Effect of Wheat Straw as a Cover Crop on the Chlorophyll, Seed, and Oilseed Yield of Trigonella foeunm graecum L under Water Deficiency and Weed Competition
Abstract
1. Introduction
2. Results
2.1. Weed Characterization
2.2. Leaf Chlorophyll Content
3. Discussion
4. Materials and Methods
4.1. Treatment and Experiment Design
4.2. Field Preparation
4.3. Irrigation-Regime Treatment
4.4. Weed Characterization
4.4.1. Weed Density (Plant m−2)
4.4.2. Weed Biomass (g·m−2)
4.5. Leaf Chlorophyll Content and Yield Characterization
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Shapiro, K.; Gong, W.C. Natural products used for diabetes. J. Am. Pharm. Assoc. 2002, 42, 217–226. [Google Scholar] [CrossRef] [PubMed]
- Makai, S.; Balatincz, J. Study of Seed Produce and Protein Content of Fenugreek (Trigonella foenum-graecum L.); Institute of Crop Sciences, Institute of Food Sciences Pannon, University of Agricultural Sciences: Mosonmagyaróvár, Hungary, 1999. [Google Scholar]
- Chatterjee, S.; Variyar, P.S.; Sharma, A. Bioactive lipid constituents of fenugreek. Food Chem. 2010, 1, 349–353. [Google Scholar] [CrossRef]
- Mehrafarin, A.; Rezazdeh, S.H.; Naghdi, H.; Noormohammadi, C.H.; Zand, E.; Qaderi, A. A review on biology, ultivation and biotechnology of fenugreek (Trigonellafoenum-graccuml.) as a valuable medicina plant and multipurpose. J. Med. Plants 2011, 1, 6–24. [Google Scholar]
- Mullaicharam, A.R.; Deori, G.; Uma-Maheswari, R. Medicinal values of fenugreek—A review. Res. J. Pharm. Biol. Chem. Sci. 2013, 4, 1304–1313. [Google Scholar]
- Petropolos, G.A. Fenugreek—The Gennstrigonella; Tayloy and Francis: London, UK; New York, NY, USA, 2002; pp. 1–255. [Google Scholar]
- Soltani, A.; Waismoradi, A.; Heidari, M.; Rahmati, M. Effect of Water Deficit Stress and Nitrogen on Yield and Compatibility Metabolites on Tow Medium Maturity Corn Cultivars. Int. J. Agric. Crop Sci. 2013, 5, 737–740. [Google Scholar]
- Duham, W.U.S. Researchers Launch Big Prostate Cancer Study; Reuters: London, UK, 2001. [Google Scholar]
- Hsiao, T.C. Plant response to water stress. Ann. Rev. Plant Physiol. 1973, 24, 519–570. [Google Scholar] [CrossRef]
- Manoli, G.; Huang, C.-W.; Bonetti, S.; Domec, J.-C.; Marani, M.; Katul, G. Competition for light and water in a coupled soil-plant system. Adv. Water Resour. 2017, 108, 216–230. [Google Scholar] [CrossRef]
- Al-Ghobari, H.M.; Dewidar, A.Z. Integrating deficit irrigation into surface and subsurface drip irrigation as a strategy to save water in arid regions. Agric. Water Manag. 2018, 209, 55–61. [Google Scholar] [CrossRef]
- Dovrat, G.; Meron, E.; Shachak, M.; Golodets, C.; Osem, Y. Plant size is related to biomass partitioning and stress resistance in water-limited annual plant communities. J. Arid Environ. 2019, 165, 1–9. [Google Scholar] [CrossRef]
- Laurent, L.; Mårell, A.; Korboulewsky, N.; Saïd, S.; Balandier, P. How does disturbance affect the intensity and importance of plant competition along resource gradients? For. Ecol. Manag. 2017, 391, 239–245. [Google Scholar] [CrossRef]
- Wang, X.; Zhan, G. Vegetation pattern formation in seminal systems due to internal competition reaction between plants. J. Theor. Biol. 2018, 458, 10–14. [Google Scholar] [CrossRef] [PubMed]
- Ahari, D.S.; Kashi, A.K.; Hassandokht, M.R.; Amri, A.; Alizadeh, K. Assessment of drought tolerance in Iranian fenugreek landraces. J. Food Agric. Environ. 2009, 7, 414–419. [Google Scholar]
- Hussein, M.M.; Safinaz, S.Z. Influence of water stress on photosynthetic pigments of some Fenugreek Varieties. J. Appl. Sci. Res. 2013, 9, 5238–5245. [Google Scholar]
- Blum, A. Drought resistance, water use efficiency and yield potential–Are they compatible, dissonant, or mutually exclusive? Aust. J. Agric. Res. 2005, 56, 1159–1168. [Google Scholar] [CrossRef]
- Lahmod, N.R.; Eshkandi, O.H.; Al-Eqaili, S.N. Response of Maize to Skip Irrigation and Some of Growth Regulators and Sunflower Extract. Int. J. Curr. Microbiol. App. Sci. 2016, 5, 249–260. [Google Scholar] [CrossRef][Green Version]
- Grebliunas, B.D.; Armstrong, S.D.; Perry, W.L. Changes in Water-Extractable Organic Carbon with Cover Crop Planting under Continuous Corn Silage Production. Air Soil Water Res. 2016, 9, ASWR.S30708. [Google Scholar]
- Alqaisy QF, H.; Lahmod, N.R.; Jasim, A.H. Role of Wheat Crop Residue and Tillage Systems on Maize Growth Under Water Stress and Weed Competition. Plant Arch. 2018, 18, 2585–2592. [Google Scholar]
- Chalker-Scott, L. Impact of mulches on landscape plants and the environment—A review. J. Environ. Hortic. 2007, 25, 239–249. [Google Scholar]
- Hobbs, P.R.; Ken, S.; Raj, G. The role of conservation agriculture in sustainable agriculture. Philos. Trans. R. Soc. B 2008, 363, 543–555. [Google Scholar] [CrossRef]
- Novara, A.; Pulido, M.; Rodrigo-Comino, J.; Prima, S.D.; Smith, P.; Gristina, L.; Gimenez-Morera, A.; Terol, E.; Salesa, D.; Keesstra, S. Long-term organic farming on a citrus plantation results in soil organic carbon recovery. Cuadernos Investigación Geográfica 2019, 45, 271–286. [Google Scholar] [CrossRef]
- Mahmood, A.; Ihsan, M.Z.; Khaliq, A.; Hussain, S.; Cheema, Z.A.; Naeem, M.; Daur, I.; Hussain, H.A.; Alghabari, F. Crop Residues Mulch as Organic Weed Management Strategy in Maize. Clean Soil Air Water 2015, 43, 317–324. [Google Scholar] [CrossRef]
- Al-Eqaili, S.N.; Lahmod, N.R.; Eshkandi, O.H. Weed Management in Sesame Field (Sesamum indicum L) Using Wheat Straw and Tillage or no Tillage Systems. Am. J. Agric. Biol. Sci. 2017, 12, 100–103. [Google Scholar] [CrossRef][Green Version]
- Rodrigo-Comino, J.; Martínez-hernández, C.; Iserloh, T.; Cerdà, A. Contrasted Impact of Land Abandonment on Soil Erosion in Mediterranean Agriculture Fields. Pedosphere 2018, 28, 617–631. [Google Scholar] [CrossRef]
- Rodrigo-Comino, J.; Giménez-Morera, A.; Panagos, P.; Pourghasemi, H.R.; Pulido, M.; Cerdà, A. The potential of straw mulch as a nature-based solution for soil erosion in olive plantation treated with glyphosate: A biophysical and socioeconomic assessment. Land Degrad. Dev. 2019. [Google Scholar] [CrossRef]
- Roth, C.M.; James, P.S.; Gary, M.P. Allelopathy of sorghum on wheat under several tillage systems. Agron. J. 2000, 92, 855–860. [Google Scholar] [CrossRef]
- Subedi, K.D.; Ma, B.L. Nitrogen uptake and partitioning in stay—Green and leaf maize hybrids. Crop Sci. 2005, 45, 746–747. [Google Scholar] [CrossRef]
- AL-Grbawi, D.K.K.; Lahmod, N.R.; ALmusawi, A.H.A.A.; Lamara, S.M.H.A.; Lazawi, A.M.A.A. The role of soil mulching and tillage system on yield of broad bean under water stress condition and weed competition. Res. Iraqi J. Agric. 2017, 22, 235–248. [Google Scholar]
- Narwal, S.S.; Sarmah, M.K.; Nandal, D.P. Allelopathic effects of wheat residues on growth and yield of fodder crops. Allelopathy 1997, 4, 111–120. [Google Scholar]
- Lahmod, N.R. Allelopathic Effects of Sorghum (Sorghum bicolor L.) Moench on Companion Weeds and Subsequence Crop. Ph.D. Thesis, Field Crop Sciences College of Agricultural, University of Baghdad, Baghdad, Iraq, 2012. [Google Scholar]
- Rice, E.L. Allelopathy, 2nd ed.; Academic Press: Orlando, FL, USA, 1984; p. 424. [Google Scholar]
- Alsaadawi, I.S.; Dayan, F.E. Potentials and prospects of sorghum allelopathy in agroecosystems. Allelopath. J. 2009, 24, 255–270. [Google Scholar]
- Khaliq, A.; Matloob, A.; Aslam, F.; Bismillah, K.M. Influence of wheat straw and rhizosphere on seed germination, early seedling growth and bio-chemical attributes of Trianthema portulacastrum. Planta Daninha 2011, 29, 523–533. [Google Scholar] [CrossRef]
- Albehadili, A.A.; Alsaadawi, I.S.; Shaty, R.K. Allelopathic Effect of Wheat Residues on Mung bean and Companion Weeds. Iraq J. Agric. 2016, 21. [Google Scholar]
- Alsaadawi, I.S.; Al-Ekeelie, M.H.S.; Al-Hamzawi, M.K. Differential allelopathic potential of grain sorghum genotypes to weeds. Allelopath. J. 2007, 19, 153–160. [Google Scholar]
- Alsaadawi, I.S.; Khaliq, A.; Al-Temimi, A.O.; Matloob, A. Integration of sunflower (Helianthus annuus L.) residues with a pre-plant herbicide enhances weed suppression in broad bean (Vicia faba L.) fields. J. Planta Daninha 2011, 29, 849–859. [Google Scholar] [CrossRef]
- Lahmod, N.R.; Alsaadawi, I.S. Weed control in wheat using sorghum residues and less herbicide. Allelopath. J. 2014, 34, 277–286. [Google Scholar]
- Albehadili, A.A.; Alsaadawi, I.S.; Shaty, R.K. Allelopathic Effect of Root Exudates of Wheat Cultivars on Companion Weeds. Iraq J. Agric. 2016, 21. [Google Scholar]
- Janzen, H.H.; Kucey, R.M. C, N, and S mineralization of crop residues as influenced by crop species and nutrient regime. Plant Soil 1988, 106, 35–41. [Google Scholar] [CrossRef]
- Shrestha, R.; Turner, N.; Siddique, K.; Turner, D.; Speijers, J. A Water Deficit During Pod Development in Lentils Reduces Flower and Pod Numbers but Not Seed Size. Crop Pasture Sci. 2006, 57, 427–438. [Google Scholar] [CrossRef]
- Alsaadawi, I.S.; Khaliq, A.; Lahmod, N.R.; Matloob, A. Weed management in broad bean (Vicia faba L.) through allelopathic Sorghum bicolor (L.) Moench residues and reduced rate of a pre-plant herbicide. Allelopath. J. 2013, 32, 203–212. [Google Scholar]
- Stagnari, F.; Galieni, A.; Speca, S.; Cafiero, G.; Pisante, M. Effects of Straw Mulch on Growth and Yield of Durum Wheat during Transition to Conservation Agriculture in Mediterranean Environment. Field Crop Res. 2014, 167, 51–63. [Google Scholar] [CrossRef]
- Abbas, H. Impact of Overhead Irrigation on Nitrogen Dynamics and Marketable Yield of Potato. Ph.D. Thesis, Department of Biosystems Engineering University of Manitoba, Winnipeg, Canada, 2015; p. 121. [Google Scholar]
- Tourian, N.; Sinaki, J.M.; Hasani, M.; Madani, H. Changes in photosynthetic pigments concentration in wheat grass (Agropyron repens) cultivars response to drought stress and chitosan application. Intr. J. Plant Prod. 2013, 4, 1084–1091. [Google Scholar]
- Dayan, F.E. Factors modulating the levels of the allelochemical sorgoleone in Sorg hum bicolor. Planta 2006, 224, 339–346. [Google Scholar] [CrossRef] [PubMed]
- Kamara, A.; Akobundu, I.; Chikoye, D.; Jutzi, S. Selective Control of Weeds in an Arable Crop by Mulches from Some Multipurpose Trees in Southwestern Nigeria. Agrofor. Syst. 2000, 50, 17–26. [Google Scholar] [CrossRef]
- Khaliq, A.; Hussain, S.; Matloob, A.; Tanveer, A.; Aslam, F. Swine Cress (Cronopus didymus L. Sm.) Residues Inhibit Rice Emergence and Early Seedling Growth, Phillips. Agric. Sci. 2014, 96, 419–425. [Google Scholar]
- Valerio, M.; Lovelli, S.; Perniola, M.; Tommaso, T.D.; Ziska, L. The role of water availability on weed crop interactions in processing tomato for southern Italy. Acta Agric. Scand. Sect. B Soil Plant Sci. 2013, 63, 62–68. [Google Scholar] [CrossRef]
- Mahnna, B.; Seglar, B. Pioneer Management Information. A management and utilization for drought –stressed crops. J. Sci. Agric. 2002, 55, 56–62. [Google Scholar]
- Marino, R.; Gianfranceschi, L.; Frova, C.; Gorla, M.S. Gene expression profiling in response to water stress in maize developing kernels by DNA micro array. In Proceedings of the XL VIII Italian Society of Agriculture Genetics-SIFV-SIGA, Lecce, Italy, 15–18 September 2004. [Google Scholar]
- Yilmaz, E.; Akcay, S.; Gurbuz, T.; Dagdelen, N.; Sezgin, F. Effect of different water stress on the yield and yield components of second crop corn semiarid climaten. J. Food. Agric. Environ. 2010, 8, 415–421. [Google Scholar]
- Khaliq, A.; Matloob, A.; Hussain, A.; Hussain, S.; Aslam, F.; Zamir, S.I.; Chattha, M.U. Wheat Residue Management Options Affect Productivity, Weed Growth and Soil Properties in Direct-Seeded Fine Aromatic Rice. Clean Soil Air Water 2015, 43, 1259–1265. [Google Scholar] [CrossRef]
- Wagner, H.; Bladt, S.; Zgainski, E.M. Plant Drug Analysis: A thin Layer Chromatograply Atlas; Springer: Berlin/Heidelberg, Germany, 1984; pp. 51–54. [Google Scholar]
- Kleinwächter, M.; Selmar, D. New insights explain that drought stress enhances the quality of spice and medicinal plants: Potential applications. Agron. Sustain. Dev. 2015, 35, 121–131. [Google Scholar] [CrossRef]
- Delatorre-herrera, J.; Delfino, I.; Salinas, C.; Silva, H.; Cardemil, L. Irrigation restriction 513 effects on water use efficiency and osmotic adjustment in Aloe Vera plants (Aloe 514) barbadensis Miller). Agric. Water Manag. 2010, 97, 1564–1570. [Google Scholar] [CrossRef]
- Ramakrishna, A.; Ravishankar, G.A. Influence of abiotic stress signals on secondary, 609 metabolites in plants. Plant Signal Behav. 2011, 6, 1720–1731. [Google Scholar] [PubMed]
- Tattini, M.; Galardi, C.; Pinelli, P.; Massai, R.; Remorini, D.; Agati, G. Differential accumulation of flavonoids and hydroxycinnamates in leaves of Ligustrum vulgare under excess light and drought stress. New Phytol. 2004, 163, 547–561. [Google Scholar] [CrossRef]
- Moreira, L.R.S.; Filho, E.X.F. An overview of mannan structure and mannan-degrading enzyme systems. Appl. Microbiol. Biotechnol. 2008, 79, 165–178. [Google Scholar] [CrossRef] [PubMed]
- Jasim, A.H.; Ali, A.H.; Lilo, S.A. Effect of soil and foliar fertilizers and their interactions on some vegetative growth of fenugreek (Trigonella foeunm-graecum L.). J. Al-Qasim Green Univ. 2016, 0, 1–6. [Google Scholar]
- Saxton, K.E.; Rawls, W.J. Soil water characteristic estimates by texture and organic matter for hydrologic solutions. Soil Sci. Soc. Am. J. 2006, 70, 1569–1578. [Google Scholar] [CrossRef]
- AL-Dulaimi, G.A.; Younes, M.K. Assessment of Potable Water Quality in Baghdad City, Iraq. Air Soil Water Res. 2017, 10, 1178622117733441. [Google Scholar]
- Al-Mossawi, M.A.J. Biological Approach for Recycling Waste Water in Iraq. Air Soil Water Res. 2014, 7, ASWR.S17611. [Google Scholar]
- Kovda, V.A.; VandenBerg, C.; Hangun, R.M. Drainage and Salinity; FAO UNE Co.: London, UK, 1973. [Google Scholar]
- Jemison, J.; Williams, M. Potato-Grain Study Project. Report. Water qulity office. J. Main Coop. Ext. 2006, 78, 188–195. [Google Scholar]
Weed Density | Weed Biomass | |
---|---|---|
(plant·m−2) | (g·m−2) | |
Mulching | 13.82 b | 182.5 b |
Non-mulching | 23.57 a | 317.5 a |
Irrigation regime (after depleting %FC) | ||
40% DFC | 16.85 a | 254.0 a |
50% DFC | 17.8 a | 231.0 a |
60% DFC | 20.15 a | 254.5 a |
70% DFC | 20.00 a | 260.5 a |
C.V | 20.5 | 19.3 |
Means within a column followed by the same letter are not significantly different (p-value ≤ 0.05). |
Chlorophyll Content of Leaves (SPAD) | |||
---|---|---|---|
Time after Sowing (Day) | |||
60 days | 90 days | 140 days | |
Mulching | 23.55 b | 33.99 a | 58.17 a |
Non-mulching | 32.89 a | 35.32 a | 38.85 b |
Irrigation regime (after depleting %FC) | |||
40% DFC | 27.98 b | 35.62 a | 48.55 a |
50% DFC | 28.00 b | 35.88 a | 53.20 a |
60% DFC | 35.63 a | 32.61 a | 54.85 a |
70% DFC | 26.28 b | 34.50 a | 37.45 b |
C.V | 13.3 | 8.8 | 14.8 |
Means within a column followed by the same letter were not significantly different (p ≤ 0.05). |
Biological Yield | Seed Yield | Oil Yield | |
---|---|---|---|
(ton·ha−1) | (ton·ha−1) | (Kg·ha−1) | |
Mulching | 6.17 a | 1.25 a | 96.7 a |
Non-mulching | 5.04 b | 0.86 b | 67.5 b |
Irrigation regime (after depleting %FC) | |||
40% DFC | 5.36 b | 0.89 b | 70.7 bc |
50% DFC | 6.06 a | 1.17 a | 90.2 ab |
60% DFC | 5.88 ab | 1.39 a | 108.9 a |
70% DFC | 5.12 b | 0.76 b | 58.9 c |
C.V | 15.8 | 18.5 | 18.7 |
Means within a column followed by the same letter were not significantly different (p ≤ 0.05). |
Sand | Silt | Clay | Wilting Point | Field Capacity | Available Water | Saturation | Bulk Density | Hydraulic Conductivity |
---|---|---|---|---|---|---|---|---|
% | by volume | % | mg/m3 | cm/h | ||||
36 | 47 | 17 | 0.11 | 0.26 | 0.15 | 0.46 | 1.4 | 1.2 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raheem Lahmod, N.; Talib Alkooranee, J.; Gatea Alshammary, A.A.; Rodrigo-Comino, J. Effect of Wheat Straw as a Cover Crop on the Chlorophyll, Seed, and Oilseed Yield of Trigonella foeunm graecum L under Water Deficiency and Weed Competition. Plants 2019, 8, 503. https://doi.org/10.3390/plants8110503
Raheem Lahmod N, Talib Alkooranee J, Gatea Alshammary AA, Rodrigo-Comino J. Effect of Wheat Straw as a Cover Crop on the Chlorophyll, Seed, and Oilseed Yield of Trigonella foeunm graecum L under Water Deficiency and Weed Competition. Plants. 2019; 8(11):503. https://doi.org/10.3390/plants8110503
Chicago/Turabian StyleRaheem Lahmod, Nabil, Jawadayn Talib Alkooranee, Ahmed Abed Gatea Alshammary, and Jesús Rodrigo-Comino. 2019. "Effect of Wheat Straw as a Cover Crop on the Chlorophyll, Seed, and Oilseed Yield of Trigonella foeunm graecum L under Water Deficiency and Weed Competition" Plants 8, no. 11: 503. https://doi.org/10.3390/plants8110503
APA StyleRaheem Lahmod, N., Talib Alkooranee, J., Gatea Alshammary, A. A., & Rodrigo-Comino, J. (2019). Effect of Wheat Straw as a Cover Crop on the Chlorophyll, Seed, and Oilseed Yield of Trigonella foeunm graecum L under Water Deficiency and Weed Competition. Plants, 8(11), 503. https://doi.org/10.3390/plants8110503