Salinity Stress in Strawberry (Fragaria × ananassa Duch.): Biological Intervention Strategies and Breeding Approaches for Salt-Tolerant Cultivars
Abstract
1. Introduction
2. Salinity Stress as a Constraint in Strawberry Cultivation
2.1. Impacts of Salinity Stress on Strawberry
2.2. Variation in Salinity Responses Across Different Strawberry Species and Cultivars
3. Mitigation Strategies to Enhance Strawberry Performance Under Salinity Stress
3.1. The Role of Biostimulants and Small Signaling Molecules in Mitigating Salinity Stress
3.2. Microorganisms and Plant–Microbe Interactions to Alleviate Salinity Stress
3.3. Supplemental Light Application
4. Genetic and Molecular Approaches for Improving Salinity Tolerance in Strawberry
4.1. Gene Identification and Functional Annotation for Breeding Targets
4.1.1. Ion Homeostasis- and Transport-Related Genes
4.1.2. Osmotic Adjustment and Water Balance
4.1.3. Oxidative Stress Regulation and Redox Balance
4.1.4. Transcriptional Regulators
4.1.5. Signal Transduction and Post-Translational Regulators
4.1.6. Structural and Epigenetic Contributors
4.2. Breeding Implications
5. Future Perspectives
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pisinaras, V.; Tsihrintzis, V.A.; Petalas, C.; Ouzounis, K. Soil Salinization in the Agricultural Lands of Rhodope District, Northeastern Greece. Environ. Monit. Assess. 2010, 166, 79–94. [Google Scholar] [CrossRef] [PubMed]
- Hardie, M.; Doyle, R. Measuring Soil Salinity. In Plant Salt Tolerance; Shabala, S., Cuin, T.A., Eds.; Methods in Molecular Biology; Humana Press: Totowa, NJ, USA, 2012; Volume 913, pp. 415–425. [Google Scholar]
- Tóth, T. Classification and Mitigation of Soil Salinization. In Oxford Research Encyclopedia of Environmental Science; Oxford University Press: Oxford, UK, 2017. [Google Scholar]
- FAO. Global Map of Salt-Affected Soils 2021; Food and Agriculture Organization: Rome, Italy.
- Singh, M.; Nara, U.; Kumar, A.; Choudhary, A.; Singh, H.; Thapa, S. Salinity Tolerance Mechanisms and Their Breeding Implications. J. Genet. Eng. Biotechnol. 2021, 19, 173. [Google Scholar] [CrossRef] [PubMed]
- Pessarakli, M.; Szabolcs, I. Soil Salinity and Sodicity as Particular Plant/Crop Stress Factors. In Handbook of Plant and Crop Stress, Fourth Edition; CRC Press: Boca Raton, FL, USA, 2019; pp. 3–21. [Google Scholar]
- Petalas, C.; Pisinaras, V.; Gemitzi, A.; Tsihrintzis, V.A.; Ouzounis, K. Current Conditions of Saltwater Intrusion in the Coastal Rhodope Aquifer System, Northeastern Greece. Desalination 2009, 237, 22–41. [Google Scholar] [CrossRef]
- Karamanos, A.; Aggelides, S.; Londra, P. Water Use Efficiency and Water Productivity in Greece. Options Méditerr. 2005, 57, 92–100. [Google Scholar]
- Daliakopoulos, I.N.; Tsanis, I.K.; Koutroulis, A.; Kourgialas, N.N.; Varouchakis, A.E.; Karatzas, G.P.; Ritsema, C.J. The Threat of Soil Salinity: A European Scale Review. Sci. Total Environ. 2016, 573, 727–739. [Google Scholar] [CrossRef]
- Yuan, X.; Li, S.; Chen, J.; Yu, H.; Yang, T.; Wang, C.; Huang, S.; Chen, H.; Ao, X. Impacts of Global Climate Change on Agricultural Production: A Comprehensive Review. Agronomy 2024, 14, 1360. [Google Scholar] [CrossRef]
- Terán, F.; Vives-Peris, V.; Gómez-Cadenas, A.; Pérez-Clemente, R.M. Facing Climate Change: Plant Stress Mitigation Strategies in Agriculture. Physiol. Plant. 2024, 176, e14484. [Google Scholar] [CrossRef]
- Zaman, M.; Shahid, S.A.; Heng, L. Guideline for Salinity Assessment, Mitigation and Adaptation Using Nuclear and Related Techniques; Springer Nature: London, UK, 2018. [Google Scholar]
- Negrão, S.; Schmöckel, S.M.; Tester, M. Evaluating Physiological Responses of Plants to Salinity Stress. Ann. Bot. 2017, 119, 1–11. [Google Scholar] [CrossRef]
- Xiong, W.; Reynolds, M.; Xu, Y. Climate Change Challenges Plant Breeding. Curr. Opin. Plant Biol. 2022, 70, 102308. [Google Scholar] [CrossRef]
- Shokat, S.; Großkinsky, D.K. Tackling Salinity in Sustainable Agriculture—What Developing Countries May Learn from Approaches of the Developed World. Sustainability 2019, 11, 4558. [Google Scholar] [CrossRef]
- Hancock, J.F. Temperate Fruit Crop Breeding: Germplasm to Genomics; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Ferreira, J.F.; Liu, X.; Suarez, D.L. Fruit Yield and Survival of Five Commercial Strawberry Cultivars under Field Cultivation and Salinity Stress. Sci. Hortic. 2019, 243, 401–410. [Google Scholar] [CrossRef]
- Mazzoni, L.; Perez-Lopez, P.; Giampieri, F.; Alvarez-Suarez, J.M.; Gasparrini, M.; Forbes-Hernandez, T.Y.; Quiles, J.L.; Mezzetti, B.; Battino, M. The Genetic Aspects of Berries: From Field to Health. J. Sci. Food Agric. 2016, 96, 365–371. [Google Scholar] [CrossRef] [PubMed]
- Giampieri, F.; Alvarez-Suarez, J.M.; Battino, M. Strawberry and Human Health: Effects beyond Antioxidant Activity. J. Agric. Food Chem. 2014, 62, 3867–3876. [Google Scholar] [CrossRef] [PubMed]
- Galli, V.; da Silva Messias, R.; Perin, E.C.; Borowski, J.M.; Bamberg, A.L.; Rombaldi, C.V. Mild Salt Stress Improves Strawberry Fruit Quality. Lwt 2016, 73, 693–699. [Google Scholar] [CrossRef]
- Grieve, C.M.; Grattan, S.R.; Maas, E.V. Plant Salt Tolerance. ASCE Man. Rep. Eng. Pract. 2012, 71, 405–459. [Google Scholar]
- Denaxa, N.-K.; Nomikou, A.; Malamos, N.; Liveri, E.; Roussos, P.A.; Papasotiropoulos, V. Salinity Effect on Plant Growth Parameters and Fruit Bioactive Compounds of Two Strawberry Cultivars, Coupled with Environmental Conditions Monitoring. Agronomy 2022, 12, 2279. [Google Scholar] [CrossRef]
- Ghaderi, N.; Hatami, M.R.; Mozafari, A.; Siosehmardeh, A. Change in Antioxidant Enzymes Activity and Some Morpho-Physiological Characteristics of Strawberry under Long-Term Salt Stress. Physiol. Mol. Biol. Plants 2018, 24, 833–843. [Google Scholar] [CrossRef]
- Mozafari, A.; Ghaderi, N.; Havas, F.; Dedejani, S. Comparative Investigation of Structural Relationships among Morpho-Physiological and Biochemical Properties of Strawberry (Fragaria × ananassa Duch.) under Drought and Salinity Stresses: A Study Based on in Vitro Culture. Sci. Hortic. 2019, 256, 108601. [Google Scholar] [CrossRef]
- Hussein, A.E.; El-Kerdany, A.Y.; Afifi, K.M. Effect of Drought and Salinity Stresses on Two Strawberry Cultivars during Their Regeneration in Vitro. Int. J. Innov. Sci. Eng. Technol. 2016, 4, 83–93. [Google Scholar]
- Akbari, M.; Mahna, N.; Ramesh, K.; Bandehagh, A.; Mazzuca, S. Ion Homeostasis, Osmoregulation, and Physiological Changes in the Roots and Leaves of Pistachio Rootstocks in Response to Salinity. Protoplasma 2018, 255, 1349–1362. [Google Scholar] [CrossRef]
- Sikder, R.K.; Wang, X.; Zhang, H.; Gui, H.; Dong, Q.; Jin, D.; Song, M. Nitrogen Enhances Salt Tolerance by Modulating the Antioxidant Defense System and Osmoregulation Substance Content in Gossypium Hirsutum. Plants 2020, 9, 450. [Google Scholar] [CrossRef]
- Asghar, R.; Biglarifard, A.; Mirdehghan, H.; Borghei, S.F. Influence of NaCl Salinity on Growth Analysis of Strawberry Cv. Camarosa. J. Stress. Physiol. Biochem. 2011, 7, 145–156. [Google Scholar]
- Wu, Y.; Li, L.; Li, M.; Zhang, M.; Sun, H.; Sigrimis, N. Optimal Fertigation for High Yield and Fruit Quality of Greenhouse Strawberry. PLoS ONE 2020, 15, e0224588. [Google Scholar] [CrossRef] [PubMed]
- Keutgen, A.; Pawelzik, E. Modifications of Taste-Relevant Compounds in Strawberry Fruit under NaCl Salinity. Food Chem. 2007, 105, 1487–1494. [Google Scholar] [CrossRef]
- Endo, T.; Yamamoto, S.; Larrinaga, J.A.; Fujiyama, H.; Honna, T. Status and Causes of Soil Salinization of Irrigated Agricultural Lands in Southern Baja California, Mexico. Appl. Environ. Soil Sci. 2011, 2011, 1–12. [Google Scholar] [CrossRef]
- Singh, A. Soil Salinization and Waterlogging: A Threat to Environment and Agricultural Sustainability. Ecol. Indic. 2015, 57, 128–130. [Google Scholar] [CrossRef]
- Keutgen, A.J.; Pawelzik, E. Quality and Nutritional Value of Strawberry Fruit under Long Term Salt Stress. Food Chem. 2008, 107, 1413–1420. [Google Scholar] [CrossRef]
- Keutgen, A.J.; Pawelzik, E. Impacts of NaCl Stress on Plant Growth and Mineral Nutrient Assimilation in Two Cultivars of Strawberry. Environ. Exp. Bot. 2009, 65, 170–176. [Google Scholar] [CrossRef]
- Hu, Y.; Feng, C.; Yang, L.; Edger, P.P.; Kang, M. Genomic Population Structure and Local Adaptation of the Wild Strawberry Fragaria Nilgerrensis. Hortic. Res. 2022, 9, uhab059. [Google Scholar] [CrossRef]
- Bringhurst, R.S.; Hancock, J.F.; Voth, V. The Beach Strawberry, an Important Natural Resource. Calif. Agric. 1977, 31, 10. [Google Scholar]
- VanDerZanden, A.M.; Cameron, J.S. Effect of Water Deficit Stress on 11 Native Fragaria chiloensis Clones Selected as Ornamental Groundcovers. Sci. Hortic. 1996, 66, 241–253. [Google Scholar] [CrossRef]
- Carrasco, B.; Garcés, M.; Rojas, P.; Saud, G.; Herrera, R.; Retamales, J.B.; Caligari, P.D. The Chilean Strawberry [Fragaria chiloensis (L.) Duch.]: Genetic Diversity and Structure. J. Am. Soc. Hortic. Sci. 2007, 132, 501–506. [Google Scholar] [CrossRef]
- Nikoloudi, A. Salinity Tolerance in Strawberry (Fragaria spp.) as Influenced by Genotype; Michigan State University: East Lansing, MI, USA, 2003. [Google Scholar]
- Garriga, M.; Muñoz, C.A.; Caligari, P.D.; Retamales, J.B. Effect of Salt Stress on Genotypes of Commercial (Fragaria × ananassa) and Chilean Strawberry (F. chiloensis). Sci. Hortic. 2015, 195, 37–47. [Google Scholar] [CrossRef]
- Kortekamp, T.; Chen, T.-W.; Wagner, H.; Olbricht, K. Evaluation of Salinity Tolerance in a Fragaria F2 Population. In Proceedings of the XVI EUCARPIA Symposium on Fruit Breeding and Genetics 1412; International Society for Horticultural Science: Leuven (Korbeek-Lo), Belgium, 2023; pp. 111–116. [Google Scholar]
- Demiral, M.A. Effect of Salt Stress on Concentration of Nitrogen and Phosphorus in Root and Leaf of Strawberry Plant. Eurasian J. Soil Sci. 2017, 6, 357–364. [Google Scholar] [CrossRef]
- Orsini, F.; Alnayef, M.; Bona, S.; Maggio, A.; Gianquinto, G. Low Stomatal Density and Reduced Transpiration Facilitate Strawberry Adaptation to Salinity. Environ. Exp. Bot. 2012, 81, 1–10. [Google Scholar] [CrossRef]
- Turhan, E.; Eris, A. Changes of Growth, Amino Acids, and Ionic Composition in Strawberry Plants under Salt Stress Conditions. Commun. Soil Sci. Plant Anal. 2009, 40, 3308–3322. [Google Scholar] [CrossRef]
- Turhan, E.; Eris, A. Changes of Micronutrients, Dry Weight, and Chlorophyll Contents in Strawberry Plants Under Salt Stress Conditions. Commun. Soil Sci. Plant Anal. 2005, 36, 1021–1028. [Google Scholar] [CrossRef]
- Turhan, E.; Eris, A. Effects of Sodium Chloride Applications and Different Growth Media on Ionic Composition in Strawberry Plant. J. Plant Nutr. 2005, 27, 1653–1665. [Google Scholar] [CrossRef]
- Gulen, H.; Turhan, E.; Eris, A. Changes in Peroxidase Activities and Soluble Proteins in Strawberry Varieties under Salt-Stress. Acta Physiol. Plant. 2006, 28, 109–116. [Google Scholar] [CrossRef]
- Alnayef, M.; Hartley, J.; Orsini, F.; Di Silvestro, R.; Sanoubar, R.; Marotti, I.; Gianquinto, G.; Dinelli, G.; Puniran-Hartley, N. Using Salinity to Improve Nutritional and Market Value of Strawberries. Aust. J. Crop Sci. 2022, 16, 7–17. [Google Scholar] [CrossRef]
- Pirlak, L.; Eşitken, A. Salinity Effects on Growth, Proline and Ion Accumulation in Strawberry Plants. Acta Agric. Scand. Sect. B—Soil Plant Sci. 2004, 54, 189–192. [Google Scholar] [CrossRef]
- Rahimi, A.; Biglarifard, A. Influence of NaCl Salinity and Different Substracts on Plant Growth, Mineral Nutrient Assimilation and Fruit Yield of Strawberry. Not. Bot. Horti Agrobot. Cluj-Napoca 2011, 39, 219–226. [Google Scholar] [CrossRef]
- Ondrašek, G.; Romić, D.; Romić, M.; Duralija, B.; Mustač, I. Strawberry Growth and Fruit Yield in a Saline Environment. Agric. Conspec. Sci. 2006, 71, 155–158. [Google Scholar]
- Alhamza Juameer, R.A.; Assi Obaid, A.; Ayed Yousif, S. Improved Micropropagation and Salinity Tolerance of Strawberry (Fragaria × ananassa L.) Cv. Albion. Rev. Bionatura 2022, 7, 34. [Google Scholar] [CrossRef]
- Yİldİz, K.; Uzal, Ö.; Yİlmaz, H. Consequences of NaCl Salinity on Growth and Ion Accumulation in Selected Strawberry Cultivars. Eur. J. Hortic. Sci. 2008, 73, 69–72. [Google Scholar] [CrossRef]
- Sun, Y.; Niu, G.; Wallace, R.; Masabni, J.; Gu, M. Relative Salt Tolerance of Seven Strawberry Cultivars. Horticulturae 2015, 1, 27–43. [Google Scholar] [CrossRef]
- Chan, Z.; Shi, H. Improved Abiotic Stress Tolerance of Bermudagrass by Exogenous Small Molecules. Plant Signal. Behav. 2015, 10, e991577. [Google Scholar] [CrossRef]
- Averina, N.G.; Gritskevich, E.R.; Vershilovskaya, I.V.; Usatov, A.V.; Yaronskaya, E.B. Mechanisms of Salt Stress Tolerance Development in Barley Plants under the Influence of 5-Aminolevulinic Acid. Russ. J. Plant Physiol. 2010, 57, 792–798. [Google Scholar] [CrossRef]
- Wu, Y.; Liao, W.; Dawuda, M.M.; Hu, L.; Yu, J. 5-Aminolevulinic Acid (ALA) Biosynthetic and Metabolic Pathways and Its Role in Higher Plants: A Review. Plant Growth Regul. 2019, 87, 357–374. [Google Scholar] [CrossRef]
- Wu, Y.; Jin, X.; Liao, W.; Hu, L.; Dawuda, M.M.; Zhao, X.; Tang, Z.; Gong, T.; Yu, J. 5-Aminolevulinic Acid (ALA) Alleviated Salinity Stress in Cucumber Seedlings by Enhancing Chlorophyll Synthesis Pathway. Front. Plant Sci. 2018, 9, 635. [Google Scholar] [CrossRef]
- Lu, W.; Fan, H.; Zhang, Y.; Cai, B.; Wang, X.; Xue, Z.; Li, Q. Low-Concentration NaCl Foliar Spraying Enhances Photosynthesis, Mineral Concentration, and Fruit Quality of Strawberry during Greenhouse High-Temperature Periods. BMC Plant Biol. 2025, 25, 487. [Google Scholar] [CrossRef]
- Wei, W.; Li, Q.-T.; Chu, Y.-N.; Reiter, R.J.; Yu, X.-M.; Zhu, D.-H.; Zhang, W.-K.; Ma, B.; Lin, Q.; Zhang, J.-S. Melatonin Enhances Plant Growth and Abiotic Stress Tolerance in Soybean Plants. J. Exp. Bot. 2015, 66, 695–707. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.M.; Keya, S.S.; Sahu, A.; Gupta, A.; Dhingra, A.; Tran, L.-S.P.; Mostofa, M.G. Acetic Acid: A Cheap but Chief Metabolic Regulator for Abiotic Stress Tolerance in Plants. Stress. Biol. 2024, 4, 34. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.P.; Liu, J.; Cao, R.X.; Huang, Y.J.; Hall, A.M.; Guo, C.B.; Wang, L.J. Effects of 5-Aminolevulinic Acid Treatment on Photosynthesis of Strawberry. Photosynthetica 2017, 55, 276–284. [Google Scholar] [CrossRef]
- Wu, W.; He, S.; An, Y.; Cao, R.; Sun, Y.; Tang, Q.; Wang, L. Hydrogen Peroxide as a Mediator of 5-aminolevulinic Acid-induced Na+ Retention in Roots for Improving Salt Tolerance of Strawberries. Physiol. Plant. 2019, 167, 5–20. [Google Scholar] [CrossRef]
- Zhong, Y.; Wei, X.; Zhang, J.; Wang, L. Transcriptome Sequencing Reveals Jasmonate Playing a Key Role in ALA-Induced Osmotic Stress Tolerance in Strawberry. BMC Plant Biol. 2025, 25, 41. [Google Scholar] [CrossRef]
- Li, J.; Liu, J.; Zhu, T.; Zhao, C.; Li, L.; Chen, M. The Role of Melatonin in Salt Stress Responses. Int. J. Mol. Sci. 2019, 20, 1735. [Google Scholar] [CrossRef]
- Pardo-Hernández, M.; López-Delacalle, M.; Rivero, R.M. ROS and NO Regulation by Melatonin under Abiotic Stress in Plants. Antioxidants 2020, 9, 1078. [Google Scholar] [CrossRef]
- Georgiadou, E.C.; García, C.J.; Taliadorou, A.M.; Gedeon, S.; Valanides, N.; Varaldo, A.; Gohari, G.; Balsells-Llauradó, M.; Alcázar, R.; Hertog, M.L. Pre-Harvest Application of Sodium Alginate Functionalized with Melatonin Enhances Secondary Metabolism in Strawberry Fruit. Curr. Plant Biol. 2025, 43, 100515. [Google Scholar] [CrossRef]
- Zahedi, S.M.; Hosseini, M.S.; Abadía, J.; Marjani, M. Melatonin Foliar Sprays Elicit Salinity Stress Tolerance and Enhance Fruit Yield and Quality in Strawberry (Fragaria × ananassa Duch.). Plant Physiol. Biochem. 2020, 149, 313–323. [Google Scholar] [CrossRef]
- Bandurska, H. Salicylic Acid: An Update on Biosynthesis and Action in Plant Response to Water Deficit and Performance Under Drought. In Salicylic Acid; Hayat, S., Ahmad, A., Alyemeni, M.N., Eds.; Springer: Dordrecht, The Netherlands, 2013; pp. 1–14. [Google Scholar]
- Karlidag, H.; Yildirim, E.; Turan, M. Melhora Do Efeito de Estresse Salino Em Morango Por Adição de Ácido Salicílico. Sci. Agric. 2009, 66, 180–187. [Google Scholar] [CrossRef]
- Jamali, B.; Eshghi, S. Salicylic Acid–Induced Salinity Redressal in Hydroponically Grown Strawberry. Commun. Soil Sci. Plant Anal. 2015, 46, 1482–1493. [Google Scholar] [CrossRef]
- Samadi, S.; Habibi, G.; Vaziri, A. Effects of Exogenous Salicylic Acid on Antioxidative Responses, Phenolic Metabolism and Photochemical Activity of Strawberry under Salt Stress. Iran. J. Plant Physiol. 2019, 9, 2685–2694. [Google Scholar]
- Roshdy, A.E.-D.; Alebidi, A.; Almutairi, K.; Al-Obeed, R.; Elsabagh, A. The Effect of Salicylic Acid on the Performances of Salt Stressed Strawberry Plants, Enzymes Activity, and Salt Tolerance Index. Agronomy 2021, 11, 775. [Google Scholar] [CrossRef]
- Faghih, S.; Ghobadi, C.; Zarei, A. Response of Strawberry Plant cv. Camarosa to Salicylic Acid and Methyl Jasmonate Application under Salt Stress Condition. J. Plant Growth Regul. 2017, 36, 651–659. [Google Scholar] [CrossRef]
- Zhang, Y.; Deng, M.; Lin, B.; Tian, S.; Chen, Y.; Huang, S.; Lin, Y.; Li, M.; He, W.; Wang, Y.; et al. Physiological and Transcriptomic Evidence Revealed the Role of Exogenous GABA in Enhancing Salt Tolerance in Strawberry Seedlings. BMC Genom. 2025, 26, 196. [Google Scholar] [CrossRef] [PubMed]
- Golnari, S.; Vafaee, Y.; Nazari, F.; Ghaderi, N. Gamma-Aminobutyric Acid (GABA) and Salinity Impacts Antioxidative Response and Expression of Stress-Related Genes in Strawberry Cv. Aromas. Braz. J. Bot. 2021, 44, 639–651. [Google Scholar] [CrossRef]
- Nabi, F.; Sarfaraz, A.; Kama, R.; Kanwal, R.; Li, H. Structure-Based Function of Humic Acid in Abiotic Stress Alleviation in Plants: A Review. Plants 2025, 14, 1916. [Google Scholar] [CrossRef]
- Canellas, L.P.; Da Silva, R.M.; Busato, J.G.; Olivares, F.L. Humic Substances and Plant Abiotic Stress Adaptation. Chem. Biol. Technol. Agric. 2024, 11, 66. [Google Scholar] [CrossRef]
- Mora, V.; Olaetxea, M.; Bacaicoa, E.; Baigorri, R.; Fuentes, M.; Zamarreño, A.M.; Garcia-Mina, J.M. Abiotic Stress Tolerance in Plants: Exploring the Role of Nitric Oxide and Humic Substances. In Nitric Oxide in Plants: Metabolism and Role in Stress Physiology; Khan, M.N., Mobin, M., Mohammad, F., Corpas, F.J., Eds.; Springer International Publishing: Cham, Switzerland, 2014; pp. 243–264. [Google Scholar]
- Saidimoradi, D.; Ghaderi, N.; Javadi, T. Salinity Stress Mitigation by Humic Acid Application in Strawberry (Fragaria × ananassa Duch.). Sci. Hortic. 2019, 256, 108594. [Google Scholar] [CrossRef]
- Mirfattahi, Z.; Eshghi, S.; Gharaghani, A.; Etemadi, M.; Moghadam, A. Acetic Acid Application Timing on Strawberry: An Alleviator for Salinity Adverse Effect. Acta Physiol. Plant 2022, 44, 139. [Google Scholar] [CrossRef]
- Moradi, P.; Vafaee, Y.; Mozafari, A.A.; Tahir, N.A. Silicon Nanoparticles and Methyl Jasmonate Improve Physiological Response and Increase Expression of Stress-Related Genes in Strawberry cv. Paros under Salinity Stress. Silicon 2022, 14, 10559–10569. [Google Scholar] [CrossRef]
- Zeid, I.M.A.; Mohamed, F.H.; Metwali, E.M. Responses of Two Strawberry Cultivars to NaCl-Induced Salt Stress under the Influence of ZnO Nanoparticles. Saudi J. Biol. Sci. 2023, 30, 103623. [Google Scholar] [CrossRef]
- Evelin, H.; Kapoor, R.; Giri, B. Arbuscular Mycorrhizal Fungi in Alleviation of Salt Stress: A Review. Ann. Bot. 2009, 104, 1263–1280. [Google Scholar] [CrossRef]
- Boorboori, M.R.; Lackóová, L. Arbuscular Mycorrhizal Fungi and Salinity Stress Mitigation in Plants. Front. Plant Sci. 2025, 15, 1504970. [Google Scholar] [CrossRef] [PubMed]
- Haque, S.I.; Matsubara, Y. Salinity Tolerance and Sodium Localization in Mycorrhizal Strawberry Plants. Commun. Soil Sci. Plant Anal. 2018, 49, 2782–2792. [Google Scholar] [CrossRef]
- Karlidag, H.; Yildirim, E.; Turan, M.; Pehluvan, M.; Donmez, F. Plant Growth-Promoting Rhizobacteria Mitigate Deleterious Effects of Salt Stress on Strawberry Plants (Fragaria × ananassa). HortScience 2013, 48, 563–567. [Google Scholar] [CrossRef]
- Yavuz, A.; Erdogan, U.; Turan, M.; Argın, S.; Kocaman, A. Synergistic Strategies for Overcoming Salt Stress in Strawberry Farming: The Use of Organic Fertilizers and Plant Growth Promoting Rhizobacteria (PGPR). Appl. Fruit. Sci. 2024, 66, 1787–1797. [Google Scholar] [CrossRef]
- Redondo-Gómez, S.; Mesa-Marín, J.; Pérez-Romero, J.A.; López-Jurado, J.; García-López, J.V.; Mariscal, V.; Molina-Heredia, F.P.; Pajuelo, E.; Rodríguez-Llorente, I.D.; Flowers, T.J. Consortia of Plant-Growth-Promoting Rhizobacteria Isolated from Halophytes Improve Response of Eight Crops to Soil Salinization and Climate Change Conditions. Agronomy 2021, 11, 1609. [Google Scholar] [CrossRef]
- Sangiorgio, D.; Cellini, A.; Spinelli, F.; Donati, I. Promoting Strawberry (Fragaria × ananassa) Stress Resistance, Growth, and Yield Using Native Bacterial Biostimulants. Agronomy 2023, 13, 529. [Google Scholar] [CrossRef]
- Esmaeilizadeh, M.; Malekzadeh Shamsabad, M.R.; Roosta, H.R.; Dąbrowski, P.; Rapacz, M.; Zieliński, A.; Wróbel, J.; Kalaji, H.M. Manipulation of Light Spectrum Can Improve the Performance of Photosynthetic Apparatus of Strawberry Plants Growing under Salt and Alkalinity Stress. PLoS ONE 2021, 16, e0261585. [Google Scholar] [CrossRef]
- Malekzadeh Shamsabad, M.R.; Esmaeilizadeh, M.; Roosta, H.R.; Dąbrowski, P.; Telesiński, A.; Kalaji, H.M. Supplemental Light Application Can Improve the Growth and Development of Strawberry Plants under Salinity and Alkalinity Stress Conditions. Sci. Rep. 2022, 12, 9272. [Google Scholar] [CrossRef] [PubMed]
- Malekzadeh, M.R.; Roosta, H.R.; Kalaji, H.M. Enhancing Strawberry Resilience to Saline, Alkaline, and Combined Stresses with Light Spectra: Impacts on Growth, Enzymatic Activity, Nutrient Uptake, and Osmotic Regulation. BMC Plant Biol. 2024, 24, 1038. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Chu, S.; Zhang, D.; Hayat, K.; Zhang, X.; Chi, Y.; Ma, X.; Chen, X.; Yang, H.; Ding, W.; et al. Alleviation of Salt Stress in Strawberries by Hydrogen-rich Water: Physiological, Transcriptomic and Metabolomic Responses. Physiol. Plant. 2025, 177, e70151. [Google Scholar] [CrossRef] [PubMed]
- Roychowdhury, R.; Das, S.P.; Gupta, A.; Parihar, P.; Chandrasekhar, K.; Sarker, U.; Kumar, A.; Ramrao, D.P.; Sudhakar, C. Multi-Omics Pipeline and Omics-Integration Approach to Decipher Plant’s Abiotic Stress Tolerance Responses. Genes 2023, 14, 1281. [Google Scholar] [CrossRef]
- Zhang, J.-L.; Shi, H. Physiological and Molecular Mechanisms of Plant Salt Tolerance. Photosynth. Res. 2013, 115, 1–22. [Google Scholar] [CrossRef]
- Chen, H.; He, X.; Qing, L.; Wu, Y.; Ren, C.; Sheriff, R.E.; Zhu, C. Real-World Single Image Super-Resolution: A Brief Review. Inf. Fusion 2022, 79, 124–145. [Google Scholar] [CrossRef]
- Sandhu, D.; Pudussery, M.V.; Ferreira, J.F.; Liu, X.; Pallete, A.; Grover, K.K.; Hummer, K. Variable Salinity Responses and Comparative Gene Expression in Woodland Strawberry Genotypes. Sci. Hortic. 2019, 254, 61–69. [Google Scholar] [CrossRef]
- Wang, S.; Shi, M.; Zhang, Y.; Xie, X.; Sun, P.; Fang, C.; Zhao, J. FvMYB24, a Strawberry R2R3-MYB Transcription Factor, Improved Salt Stress Tolerance in Transgenic Arabidopsis. Biochem. Biophys. Res. Commun. 2021, 569, 93–99. [Google Scholar] [CrossRef]
- Chu, C.-Y.; Lin, L.-F.; Lai, S.-C.; Yang, J.-H.; Chou, M.-L. FaTEDT1L of Octoploid Cultivated Strawberry Functions as a Transcriptional Activator and Enhances Abiotic Stress Tolerance in Transgenic Arabidopsis. Int. J. Mol. Sci. 2024, 25, 10091. [Google Scholar] [CrossRef]
- Singh, N.K.; Nelson, D.E.; Kuhn, D.; Hasegawa, P.M.; Bressan, R.A. Molecular Cloning of Osmotin and Regulation of Its Expression by ABA and Adaptation to Low Water Potential. Plant Physiol. 1989, 90, 1096–1101. [Google Scholar] [CrossRef]
- Husaini, A.M.; Abdin, M.Z. Development of Transgenic Strawberry (Fragaria × ananassa Duch.) Plants Tolerant to Salt Stress. Plant Sci. 2008, 174, 446–455. [Google Scholar] [CrossRef]
- Liang, J.; Zheng, J.; Wu, Z.; Wang, H. Strawberry FaNAC2 Enhances Tolerance to Abiotic Stress by Regulating Proline Metabolism. Plants 2020, 9, 1417. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Li, H.; Wei, Y.; Han, J.; Wang, Y.; Li, X.; Zhang, L.; Han, D. Overexpression of a Fragaria Vesca NAM, ATAF, and CUC (NAC) Transcription Factor Gene (FvNAC29) Increases Salt and Cold Tolerance in Arabidopsis thaliana. Int. J. Mol. Sci. 2024, 25, 4088. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Zhang, W.; Li, H.; Yao, A.; Ma, Z.; Kang, R.; Guo, Y.; Li, X.; Yu, W.; Han, D. Overexpression of a Fragaria × ananassa AP2/ERF Transcription Factor Gene (FaTINY2) Increases Cold and Salt Tolerance in Arabidopsis thaliana. Int. J. Mol. Sci. 2025, 26, 2109. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, Y.; Gao, W.; Tian, S.; Lin, B.; Gu, X.; Lin, Y.; Li, M.; Wang, Y.; He, W. Characterization of Superoxide Dismutase (SOD) Gene Family and Their Responses to Salinity Stress and Fruit Development in Octoploid Strawberry. Agronomy 2024, 14, 2514. [Google Scholar] [CrossRef]
- Lei, D.; Lin, Y.; Luo, M.; Zhao, B.; Tang, H.; Zhou, X.; Yao, W.; Zhang, Y.; Wang, Y.; Li, M. Genome-Wide Investigation of G6PDH Gene in Strawberry: Evolution and Expression Analysis during Development and Stress. Int. J. Mol. Sci. 2022, 23, 4728. [Google Scholar] [CrossRef]
- Li, H.; Yue, M.; Jiang, L.; Liu, Y.; Zhang, N.; Liu, X.; Ye, Y.; Lin, X.; Zhang, Y.; Lin, Y. Genome-Wide Identification of Strawberry C2H2-ZFP C1-2i Subclass and the Potential Function of FaZAT10 in Abiotic Stress. Int. J. Mol. Sci. 2022, 23, 13079. [Google Scholar] [CrossRef]
- Kula, N.; Öztürk Erdem, S.; Ünal, D. Salt Tolerance Mechanisms in Strawberry Cultivars: Comparing the Physiological and Molecular Responses of Petaluma and Cabrillo. Appl. Fruit. Sci. 2025, 67, 379. [Google Scholar] [CrossRef]
- Zhang, H.; Kang, H.; Su, C.; Qi, Y.; Liu, X.; Pu, J. Genome-Wide Identification and Expression Profile Analysis of the NAC Transcription Factor Family during Abiotic and Biotic Stress in Woodland Strawberry. PLoS ONE 2018, 13, e0197892. [Google Scholar] [CrossRef]
- Li, Z.; Xie, Q.; Yan, J.; Chen, J.; Chen, Q. Genome-Wide Identification and Characterization of the Abiotic-Stress-Responsive GRF Gene Family in Diploid Woodland Strawberry (Fragaria vesca). Plants 2021, 10, 1916. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Zhong, J.; Zhang, L.; Wang, Y.; Song, P.; Liu, W.; Li, X.; Han, D. Overexpression of a Fragaria vesca MYB Transcription Factor Gene (FvMYB82) Increases Salt and Cold Tolerance in Arabidopsis thaliana. Int. J. Mol. Sci. 2022, 23, 10538. [Google Scholar] [CrossRef] [PubMed]
- Crizel, R.L.; Perin, E.C.; Vighi, I.L.; Woloski, R.; Seixas, A.; da Silva Pinto, L.; Rombaldi, C.V.; Galli, V. Genome-Wide Identification, and Characterization of the CDPK Gene Family Reveal Their Involvement in Abiotic Stress Response in Fragaria × ananassa. Sci. Rep. 2020, 10, 11040. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Lin, Y.; Wang, L.; Peng, Y.; Yang, M.; Jiang, Y.; Hou, G.; Liu, X.; Li, M.; Zhang, Y. Genome-Wide Identification and Expression Profiling Reveal the Regulatory Role of U-Box E3 Ubiquitin Ligase Genes in Strawberry Fruit Ripening and Abiotic Stresses Resistance. Front. Plant Sci. 2023, 14, 1171056. [Google Scholar] [CrossRef]
- Kong, J.; Xiong, R.; Qiu, K.; Lin, X.; Li, D.; Lu, L.; Zhou, J.; Zhu, S.; Liu, M.; Sun, Q. Genome-Wide Identification and Characterization of the Laccase Gene Family in Fragaria vesca and Its Potential Roles in Response to Salt and Drought Stresses. Plants 2024, 13, 3366. [Google Scholar] [CrossRef]
- Li, S.; Chang, L.; Sun, R.; Dong, J.; Zhong, C.; Gao, Y.; Zhang, H.; Wei, L.; Wei, Y.; Zhang, Y. Combined Transcriptomic and Metabolomic Analysis Reveals a Role for Adenosine Triphosphate-Binding Cassette Transporters and Cell Wall Remodeling in Response to Salt Stress in Strawberry. Front. Plant Sci. 2022, 13, 996765. [Google Scholar] [CrossRef]
- López, M.-E.; Roquis, D.; Becker, C.; Denoyes, B.; Bucher, E. DNA methylation dynamics during stress response in woodland strawberry (Fragaria vesca). Hortic. Res. 2022, 9, uhac174. [Google Scholar] [CrossRef]
- Fernando, V.D. Major Transcription Factor Families Involved in Salinity Stress Tolerance in Plants. Transcription Factors for Abiotic Stress Tolerance in Plants; Academic Press: Cambridge, MA, USA, 2020; pp. 99–109. [Google Scholar]
- Shao, H.; Wang, H.; Tang, X. NAC Transcription Factors in Plant Multiple Abiotic Stress Responses: Progress and Prospects. Front. Plant Sci. 2015, 6, 902. [Google Scholar] [CrossRef]
- Licausi, F.; Ohme-Takagi, M.; Perata, P. APETALA 2/Ethylene Responsive Factor (AP 2/ERF) Transcription Factors: Mediators of Stress Responses and Developmental Programs. New Phytol. 2013, 199, 639–649. [Google Scholar] [CrossRef]
- Tibbs Cortes, L.; Zhang, Z.; Yu, J. Status and Prospects of Genome-wide Association Studies in Plants. Plant Genome 2021, 14, e20077. [Google Scholar] [CrossRef]


| Genotype | Salinity Tolerance Level | Experimental Setup/Salinity Treatment | Key Physiological & Biochemical Traits | Yield & Survival Performance | References |
|---|---|---|---|---|---|
| Chilean strawberry genotypes ‘Bau’ (F. chiloensis ssp. chiloensis f. chiloensis)-cultivated and the wild ‘Cucao’ (F. chiloensis ssp. chiloensis f. patagonica) | Tolerant | The experiments were conducted in a polycarbonate greenhouse with natural light and temperature. Stress levels were 0, 30, and 60 mM NaCl solution (EC = 1.6, 3.4, and 5.7 dS m−1, respectively) | Leaf relative water content (LRWC), pigment concentrations, proline, malondialdehyde (MDA) concentration, total soluble sugars (TSS), and titratable acidity (TA) | No significant yield losses compared to “Camarosa” cultivar (25% yield loss at severe stress). Moreover, no differences were detected in fruit diameter (mm) or fruit length (mm) | [40] |
| F. × ananassa ‘Korona’ | Relatively tolerant | Strawberry plants grown in a sandy medium and watered with solutions of moderate (ECe = 3.9 dS/m), and excessive (ECe = 7.5 dS/m) NaCl concentrations | Significant increase in reduced glutathione. Maintained high fruit quality and better taste under stress | Higher yield stability compared to the more sensitive cultivar ‘Elsanta’ under equivalent stress (fresh weight reduction of 26% versus 46%) | [33] |
| F. × ananassa ‘Elsanta’ | Relatively tolerant | Strawberry plants grown in growth chamber in pots watered with 10, 20, or 40 mM NaCl | Low stomatal density/reduced transpiration/delay in the accumulation of Cl− ions in the shoot | No significant yield reduction under all NaCl treatments | [43] |
| F. × ananassa ‘Albion’ | Relatively tolerant | USDA-ARS U.S. Salinity Laboratory CA, using 12 raised beds to evaluate five strawberry cultivars under four salinity levels (0.7, 1.0, 1.5, and 2.5 dS m−1 | Superior chloride exclusion from roots and petioles. High total soluble sugars (Brix%) regardless of salinity treatment | It exhibited the least mean relative reduction in fruit yield, marketable fruit size survival (94%) while maintaining its fruit taste compared to ‘San Andreas’, ‘Benicia’, ‘Ventana’, and ‘Monterey’ | [17] |
| F. × ananassa ‘Rociera’ and ‘Camarosa’ | ‘Rociera’: relatively higher tolerance ‘Camarosa’: relatively lower tolerance | Greenhouse, NaCl solution with EC = 2 dS m−1; and (c) NaCl solution with EC = 4 dS m−1 | Above-ground plant mass (AGPM), total plant fresh and dry biomass, root fresh and dry weight, length, weight, and diameter of each individual fruit, overall fruit production, and various antioxidants | ‘Rociera’: reduction in the plant growth parameters, the number of leaves and plant water content under severe salinity conditions. ‘Camarosa’: low salinity tolerance index, low plant water content and growth parameters, but high fruit sucrose, fructose, glucose, and total sugar concentration, as well as sweetness index | [22] |
| F. × ananassa ‘Camarosa’ | ‘Camarosa’: tolerant | Greenhouse Seedlings grown in 9 L pots containing a mixture of soil and vermiculite Salt solution of 40 mmol/L NaCl in distilled water); L2 (stress level 2—salt solution of 80 mmol/L NaCl in distilled water) for a week | Yield of fruit, fresh biomass, and root biomass CO2 assimilation Content of sodium (Na) and chloride (Cl) in leaves Phenylalanine ammonia lyase (PAL), peroxidase (POD), and polyphenoloxidase (PPO) activity Total content and the content of reducing sugars Various antioxidants | Mild salt stress did not affect fruit yield The lower level of mild salt stress positively affected photosynthesis and fresh biomass Mild salt stress improved (a) the content of antioxidant compounds and sucrose in the fruit. (b) the content of anthocyanins and sucrose. Higher levels of salt stress induced root growth and the accumulation of phenolic compounds | [20] |
| Functional Category | Genes/Gene Families | Functional Relevance in Abiotic Stress | Reference |
|---|---|---|---|
| Ion homeostasis and transport | SOS1, SOS2, SOS3, NHX1, NHX2, CLC_C, CLC_G, KUP6, KUP7, SLAH3, ALMT12, ABCB/C/G transporters | Regulation of Na+ and Cl− transport, vacuolar sequestration, and K+ balance, contributing to salt tolerance and ionic homeostasis | [98,99,100] |
| Osmotic adjustment and water balance | Osmotin (PR-5), LEA3, P5CS1, P5CS2, ProDH2, P5CDH, NCED1, NCED3, SnRK2.4, SnRK2.6, Aquaporins (PIP, TIP, NIP, SIP) | Maintenance of cellular turgor and water potential through compatible solute accumulation, ABA-mediated regulation, and water transport | [98,100,101,102,103,104,105] |
| Oxidative stress regulation and redox balance | FaCSDs, FaFSDs, FaMSDs (FaMSD5), CAT, POD, APX, FaG6PDH1–FaG6PDH19, GSTU5, CHS, CHI, F3H, DFR, ANS | Detoxification of reactive oxygen species (ROS), maintenance of redox homeostasis, and antioxidant protection under stress | [99,106,107,108,109] |
| Transcriptional control of stress responses | FvNAC01–37, FaNAC2, FvNAC29, FaTINY2 (AP2/ERF), FvMYB24, FvMYB82, MYB1, MYB5, MYB30, MYB33, MYB101, MYB108, FaZAT10 (C2H2-ZFP), FvGRF1–10, FaTEDT1L (HD-ZIP IV) | Regulation of downstream gene networks controlling ion homeostasis, osmotic adjustment, oxidative stress responses, growth–stress balance, and ABA signaling | [99,100,103,104,105,108,109,110,111,112] |
| Signal transduction and post-translational regulation | FaCDPK1–FaCDPK11, RBOH (CDPK-linked), FaU-box E3 ligases (FaU-box98, FaU-box127, FaU-box136, etc.) | Calcium- and ROS-mediated signaling and ubiquitin-dependent protein turnover modulating stress perception and response intensity | [113,114] |
| Cell wall remodeling and structural maintenance | FvLAC1–57 (notably FvLAC24, FvLAC32, FvLAC51), CesA, XHT, EXP, PL, lignin- and cellulose-associated DEGs | Modification of cell wall composition and mechanical properties contributing to stress endurance and cultivar-dependent tolerance | [115,116] |
| Epigenetic regulation | Stress-associated DMRs (differentially methylated regions) | DNA methylation changes affect transcriptional plasticity and stress memory | [117] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Passa, K.; Gerakari, M.; Goufa, M.; Tani, E.; Papasotiropoulos, V. Salinity Stress in Strawberry (Fragaria × ananassa Duch.): Biological Intervention Strategies and Breeding Approaches for Salt-Tolerant Cultivars. Plants 2026, 15, 432. https://doi.org/10.3390/plants15030432
Passa K, Gerakari M, Goufa M, Tani E, Papasotiropoulos V. Salinity Stress in Strawberry (Fragaria × ananassa Duch.): Biological Intervention Strategies and Breeding Approaches for Salt-Tolerant Cultivars. Plants. 2026; 15(3):432. https://doi.org/10.3390/plants15030432
Chicago/Turabian StylePassa, Kondylia, Maria Gerakari, Maria Goufa, Eleni Tani, and Vasileios Papasotiropoulos. 2026. "Salinity Stress in Strawberry (Fragaria × ananassa Duch.): Biological Intervention Strategies and Breeding Approaches for Salt-Tolerant Cultivars" Plants 15, no. 3: 432. https://doi.org/10.3390/plants15030432
APA StylePassa, K., Gerakari, M., Goufa, M., Tani, E., & Papasotiropoulos, V. (2026). Salinity Stress in Strawberry (Fragaria × ananassa Duch.): Biological Intervention Strategies and Breeding Approaches for Salt-Tolerant Cultivars. Plants, 15(3), 432. https://doi.org/10.3390/plants15030432

