Influence of Nitrogen Availability on Growth of Two Transgenic Birch Species Carrying the Pine GS1a Gene
Abstract
:1. Introduction
2. Results
2.1. RT-PCR Analysis
2.2. Growth Response of Birch Plants to Nitrogen Availability
2.3. Pigment Levels in Leaves of Birch Plants
3. Discussion
4. Materials and Methods
4.1. Plant Material and Growth Conditions
4.2. RT-PCR Analysis
4.3. Leaf Pigment Analyses
4.4. Statistical Analysis
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Vitousek, P.M.; Aber, J.D.; Howarth, R.H.; Likens, G.E.; Matson, P.A.; Schindler, D.W.; Schlesinger, W.H.; Tilman, D.G. Human alteration of the global nitrogen cycle: Source and consequences. Ecol. Appl. 1997, 7, 737–750. [Google Scholar] [CrossRef]
- Cooke, J.E.K.; Martin, T.A.; Davis, J.M. Short-term physiological and developmental responses to nitrogen availability in hybrid poplar. New Phytol. 2005, 167, 41–52. [Google Scholar] [CrossRef] [PubMed]
- Hirel, B.; Tétu, T.; Lea, P.J.; Dubois, F. Improving nitrogen use efficiency in crops for sustainable agriculture. Sustainability 2011, 3, 1452–1485. [Google Scholar] [CrossRef]
- Cai, H.; Zhou, Y.; Xiao, J.; Li, X.; Zhang, Q.; Lian, X. Overexpressed glutamine synthetase gene modifies nitrogen metabolism and abiotic stress responses in rice. Plant Cell Rep. 2009, 28, 527–537. [Google Scholar] [CrossRef] [PubMed]
- Ireland, R.J.; Lea, P.J. The enzymes of glutamine; glutamate; asparagines; and aspartate metabolism. In Plant Amino Acids. Biochemistry and Biotechnology; Singh, B.K., Ed.; Marcel Dekker: New York, NY, USA, 1999; pp. 49–109. [Google Scholar]
- Gallardo, F.; Fu, J.M.; Canton, F.R.; Garcia-Gutierrez, A.; Canovas, F.M.; Kirby, E.G. Expression of a conifer glutamine synthetase gene in transgenic poplar. Planta 1999, 210, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Jing, Z.P.; Gallardo, F.; Pascual, M.B.; Sampalo, R.; Romero, J.; de Navarra, A.T.; Canovas, F.M. Improved growth in a field trial of transgenic hybrid poplar overexpressing glutamine synthetase. New Phytol. 2004, 164, 137–145. [Google Scholar] [CrossRef]
- Canovas, F.M.; Canton, F.R.; Gallardo, F.; García-Gutiérrez, A.; de Vicente, A. Accumulation of glutamine synthetase during early development of maritime pine (Pinus pinaster) seedlings. Planta 1991, 185, 372–378. [Google Scholar] [CrossRef] [PubMed]
- Ye, X.; Busov, V.; Zhao, N.; Meilan, R.; McDonnell, L.M.; Coleman, H.D.; Mansfield, S.D.; Chen, F.; Li, Y.; Cheng, Z.-M. Transgenic Populus trees for forest products, bioenergy, and functional genomics. Crit. Rev. Plant Sci. 2011, 30, 415–434. [Google Scholar] [CrossRef]
- Dash, M.; Yordanov, Y.S.; Georgieva, T.; Kumari, S.; Wei, H.; Busov, V. A network of genes associated with poplar root development in response to low nitrogen. Plant Signal. Behav. 2016, 11, e1214792. [Google Scholar] [CrossRef] [PubMed]
- Hynynen, J.; Vihera-Aarnio, A.; Velling, P.; Niemisto, P.; Brunner, A.; Hein, S. Silviculture of birch (Betula pendula Roth and Betula pubescens Ehrh.) in Northern Europe. Forestry 2010, 83, 103–119. [Google Scholar] [CrossRef]
- Lebedev, V.G.; Schestibratov, K.A.; Shadrina, T.E.; Bulatova, I.V.; Abramochkin, D.G.; Miroshnikov, A.I. Cotransformation of aspen and birch with three T-DNA regions from two different replicons in one Agrobacterium tumefaciens strain. Russ. J. Genetika 2010, 46, 1282–1289. [Google Scholar] [CrossRef]
- Shestibratov, K.; Lebedev, V.; Podrezov, A.; Salmova, M. Transgenic aspen and birch trees for Russian plantation forests. BMC Proc. 2011, 5. [Google Scholar] [CrossRef]
- Lebedev, V.; Faskhiev, V.; Shestibratov, K. Lack of correlation between ammonium accumulation and survival of transgenic birch plants with pine cytosolic glutamine synthetase gene after “Basta” herbicide treatment. J. Bot. 2015, 2015, 1–6. [Google Scholar] [CrossRef]
- Hytteborn, H.; Maslov, A.A.; Nazimova, D.I.; Rysin, L.P. Boreal forests of Eurasia. In Coniferous Forests: Ecosystems of the World 6; Andersson, F., Ed.; Elsevier: Amsterdam, The Netherlands, 2005; pp. 23–100. [Google Scholar]
- Lappalainen, J.H.; Martel, J.; Lempa, K.; Wilsey, B.; Ossipov, V.V. Effects of resource availability on carbon allocation and developmental instability in cloned birch seedlings. Int. J. Plant Sci. 2000, 161, 119–125. [Google Scholar] [CrossRef] [PubMed]
- Esmeijer-Liu, A.J.; Aerts, R.; Kürschner, W.M.; Bobbink, R.; Lotter, A.F.; Verhoeven, J.T.A. Nitrogen enrichment lowers Betula pendula green and yellow leaf stoichiometry irrespective of effects of elevated carbon dioxide. Plant Soil 2009, 316, 311–322. [Google Scholar] [CrossRef] [Green Version]
- Pääkkonen, E.; Holopainen, T. Influence of nitrogen supply on the response of clones of birch (Betula pendula Roth.) to ozone. New Phytol. 1995, 129, 595–603. [Google Scholar] [CrossRef]
- Man, H.M.; Boriel, R.; El-Khatib, R.; Kirby, E.G. Characterization of transgenic poplar with ectopic expression of pine cytosolic glutamine synthetase under conditions of varying nitrogen availability. New Phytol. 2005, 167, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Fuentes, S.I.; Allen, D.J.; Ortiz-Lopez, A.; Hernandez, G. Over-expression of cytosolic glutamine synthetase increases photosynthesis and growth at low nitrogen concentrations. J. Exp. Bot. 2001, 52, 1071–1081. [Google Scholar] [CrossRef] [PubMed]
- Haikio, E.; Freiwald, V.; Silfver, T.; Beuker, E.; Holopainen, T.; Oksanen, E. Impacts of elevated ozone and nitrogen on growth and photosynthesis of European aspen (Populus tremula) and hybrid aspen (P. tremula x Populus tremuloides) clones. Can. J. For. Res. 2007, 37, 2326–2336. [Google Scholar] [CrossRef]
- Muñoz-Huerta, R.F.; Guevara-Gonzalez, R.G.; Contreras-Medina, L.M.; Torres-Pacheco, I.; Prado-Olivarez, J.; Ocampo-Velazquez, R.V. A review of methods for sensing the nitrogen status in plants: Advantages; disadvantages and recent advances. Sensors 2013, 13, 10823–10843. [Google Scholar] [CrossRef] [PubMed]
- Castro-Rodríguez, V.; García-Gutiérrez, A.; Canales, J.; Cañas, R.A.; Kirby, E.G.; Avila, C.; Cánovas, F.M. Poplar trees for phytoremediation of high levels of nitrate and applications in bioenergy. Plant Biotechnol. J. 2016, 14, 299–312. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Li, M.; Luo, J.; Cao, X.; Qu, L.; Ga, Y.; Jiang, X.; Liu, T.; Bai, H.; Janz, D.; et al. N-fertilization has different effects on the growth; carbon and nitrogen physiology; and wood properties of slow- and fast-growing Populus species. J. Exp. Bot. 2012, 63, 6173–6185. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Zhou, J.; Li, H.; Shi, W.; Polle, A.; Lu, M.; Sun, X.; Luo, Z.-B. Global poplar root and leaf transcriptomes reveal links between growth and stress responses under nitrogen starvation and excess. Tree Physiol. 2015, 35, 1283–1302. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Dong, T.; Guo, Q.; Zhao, H. Populus deltoides females are more selective in nitrogen assimilation than males under different nitrogen forms supply. Trees 2015, 29, 143–159. [Google Scholar] [CrossRef]
- Kula, E.; Pešlová, A.; Martinek, P. Effects of nitrogen on growth properties and phenology of silver birch (Betula pendula Roth). J. For. Sci. 2012, 58, 391–399. [Google Scholar]
- Chang, S.; Puryear, J.; Cairney, J.A. A simple and efficient method for isolating RNA from pine trees. Plant Mol. Biol. Rep. 1993, 11, 113–116. [Google Scholar] [CrossRef]
- Wellburn, A.R. The spectral determination of chlorophyll a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J. Plant Physiol. 1994, 144, 307–313. [Google Scholar] [CrossRef]
Species | Genotype | Nitrogen, mM | ||
---|---|---|---|---|
0 | 1 | 10 | ||
1 B. pubescens | bp3f1 | 67.1 ± 2.3 b 2 | 64.0 ± 1.7 b | 87.8 ± 3.2 a |
bp4a | 52.3 ± 2.8 b | 54.0 ± 3.9 b | 90.3 ± 2.6 a | |
B. pendula | bb31 | 40.9 ± 3.8 b | 44.2 ± 2.2 b | 59.5 ± 6.1 a |
ch1 | 39.4 ± 2.3 b | 41.7 ± 2.5 b | 51.4 ± 2.2 a |
Species | Genotype | Chlorophyll а | Chlorophyll b | Carotenoids | Chlorophylls a + b |
---|---|---|---|---|---|
B. pubescens | bp3f1 (control) | *** 1 | * | ns 2 | ** |
F14GS3b | ns | ns | ns | ns | |
F14GS8b | ns | ns | ns | ns | |
F14GS9b | * | ns | ns | ns | |
F14GS11b | ns | * | ns | ns | |
F14GS16b | * | ns | ns | ns | |
F16GS4a | ** | ** | ns | ** | |
bp4a (control) | ** | * | ns | ** | |
P9GS11c | * | * | ns | * | |
P9GS18b | ns | ns | ns | ns | |
P17GS1a | ns | ns | ns | ns | |
B. pendula | bb31 (control) | ** | ** | * | ** |
B22GS3b | ns | ns | ns | ns | |
B29GS1 | ns | ns | ns | ns | |
B29GS4 | * | * | * | * | |
ch1 (control) | ns | ns | ns | * | |
N18GS8a | * | ns | ns | * | |
N18GS8b | ** | ns | ** | ** |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lebedev, V.G.; Kovalenko, N.P.; Shestibratov, K.A. Influence of Nitrogen Availability on Growth of Two Transgenic Birch Species Carrying the Pine GS1a Gene. Plants 2017, 6, 4. https://doi.org/10.3390/plants6010004
Lebedev VG, Kovalenko NP, Shestibratov KA. Influence of Nitrogen Availability on Growth of Two Transgenic Birch Species Carrying the Pine GS1a Gene. Plants. 2017; 6(1):4. https://doi.org/10.3390/plants6010004
Chicago/Turabian StyleLebedev, Vadim G., Nina P. Kovalenko, and Konstantin A. Shestibratov. 2017. "Influence of Nitrogen Availability on Growth of Two Transgenic Birch Species Carrying the Pine GS1a Gene" Plants 6, no. 1: 4. https://doi.org/10.3390/plants6010004
APA StyleLebedev, V. G., Kovalenko, N. P., & Shestibratov, K. A. (2017). Influence of Nitrogen Availability on Growth of Two Transgenic Birch Species Carrying the Pine GS1a Gene. Plants, 6(1), 4. https://doi.org/10.3390/plants6010004