Next Article in Journal
Fruit Decay to Diseases: Can Induced Resistance and Priming Help?
Previous Article in Journal
Fast Regulation of Hormone Metabolism Contributes to Salt Tolerance in Rice (Oryza sativa spp. Japonica, L.) by Inducing Specific Morpho-Physiological Responses
Previous Article in Special Issue
Differential Mechanisms of Photosynthetic Acclimation to Light and Low Temperature in Arabidopsis and the Extremophile Eutrema salsugineum
Article Menu
Issue 4 (December) cover image

Export Article

Open AccessArticle
Plants 2018, 7(4), 76; https://doi.org/10.3390/plants7040076

The Impact of Heat Stress and Water Deficit on the Photosynthetic and Stomatal Physiology of Olive (Olea europaea L.)—A Case Study of the 2017 Heat Wave

1
Tree and Timber Institute, National Research Council of Italy (CNR-IVALSA), Via Madonna del Piano 10, 50019 Firenze, Italy
2
Department of Agrifood Production and Environmental Sciences (DiSPAA), University of Florence, Viale delle Idee 30, 50019 Firenze, Italy
3
Institute of Biometeorology, National Research Council of Italy (CNR-IBIMET), Via Giovanni Caproni 8, 50145 Firenze, Italy
*
Author to whom correspondence should be addressed.
Received: 14 August 2018 / Revised: 16 September 2018 / Accepted: 18 September 2018 / Published: 20 September 2018
Full-Text   |   PDF [1647 KB, uploaded 20 September 2018]   |  

Abstract

Heat waves are predicted to increase in frequency and duration in many regions as global temperatures rise. These transient increases in temperature above normal average values will have pronounced impacts upon the photosynthetic and stomatal physiology of plants. During the summer of 2017, much of the Mediterranean experienced a severe heat wave. Here, we report photosynthetic leaf gas exchange and chlorophyll fluorescence parameters of olive (Olea europaea cv. Leccino) grown under water deficit and full irrigation over the course of the heat wave as midday temperatures rose over 40 °C in Central Italy. Heat stress induced a decline in the photosynthetic capacity of the olives consistent with reduced ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) activity. Damage to photosystem II was more apparent in plants subject to water deficit. In contrast to previous studies, higher temperatures induced reductions in stomatal conductance. Heat stress adversely affected the carbon efficiency of olive. The selection of olive varieties with enhanced tolerance to heat stress and/or strategies to mitigate the impact of higher temperatures will become increasingly important in developing sustainable agriculture in the Mediterranean as global temperatures rise. View Full-Text
Keywords: heat stress; drought; water use efficiency; OJIP; stomatal conductance; Mediterranean agriculture heat stress; drought; water use efficiency; OJIP; stomatal conductance; Mediterranean agriculture
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).
SciFeed

Share & Cite This Article

MDPI and ACS Style

Haworth, M.; Marino, G.; Brunetti, C.; Killi, D.; De Carlo, A.; Centritto, M. The Impact of Heat Stress and Water Deficit on the Photosynthetic and Stomatal Physiology of Olive (Olea europaea L.)—A Case Study of the 2017 Heat Wave. Plants 2018, 7, 76.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Plants EISSN 2223-7747 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top