kovda, V.A.; VandenBerg, C.; Hangun, R.M. Drainage and Salinity; FAO UNE Co.: London, UK, 1973. [Google Scholar]
- Jemison, J.; Williams, M. Potato-Grain Study Project. Report. Water qulity office. J. Main Coop. Ext. 2006, 78, 188–195. [Google Scholar]
Weed Density | Weed Biomass | |
---|---|---|
(plant·m−2) | (g·m−2) | |
Mulching | 13.82 b | 182.5 b |
Non-mulching | 23.57 a | 317.5 a |
Irrigation regime (after depleting %FC) | ||
40% DFC | 16.85 a | 254.0 a |
50% DFC | 17.8 a | 231.0 a |
60% DFC | 20.15 a | 254.5 a |
70% DFC | 20.00 a | 260.5 a |
C.V | 20.5 | 19.3 |
Means within a column followed by the same letter are not significantly different (p-value ≤ 0.05). |
Chlorophyll Content of Leaves (SPAD) | |||
---|---|---|---|
Time after Sowing (Day) | |||
60 days | 90 days | 140 days | |
Mulching | 23.55 b | 33.99 a | 58.17 a |
Non-mulching | 32.89 a | 35.32 a | 38.85 b |
Irrigation regime (after depleting %FC) | |||
40% DFC | 27.98 b | 35.62 a | 48.55 a |
50% DFC | 28.00 b | 35.88 a | 53.20 a |
60% DFC | 35.63 a | 32.61 a | 54.85 a |
70% DFC | 26.28 b | 34.50 a | 37.45 b |
C.V | 13.3 | 8.8 | 14.8 |
Means within a column followed by the same letter were not significantly different (p ≤ 0.05). |
Biological Yield | Seed Yield | Oil Yield | |
---|---|---|---|
(ton·ha−1) | (ton·ha−1) | (Kg·ha−1) | |
Mulching | 6.17 a | 1.25 a | 96.7 a |
Non-mulching | 5.04 b | 0.86 b | 67.5 b |
Irrigation regime (after depleting %FC) | |||
40% DFC | 5.36 b | 0.89 b | 70.7 bc |
50% DFC | 6.06 a | 1.17 a | 90.2 ab |
60% DFC | 5.88 ab | 1.39 a | 108.9 a |
70% DFC | 5.12 b | 0.76 b | 58.9 c |
C.V | 15.8 | 18.5 | 18.7 |
Means within a column followed by the same letter were not significantly different (p ≤ 0.05). |
Sand | Silt | Clay | Wilting Point | Field Capacity | Available Water | Saturation | Bulk Density | Hydraulic Conductivity |
---|---|---|---|---|---|---|---|---|
% | by volume | % | mg/m3 | cm/h | ||||
36 | 47 | 17 | 0.11 | 0.26 | 0.15 | 0.46 | 1.4 | 1.2 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raheem Lahmod, N.; Talib Alkooranee, J.; Gatea Alshammary, A.A.; Rodrigo-Comino, J. Effect of Wheat Straw as a Cover Crop on the Chlorophyll, Seed, and Oilseed Yield of Trigonella foeunm graecum L under Water Deficiency and Weed Competition. Plants 2019, 8, 503. https://doi.org/10.3390/plants8110503
Raheem Lahmod N, Talib Alkooranee J, Gatea Alshammary AA, Rodrigo-Comino J. Effect of Wheat Straw as a Cover Crop on the Chlorophyll, Seed, and Oilseed Yield of Trigonella foeunm graecum L under Water Deficiency and Weed Competition. Plants. 2019; 8(11):503. https://doi.org/10.3390/plants8110503
Chicago/Turabian StyleRaheem Lahmod, Nabil, Jawadayn Talib Alkooranee, Ahmed Abed Gatea Alshammary, and Jesús Rodrigo-Comino. 2019. "Effect of Wheat Straw as a Cover Crop on the Chlorophyll, Seed, and Oilseed Yield of Trigonella foeunm graecum L under Water Deficiency and Weed Competition" Plants 8, no. 11: 503. https://doi.org/10.3390/plants8110503
APA StyleRaheem Lahmod, N., Talib Alkooranee, J., Gatea Alshammary, A. A., & Rodrigo-Comino, J. (2019). Effect of Wheat Straw as a Cover Crop on the Chlorophyll, Seed, and Oilseed Yield of Trigonella foeunm graecum L under Water Deficiency and Weed Competition. Plants, 8(11), 503. https://doi.org/10.3390/plants8110503