Advancements in Root Growth Measurement Technologies and Observation Capabilities for Container-Grown Plants
Abstract
:1. Introduction
2. Root Anatomy and Morphology
2.1. Root Hairs
2.2. Root Types
2.3. Root Architecture
2.4. Root Diameter
3. Methods for Measuring Root Growth
3.1. Field-Grown Methods
Method | Author(s) | Information Type | Destructive to roots? | Advantages (+)/Disadvantages (−) | |
---|---|---|---|---|---|
Field methods | |||||
Photographs or drawings | [38,42] | Qualitative analysis, 2D root morphology | No | (+) Copy of the exact root structure visible, easy and rapid (photographs)
(−) tedious (drawings), blurry (photographs), no statistical inference or quantitative information, only qualitative commentaries, 2D only, problems with root overlap | |
Trench/window | [40,42] | 2D spatial root distribution | Yes/No | (+) easy to record root data, repeated measurements on specific roots
(−) static, limited 2D area, roots and structure could be destroyed by digging process, aberrant root growth along installed window | |
Pinboards/monoliths | [40,42,43,44] | Length, weight, diameter, distribution pattern | Yes | (+) view some natural arrangement of roots
(−) requires some skill, labor-intensive, large losses of fine roots | |
Auger/core | [40,41,42,45] | Length, weight, diameter, distribution pattern | No | (+) easy
(−) requires large number of samples, labor-intensive, sampling depth limited, time-consuming processing in lab | |
Rhizotron/minirhizotron/mesorhizotron | [46,47] | Dynamic 2D information on root morphology, growth and turnover | No | (+) repeated measurements on specific roots
(−) expensive, possibly labor intensive (construction and analyzing data), aberrant root growth along window | |
Above-ground rhizotrons | [11,48,49] | Dynamic 2D information on root morphology, growth and turnover | No | (+) repeated measurements on specific roots
(−) aberrant root growth along window | |
Container methods | |||||
Root washing | [50,51,52,53] | Root dry weight, shoot:root ratio, diameter, distribution pattern | Yes | (+) whole root system visible
(−) large losses of fine roots, loss of natural positions/architecture, time-consuming, tedious | |
Root rating | [54,55,56,57] | Root density, appearance, branching and distribution pattern | No | (+) easy, rapid
(−) subjective measurement, qualitative, human error | |
Transparent containers/substrates | [58,59,60,61,62,63,64] | Root density, appearance, branching and distribution pattern | No | (+) whole root system visible, 3D, more natural architecture
(−) different environment compared to soils and soilless substrates | |
Horhizotron™ | [10,55,65] | Root density, appearance, branching and distribution pattern | No | (+) repeated measurements on specific roots, lightweight materials used
(−) only for large plant use—starting with 3.78–11.35 L root balls, materials not permanent/fixed, easily breakable, aberrant root growth along window | |
Mini-Horhizotron, rhizometer, hydraulic conductance flow meter | [9,66,67,68] | Root density, appearance, branching and distribution pattern | No | (+) repeated measurements on specific roots, lightweight materials used, materials permanent, hard to break
(−) only for small plant use—seeds/plugs/liners, aberrant root growth along window | |
Digital imaging | |||||
Image Analyzing Computer | [69] | Branching and distribution pattern | Yes | (+) less time-consuming, less subjective (human)
(−) harvested roots, only photographing small sections of roots at a time, problems with root overlap | |
WinRHIZO, RootReader | [70,71,72,73,74,75] | Root density, angles, appearance, branching and distribution pattern, root length, root surface area | Yes/No | (+) easy, rapid, less subjective (human), greater range of measurements
(−) may only work on washed roots (destructive), problems with root overlap | |
NMR and X-ray CT | [76,77,78,79,80,81] | Root length, growth, volume repartition | No | (+) report image of whole root system
(−) far from being practical, roots grown in small containers only |
3.1.1. Trench, Photographs and Drawings
3.1.2. Pinboards and Monoliths
3.1.3. Auger and Cores
3.1.4. Rhizotron, Minirhizotron and Mesorhizotron
3.1.5. Above-Ground Rhizotrons
3.2. Container-Grown Methods
3.2.1. Root Washing
3.2.2. Root Rating
3.2.3. Transparent Containers and Substrates
3.2.4. Horhizotron™
3.2.5. Mini-Horhizotron
3.2.6. Rhizometer
3.2.7. Hydraulic Conductance Flow Meter
3.3. Digital Imaging
3.3.1. WinRHIZO, RootReader
3.3.2. X-ray CT and NMRI
4. Conclusions
Author Contributions
Conflicts of Interest
References
- U.S. Department of Agriculture. Census of agriculture, 2007 summary and state data. 2009. Available online: http://www.agcensus.usda.gov/Publications/2007/Full_Report/usv1.pdf (accessed on 3 December 2012). [Google Scholar]
- Gilman, E.F.; Beeson, R.C., Jr. Nursery production method affects root growth. J. Environ. Hortic. 1996, 14, 88–91. [Google Scholar]
- Harris, J.R.; Gilman, E.F. Production method affects growth and post-transplant establishment of “East Palatka” holly. J. Am. Soc. Hortic. Sci. 1993, 118, 194–200. [Google Scholar]
- Wraith, J.M.; Wright, K.W. Soil water and root growth. HortScience 1998, 33, 951–959. [Google Scholar]
- Kostopoulou, P.; Radoglou, K.; Papanastasi, O.D.; Adamidou, C. Effect of mini-plug container depth on root and shoot growth of four forest tree species during early developmental stages. Turk. J. Agric. For. 2011, 35, 379–390. [Google Scholar]
- Amoroso, G.; Frangi, P.; Piatti, R.; Ferrini, F.; Fini, A.; Faoro, M. Effect of container design on plant growth of Littleleaf Linden and field elm. HortScience 2010, 45, 1824–1829. [Google Scholar]
- Landis, T.D. Miniplug transplants: Producing large plants quickly. In National Proceedings: Forest and Conservation Nursery Associations-2006; USDA Forest Service RMRS-P-50; Riley, L.E., Dumroese, R.K., Landis, T.D., Technical Coordinators; USDA Forest Service: Fort Collins, CO, USA, 2007; pp. 46–53. [Google Scholar]
- Bilderback, T.E.; Fonteno, W.C. Effects of container geometry and media physical properties on air and water volumes in containers. J. Environ. Hortic. 1987, 5, 180–182. [Google Scholar]
- Judd, L.A.; Jackson, B.E.; Fonteno, W.C. Rhizometrics: A review of three in situ techniques for observations and measurement of plant root systems in containers. Acta Hortic. 2014, 1034, 389–397. [Google Scholar]
- Wright, A.N.; Wright, R.D. The Horhizotron™: A new instrument for measuring root growth. HortTechnology 2004, 14, 560–563. [Google Scholar]
- Silva, D.D.; Beeson, R.C., Jr. A large-volume rhizotron for evaluating root growth under natural-like soil moisture conditions. HortScience 2011, 46, 1677–1682. [Google Scholar]
- Reubens, B.; Poesen, J.; Danjon, F.; Geudens, G.; Muys, B. The role of fine and coarse roots in shallow slope stability and soil erosion control with a focus on root system architecture: A review. Trees 2007, 21, 385–402. [Google Scholar] [CrossRef]
- Atkinson, D. Root characteristics: Why and what to measure. In Root Methods: A Handbook; Smit, A.L., Bengough, A.G., Engels, C., van Noordwijk, M., Pellerin, S., van de Geijn, S.C., Eds.; Springer-Verlag: Berlin, Germany, 2000; pp. 175–210. [Google Scholar]
- Iverson, C.M. Using root form to improve our understanding of root function. New Phytol. 2014, 203, 707–709. [Google Scholar] [CrossRef] [PubMed]
- Hofer, R.-M. Root hairs. In Plant Roots: The Hidden Half, 2nd ed.; Waisel, Y., Eshel, A., Kafkafi, U., Eds.; Marcel Dekker, Inc.: New York, NY, USA, 1996; pp. 111–126. [Google Scholar]
- Landmeyer, J.E. Introduction to Phytoremediation of Contaminated Groundwater: Historical Foundation, Hydrologic Control, and Contaminant Remediation; Springer-Verlag: Berlin, Germany, 2011. [Google Scholar]
- Rosene, H.F. Quantitative measurement of the velocity of water absorption in individual root hairs by a microtechnique. Plant Physiol. 1943, 18, 588–608. [Google Scholar] [CrossRef] [PubMed]
- Whitaker, E.S. Root hairs and secondary thickening in the Compositae. Bot. Gaz. 1923, 76, 30–59. [Google Scholar] [CrossRef]
- Dittmer, H.J. Root hair variations in plant species. Am. J. Bot. 1949, 36, 152–155. [Google Scholar] [CrossRef]
- Dittmer, H.J. A quantitative study of the roots and root hairs of a winter rye plant (Secale cereal). Am. J. Bot. 1937, 24, 417–420. [Google Scholar] [CrossRef]
- Bucksch, A.; Burridge, J.; York, L.M.; Das, A.; Nord, E.; Weitz, J.S.; Lynch, J.P. Image-based high-throughput field phenotyping of crop roots. Plant Physiol. 2014, 166, 470–486. [Google Scholar] [CrossRef] [PubMed]
- Zobel, R.W.; Waisel, Y. A plant root system architectural taxonomy: A framework for root nomenclature. Plant Biosyst. 2010, 144, 507–512. [Google Scholar] [CrossRef]
- Cannon, W.A. A tentative classification of root systems. Ecology 1949, 30, 542–548. [Google Scholar] [CrossRef]
- Nicola, S. Understanding root systems to improve seedling quality. HortTechnology 1998, 8, 544–549. [Google Scholar]
- Zobel, R.W. Primary and secondary root systems. In Roots and Soil Management: Interactions between Roots and the Soil; Zobel, R.W., Wright, S.F., Eds.; American Society of Agronomy: Madison, WI, USA, 2005; pp. 3–14. [Google Scholar]
- Fitter, A. Characteristics and functions of root systems. In Plant Roots: The Hidden Half, 2nd ed.; Waisel, Y., Eshel, A., Kafkafi, U., Eds.; Marcel Dekker: New York, NY, USA, 1996; pp. 1–20. [Google Scholar]
- Malamy, J.E. Intrinsic and environmental response pathways that regulate root system architecture. Plant Cell Environ. 2005, 28, 67–77. [Google Scholar] [CrossRef] [PubMed]
- Hodge, A.; Berta, G.; Doussan, C.; Merchan, F.; Crespi, M. Plant root growth, architecture and function. Plant Soil 2009, 321, 153–187. [Google Scholar] [CrossRef]
- Lynch, J. Root architecture and plant productivity. Plant Physiol. 1995, 109, 7–13. [Google Scholar] [PubMed]
- Pace, J.; Lee, N.; Naik, H.S.; Ganapathysubramanian, B.; Lübberstedt, T. Analysis of maize (Zea mays L.) seedling roots with the high-throughput image analysis tool ARIA (automatic root image analysis). PLoS ONE 2014. [Google Scholar] [CrossRef]
- Gill, R.A.; Jackson, R.B. Global patterns of root turnover for terrestrial ecosystems. New Phytol. 2000, 147, 13–31. [Google Scholar] [CrossRef]
- Kucbel, S.; Jaloviar, P.; Spisak, J. Quantity, vertical distribution and morphology of fine roots in Norway spruce stands with different stem density. Plant Root 2011, 5, 46–55. [Google Scholar] [CrossRef]
- Peat, H.J.; Fitter, A.H. The distribution of arbuscular mycorrhizas in the British flora. New Phytol. 1993, 125, 845–854. [Google Scholar] [CrossRef]
- Wiersum, L.K. The relationship of the size and structural rigidity of pores to their penetration by roots. Plant Soil 1957, 9, 75–85. [Google Scholar] [CrossRef]
- Goss, M.J. Effects of mechanical impedance on root growth in barley (Hordeum vulgare L.). J. Exp. Bot. 1977, 28, 96–111. [Google Scholar] [CrossRef]
- Gregory, P.J. Roots, rhizosphere and soil: The route to a better understanding of soil science? Eur. J. Soil Sci. 2006, 57, 2–12. [Google Scholar] [CrossRef]
- Gill, W.R.; Miller, R.D. A method for study of the influence of mechanical impedance and aeration on the growth of seedling roots. Soil Sci. Soc. Am. Proc. 1956, 20, 154–157. [Google Scholar] [CrossRef]
- Weaver, J.E.; Jean, F.C.; Crist, J.W. Development and Activities of Roots and Crop Plants; Carnegie Institution of Washington: Baltimore, MD, USA, 1922. [Google Scholar]
- McDougall, W.B. The growth of forest tree roots. Am. J. Bot. 1916, 3, 384–392. [Google Scholar] [CrossRef]
- Schuurman, J.J.; Goedewaagen, M.A.J. Methods for the Examination of Root Systems and Roots; Centre for Agricultural Publishing and Documentation: Wageningen, The Netherlands, 1971. [Google Scholar]
- Smit, A.L.; George, E.; Groenwold, J. Root observations and measurements at (transparent) interfaces with soil. In Root Methods: A Handbook; Smit, A.L., Bengough, A.G., Engels, C., van Noordwijk, M., Pellerin, S., van de Geijn, S.C., Eds.; Springer-Verlag: Berlin, Germany, 2000; pp. 236–266. [Google Scholar]
- Bohm, W. Methods of Studying Root Systems; Springer-Verlag: Berlin, Germany, 1979. [Google Scholar]
- Kono, Y.; Yamauchi, A.; Nonoyama, T.; Tatsumi, J.; Kawamura, N. A revised experimental system of root-soil interaction for laboratory work. Environ. Control Biol. 1987, 25, 141–151. [Google Scholar] [CrossRef]
- Kano-Nakata, M.; Inukai, Y.; Wade, L.J.; Siopongco, J.D.L.C.; Yamaucki, A. Root development, water uptake, and shoot dry matter production under water deficit conditions in two CSSLs of rice: Functional roles of root plasticity. Plant Prod. Sci. 2011, 14, 307–317. [Google Scholar] [CrossRef]
- Engel, R.K.; Nichols, J.T.; Brummer, J.E. A containerized technique for studying root systems. J. Range Manag. 1993, 46, 467–469. [Google Scholar] [CrossRef]
- Kaspar, B; Kaspar, T.C. Rhizotrons: Their development and use in agricultural research. Agron. J. 1994, 86, 745–753. [Google Scholar]
- Dannoura, M.; Kominami, Y.; Oguma, H.; Kanazawa, Y. The development of an optical scanner method for observation of plant root dynamics. Plant Root 2008, 2, 14–18. [Google Scholar] [CrossRef]
- James, B.R.; Bartlett, R.J.; Amadon, J.F. A root observation and sampling chamber (rhizotron) for pot studies. Plant Soil 1985, 85, 291–293. [Google Scholar] [CrossRef]
- Neufeld, H.S.; Durall, D.M.; Rich, P.M.; Tingey, D.T. A rootbox for quantitative observations on intact entire root systems. Plant Soil 1989, 117, 295–298. [Google Scholar] [CrossRef]
- Aung, L.H. Root-shoot relationships. In Plant Root and Its Environment, 1st ed.; Carson, E.W., Ed.; University Press: Charlottesville, VA, USA, 1972; pp. 29–61. [Google Scholar]
- Oliveira, M.R.G.; van Noordwijk, M.; Gaze, S.R.; Brouwer, G.; Bona, S.; Mosca, G.; Hairiah, K. Auger sampling, ingrowth cores and pinboard methods. In Root Methods: A Handbook; Smit, A.L., Bengough, A.G., Engels, C., van Noordwijk, M., Pellerin, S., van de Geijn, S.C., Eds.; Springer-Verlag: Berlin, Germany, 2000; pp. 175–210. [Google Scholar]
- Van Noordwijk, M.; Floris, J. Loss of dry weight during washing and storage of root samples. Plant Soil 1979, 53, 239–243. [Google Scholar] [CrossRef]
- Benjamin, J.G.; Nielsen, D.C. A method to separate plant roots from soil and analyze root surface area. Plant Soil 2004, 267, 225–234. [Google Scholar] [CrossRef]
- Cid, M.C.; Socorro, A.R.; Perez-Rosales, L. Root growth and quality rating of Schefflera “Golden Capella” and Ficus “Starlight” on several peat-based substrates. Acta Hortic. 1993, 342, 307–311. [Google Scholar]
- Jackson, B.E.; Wright, A.N.; Sibley, J.L.; Kemble, J.M. Root growth of three horticultural crops grown in pine bark amended cotton gin compost. J. Environ. Hortic. 2005, 23, 133–137. [Google Scholar]
- Jackson, B.E.; Wright, A.N.; Cole, D.M.; Sibley, J.L. Cotton gin compost as a substrate component in container production of nursery crops. J. Environ. Hortic. 2005, 23, 118–122. [Google Scholar]
- Walters, S.A.; Wehner, T.C. Evaluation of the U.S. cucumber germplasm collection for root size using subjective rating technique. Euphytica 1994, 79, 39–43. [Google Scholar] [CrossRef]
- Neumann, G.; George, T.S.; Plassard, C. Strategies and methods for studying the rhizosphere—The plant science toolbox. Plant Soil 2009, 321, 431–456. [Google Scholar] [CrossRef]
- Rajaniemi, T.K.; Reynolds, H.L. Root foraging for patchy resources in eight herbaceous plant species. Oecologia 2004, 141, 519–525. [Google Scholar] [CrossRef] [PubMed]
- Pound, M.P.; French, A.P.; Atkinson, J.A.; Wells, D.M.; Bennett, M.J.; Pridmore, T. RootNav: Navigating images of complex root architectures. Plant Physiol. 2013, 162, 1802–1814. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Ingram, P.A.; Benfey, P.N.; Elich, T. From lab to field, new approaches to phenotyping root system architecture. Curr. Opin. Plant Biol. 2011, 14, 310–317. [Google Scholar] [CrossRef] [PubMed]
- Thompson, M.V.; Holbrook, N.M. Root-gel interactions and the root waving behavior of Arabidopsis. Plant Physiol. 2004, 135, 1822–1837. [Google Scholar] [CrossRef] [PubMed]
- Fang, S.; Yan, X.; Liao, H. 3D reconstruction and dynamic modeling of root architecture in situ and its application to crop phosphorus research. Plant J. 2009, 60, 1096–1108. [Google Scholar] [CrossRef] [PubMed]
- Downie, H.; Holden, N.; Otten, W.; Spiers, A.J.; Valentine, T.A.; Dupuy, L.X. Transparent soil for imaging the rhizosphere. PLoS ONE 2012, 7. [Google Scholar] [CrossRef] [PubMed]
- Price, J.G.; Wright, A.N.; Tilt, K.M. Organic matter application improves post-transplant root growth of three native woody shrubs. HortScience 2009, 44, 377–383. [Google Scholar]
- Judd, L.A.; Jackson, B.E.; Fonteno, W.C.; Yap, T.C. Mini-Horhizotron: An apparatus for observing and measuring root growth of container-grown plant material in situ. HortScience 2014, 49, 1424–1431. [Google Scholar]
- Kaderabek, L.E.; Lookabaugh, E.C.; Owen, W.G.; Judd, L.A.; Jackson, B.E.; Shew, H.D.; Benson, D.M. Measuring disease severity of Pythium spp. and Rhizoctonia solani in substrates containing pine wood chips. In Proceedings of the Southern Nursery Association Research Conference, Atlanta, GA, USA; Gawel, N., Ed.; Southern Nursery Association: Acworth, GA, USA, 6 August 2013; Volume 58, pp. 135–142. [Google Scholar]
- Judd, L.A.; Jackson, B.E.; Fonteno, W.C. Rhizometer: An apparatus to observe and measure root growth and its effect on container substrate physical properties over time. HortScience 2015, 50, 288–294. [Google Scholar]
- Ottman, M.J.; Timm, H. Measurement of viable plant roots with the Image Analyzing Computer. Agron. J. 1984, 76, 1018–1020. [Google Scholar] [CrossRef]
- Arsenault, J.-L.; Poulcur, S.; Messier, C.; Guay, R. WinRHIZO™, a root-measuring system with a unique overlap correction method. HortScience 1995, 30, 906. [Google Scholar]
- Fang, S.; Clark, R.; Liao, H. 3D quantification of plant root architecture in situ. In Measuring Roots; Mancuso, S., Ed.; Springer-Verlag: Berlin, Germany, 2012; pp. 135–148. [Google Scholar]
- Villordon, A.; LaBonte, D.; Solis, J.; Firon, N. Characterization of lateral root development at the onset of storage root initiation in “Beauregard” sweetpotato adventitious roots. HortScience 2012, 47, 961–968. [Google Scholar]
- Metcalfe, D.B.; Meir, P.; Williams, M. A comparison of methods for converting rhizotron root length measurements into estimates of root mass production per unit ground area. Plant Soil 2007, 301, 279–288. [Google Scholar] [CrossRef]
- Kaspar, T.C.; Ewing, R.P. ROOTEDGE: Software for measuring root length from desktop scanner images. Agron. J. 1997, 89, 932–940. [Google Scholar] [CrossRef]
- Clark, R.T.; Famoso, A.N.; Zhao, K.; Shaff, J.E.; Craft, E.J.; Bustamante, C.D.; McCouch, S.R.; Aneshansley, D.J.; Kochian, L.V. High-throughput two-dimensional root system phenotyping platform facilitates genetic analysis of root growth and development. Plant Cell Environ. 2013, 36, 454–466. [Google Scholar] [CrossRef] [PubMed]
- Heeraman, D.A.; Hopmans, J.W.; Clausnitzer, V. Three dimensional imaging of plant roots in situ with X-ray Computed Tomography. Plant Soil 1997, 189, 167–179. [Google Scholar] [CrossRef]
- Metzner, R.; Eggert, A.; van Dusschoten, D.; Pflugfelder, D.; Gerth, S.; Schurr, U.; Uhlmann, N.; Jahnke, S. Direct comparison of MRI and X-ray CT technologies for 3D imaging of root systems in soil: Potential and challenges for root trait quantification. Plant Methods 2015, 11, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Garbout, A.; Munkholm, L.J.; Hansen, S.B. Temporal dynamics for soil aggregates determined using X-ray CT scanning. Geoderma 2013, 204–205, 15–22. [Google Scholar]
- Tracy, S.R.; Black, C.R.; Roberts, J.A.; Dodd, I.C.; Mooney, S.J. Using X-ray computed tomography to explore the role of abscisic acid in moderating the impact of soil compacting on root system architecture. Environ. Exp. Bot. 2015, 110, 11–18. [Google Scholar] [CrossRef]
- Daly, K.R.; Mooney, S.J.; Bennett, M.J.; Crout, N.M.J.; Roose, T.; Tracy, S.R. Assessing the influence of the rhizosphere on soil hydraulic properties using X-ray computed tomography and numerical modelling. J. Exp. Bot. 2015. [CrossRef] [PubMed]
- Brown, D.P.; Pratum, T.K.; Bledsoe, C.; Ford, D.E.; Cothern, J.S.; Perry, D. Noninvasive studies of conifer roots: Nuclear magnetic resonance (NMR) imaging of Douglas-fir seedlings. Can. J. For. Res. 1991, 21, 1559–1566. [Google Scholar] [CrossRef]
- Barnett, D.P.; Paul, J.L.; Harris, R.W.; Henderson, D.W. Estimating root length densities around transplanted container-grown plants. J. Arboric. 1983, 9, 305–308. [Google Scholar]
- Rogers, W.S. The East Malling root-observation laboratories. In Root Growth: Proceedings; Whittington, W.J., Ed.; Plenum Press: New York, NY, USA; Butterworth: London, UK, 1969; pp. 361–376. [Google Scholar]
- Taylor, H.M.; Upchurch, D.P.; McMichael, B.L. Applications and limitations of rhizotrons and minirhizotrons for root studies. Plant Soil 1990, 129, 29–35. [Google Scholar] [CrossRef]
- Glinski, D.S.; Karnok, K.J.; Carrow, R.N. Comparison of reporting methods for root growth data from transparent-interface measurements. Crop Sci. 1993, 33, 310–314. [Google Scholar] [CrossRef]
- Huck, M.G.; Taylor, H.M. The rhizotron as a tool for root research. Adv. Agron. 1982, 35, 1–35. [Google Scholar]
- Bates, G.H. A device for the observation of root growth in the soil. Nature 1937, 139, 966–967. [Google Scholar] [CrossRef]
- Pateña, G.; Ingram, K.T. Digital acquisition and measurement of peanut root minirhizotron images. Agron. J. 2000, 92, 541–544. [Google Scholar] [CrossRef]
- Ingram, K.T.; Leers, G.A. Software for measuring root characters from digital images. Agron. J. 2001, 93, 918–922. [Google Scholar] [CrossRef]
- Pan, W.L.; Bolton, R.P.; Lundquist, E.J.; Hiller, L.K. Portable rhizotron and color scanner system for monitoring root development. Plant Soil 1998, 200, 107–112. [Google Scholar] [CrossRef]
- Harrington, J.T.; Mexal, J.G.; Fisher, J.T. Volume displacement provides a quick and accurate way to quantify new root production. Tree Plant. Notes 1994, 45, 121–124. [Google Scholar]
- Morrison, I.K.; Armson, K.A. The rhizometer—A device for measuring roots of tree seedlings. For. Chron. 1968, 44, 21–23. [Google Scholar] [CrossRef]
- Fonteno, W.C. Growing media: Types and physical/chemical properties. In Water, Media, and Nutrition for Greenhouse Crops; Reed, D.W., Ed.; Ball Publishing: Batavia, IL, USA, 1996; pp. 93–122. [Google Scholar]
- Lobet, G.; Draye, X.; Périlleux, C. An online database for plant image analysis software tools. Plant Methods 2013, 9. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.-B.; Zhang, X.-J.; Wu, C. Advances in experimental methods for root system architecture and root development. J. For. Res. 2015, 26, 23–32. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Judd, L.A.; Jackson, B.E.; Fonteno, W.C. Advancements in Root Growth Measurement Technologies and Observation Capabilities for Container-Grown Plants. Plants 2015, 4, 369-392. https://doi.org/10.3390/plants4030369
Judd LA, Jackson BE, Fonteno WC. Advancements in Root Growth Measurement Technologies and Observation Capabilities for Container-Grown Plants. Plants. 2015; 4(3):369-392. https://doi.org/10.3390/plants4030369
Chicago/Turabian StyleJudd, Lesley A., Brian E. Jackson, and William C. Fonteno. 2015. "Advancements in Root Growth Measurement Technologies and Observation Capabilities for Container-Grown Plants" Plants 4, no. 3: 369-392. https://doi.org/10.3390/plants4030369
APA StyleJudd, L. A., Jackson, B. E., & Fonteno, W. C. (2015). Advancements in Root Growth Measurement Technologies and Observation Capabilities for Container-Grown Plants. Plants, 4(3), 369-392. https://doi.org/10.3390/plants4030369