The Effect of Post-Emergence Application of Biostimulants and Soil Amendments in Maize Cultivation on the Growth and Yield of Plants
Abstract
1. Introduction
2. Results
2.1. Greenhouse Research
2.2. Field Research
3. Discussion
4. Materials and Methods
4.1. Greenhouse Research
4.2. Field Research
- Very humid: 2.5 < k ≤ 3.0
- Very dry: 0.4 < k ≤ 0.7
- Slightly humid: 1.6 < k ≤ 2.0
- Slightly dry: 1.0 < k ≤ 1.3
- Optimum: 1.3 < k ≤ 1.6
- Humid: 2.0 < k ≤ 2.5
- Extremely humid: k > 3.0
- Extremely dry: k ≤ 0.4
- Dry: 0.7 < k ≤ 1.0
4.3. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
F0 | minimal fluorescence of dark-adapted state |
Fv | variable fluorescence |
Fm | maximum fluorescence of dark-adapted state |
Fv/Fm | maximum quantum yield of PSII photochemistry |
ChlM | chlorophyll content |
FlvM | flavonol content |
AnthM | anthocyanin content |
TKW | 1000 kernel weight |
HLW | hectoliter weight |
AM | arbuscular mycorrhiza |
References
- Liliane, T.; Mutengwa, C. Factors Affecting Yield of Crops, Agronomy—Climate Change & Food Security; IntechOpen: Amanullah, Afghanistan, 2020; Available online: https://www.intechopen.com/chapters/70658 (accessed on 13 February 2024).
- Idziak, R.; Waligóra, H.; Szuba, V. The influence of agronomical and chemical weed control on weeds of corn. J. Plant Prot. Res. 2022, 62, 215–222. [Google Scholar] [CrossRef]
- Basso, B.; Ritchie, J. Temperature and drought effects on maize yield. Nat. Clim. Chang. 2014, 4, 233. [Google Scholar] [CrossRef]
- Caverzan, A.; Casassola, A.; Brammer, S.P. Reactive oxygen species and antioxidant enzymes involved in plant tolerance to stress. In Abiotic and Biotic Stress in Plants-Recent Advances and Future Perspectives; Shanker, A.K., Shanker, C., Eds.; IntechOpen: London, UK, 2016. [Google Scholar] [CrossRef]
- Sun, Z.; Yang, R.; Wang, J.; Zhou, P.; Gong, Y.; Gao, F.; Wang, C. Effects of Nutrient Deficiency on Crop Yield and Soil Nutrients Under Winter Wheat–Summer Maize Rotation System in the North China Plain. Agronomy 2024, 14, 2690. [Google Scholar] [CrossRef]
- Bhattacharyya, S.S.; Ros, G.H.; Furtak, K.; Iqbal, H.M.N.; Parra-Saldìvar, R. Soil carbon sequestration—An interplay between soil microbial community and soil organic matter dynamics. Sci. Total Environ. 2022, 815, 152928. [Google Scholar] [CrossRef] [PubMed]
- Du Jardin, P. Plant biostimulants: Definition, concept, main categories and regulation. Sci. Hortic. 2015, 196, 3–14. [Google Scholar] [CrossRef]
- Ali, S.; Jan, A.; Sohail, A.; Khan, A.; Khan, M.I.; Zhang, J.; Daur, I. Soil amendments strategies to improve water-use efficiency and productivity of maize under different irrigation conditions. Agric. Water Manag. 2018, 210, 88–95. [Google Scholar] [CrossRef]
- Ranum, P.; Pablo, J.; Peña, R.; Garcia-Casal, M.N. Global maize production, utilization, and consumption. Ann. N. Y. Acad. Sci. 2014, 1312, 105–112. [Google Scholar] [CrossRef]
- Patil, H.; Athalye, A. Valorization of Corn Husk Waste for Textile Applications. J. Nat. Fibers 2023, 20, 2156017. [Google Scholar] [CrossRef]
- USDA Foreign Agricultural Service. Production–Corn. Available online: https://www.fas.usda.gov/data/production/commodity/0440000 (accessed on 13 February 2024).
- Ocwa, A.; Mohammed, S.; Mousavi, S.M.N.; Illés, Á.; Bojtor, C.; Ragán, P.; Rátonyi, T.; Harsányi, H. Maize grain yield and quality improvement through biostimulant application: A systematic review. J. Soil Sci. Plant Nutr. 2024, 24, 1609–1649. [Google Scholar] [CrossRef]
- Onyeaka, H.N.; Akinsemolu, A.A.; Siyanbola, K.F.; Adetunji, V.A. Green Microbe Profile: Rhizophagus intraradices—A Review of Benevolent Fungi Promoting Plant Health and Sustainability. Microbiol. Res. 2024, 15, 1028–1049. [Google Scholar] [CrossRef]
- Gianinazzi-pearson, V. Plant cell responses to arbuscular mycorrhizal fungi: Getting to the roots of the symbiosis. Plant Cell 1996, 8, 1871–1883. [Google Scholar] [CrossRef] [PubMed]
- Bhantana, P.; Rana, M.S.; Sun, X.-c.; Moussa, M.G.; Saleem, M.H.; Syaifudin, M.; Shah, A.; Poudel, A.; Pun, A.B.; Bhat, M.A. Arbuscular mycorrhizal fungi and its major role in plant growth, zinc nutrition, phosphorous regulation and phytoremediation. Symbiosis 2021, 84, 19–37. [Google Scholar] [CrossRef]
- Khaliq, A.; Perveen, S.; Alamer, K.H.; Zia Ul Haq, M.; Rafique, Z.; Alsudays, I.M.; Althobaiti, A.T.; Saleh, M.A.; Hussain, S.; Attia, H. Arbuscular Mycorrhizal Fungi Symbiosis to Enhance Plant–Soil Interaction. Sustainability 2022, 14, 7840. [Google Scholar] [CrossRef]
- Vlček, V.; Pohanka, M. Glomalin—An interesting protein part of the soil organic matter. Soil Water Res. 2020, 15, 67–74. [Google Scholar] [CrossRef]
- Öpik, M.; Moora, M.; Liira, J.; Zobel, M. Composition of root-colonizing arbuscular mycorrhizal fungal communities in different ecosystems around the globe. J. Ecol. 2006, 94, 778–790. [Google Scholar] [CrossRef]
- Delaeter, M.; Magnin-Robert, M.; Randoux, B.; Lounès-Hadj Sahraoui, A. Arbuscular Mycorrhizal Fungi as Biostimulant and Biocontrol Agents: A Review. Microorganisms 2024, 12, 1281. [Google Scholar] [CrossRef]
- Pettit, R.E. Organic Matter, Humus, Humate, Humic acid, Fulvic Acid and Humin. Wonderful World Humus Carbon 2006. Available online: https://www.semanticscholar.org/paper/ORGANIC-MATTER-,-HUMUS-,-HUMATE-,-HUMIC-ACID-,-ACID-Pettit/bd2e61da484c14d9325d16024360a118c4809ba1 (accessed on 13 February 2025).
- Ampong, K.; Thilakaranthna, M.S.; Gorim, L.Y. Understanding the role of humic acids on crop performance and soil health. Front. Agron. 2022, 4, 848621. [Google Scholar] [CrossRef]
- Sible, C.N.; Seebauer, J.R.; Below, F.E. Plant Biostimulants: A Categorical Review, Their Implications for Row Crop Production, and Relation to Soil Health Indicators. Agronomy 2021, 11, 1297. [Google Scholar] [CrossRef]
- Berbara, R.L.L.; García, A.C. Humic substances and plant defense metabolism. In Physiological Mechanisms and Adaptation Strategies in Plants Under Changing Environment; Springer: Berlin/Heidelberg, Germany, 2014; pp. 297–319. [Google Scholar]
- Ouni, Y.; Ghnaya, T.; Montemurro, F.; Abdelly, C.; Lakhdar, A. The role of humic substances in mitigating the harmful effects of soil salinity and improve plant productivity. Int. J. Plant Prod. 2014, 8, 353–374. [Google Scholar] [CrossRef]
- Calvo, P.; Nelson, L.; Kloepper, J.W. Agricultural uses of plant biostimulants. Plant Soil 2014, 383, 3–41. [Google Scholar] [CrossRef]
- Kaya, C.; Şenbayram, M.; Akram, N.A.; Ashraf, M.; Alyemeni, M.N.; Ahmad, P. Sulfur-enriched leonardite and humic acid soil amendments enhance tolerance to drought and phosphorus deficiency stress in maize (Zea mays L.). Sci. Rep. 2020, 10, 6432. [Google Scholar] [CrossRef]
- Canellas, L.P.; Canellas, N.O.; Irineu, L.E.S.D.S.; Olivares, F.L.; Piccolo, A. Plant chemical priming by humic acids. Chem. Biol. Technol. Agric. 2020, 7, 12. [Google Scholar] [CrossRef]
- Bhatt, P.; Singh, V.K. Efect of humic acid on soil properties and crop production. A review. Indian J. Agricult. Sci. 2022, 92, 1423–1430. [Google Scholar] [CrossRef]
- Khan, A.R.; Mustafa, A.; Hyder, S.; Valipour, M.; Rizvi, Z.F.; Gondal, A.S.; Yousuf, Z.; Iqbal, R.; Daraz, U. Bacillus spp. as Bioagents: Uses and Application for Sustainable Agriculture. Biology 2022, 11, 1763. [Google Scholar] [CrossRef]
- Etesami, H.; Jeong, B.R.; Glick, B.R. Potential use of Bacillus spp. as an effective biostimulant against abiotic stresses in crops—A review. Curr. Res. Biotechnol. 2023, 5, 100128. [Google Scholar] [CrossRef]
- Fan, B.; Wang, C.; Song, X.; Ding, X.; Wu, L.; Wu, H.; Gao, X.; Borriss, R. Bacillus velezensis FZB42 in 2018: The Gram-Positive Model Strain for Plant Growth Promotion and Biocontrol. Front. Microbiol. 2018, 9, 2491. [Google Scholar] [CrossRef]
- Keshmirshekan, A.; de Souza Mesquita, L.M.; Ventura, S.P.M. Biocontrol manufacturing and agricultural applications of Bacillus velezensis. Trends Biotechnol. 2024, 42, 986–1001. [Google Scholar] [CrossRef]
- Jang, S.; Choi, S.-K.; Zhang, H.; Zhang, S.; Ryu, C.-M.; Kloepper, J.W. History of a model plant growth-promoting rhizobacterium, Bacillus velezensis GB03: From isolation to commercialization. Front. Plant Sci. 2023, 14, 1279896. [Google Scholar] [CrossRef]
- Gutierrez-Manero, F.J.; Ramos-Solano, B.; Probanza, A.; Mehouachi, J.R.; Tadeo, F.; Talon, M. The plant-growth-promoting rhizobacteria Bacillus pumilus and Bacillus licheniformis produce high amounts of physiologically active gibberellins. Physiol. Plant 2001, 111, 206–211. [Google Scholar] [CrossRef]
- Ni, S.; Wu, Y.; Zhu, N.; Leng, F.; Wang, Y. Bacillus licheniformisYB06: A Rhizosphere–Genome-Wide Analysis and Plant Growth-Promoting Analysis of a Plant Growth-Promoting Rhizobacterium Isolated from Codonopsis pilosula. Microorganisms 2024, 12, 1861. [Google Scholar] [CrossRef]
- Omer, Z.S.; Tombolini, R.; Gerhardson, B. Plant colonization by pink-pigmented facultative methylotrophic bacteria (PPFMs). FEMS Microbiol. Ecol. 2004, 47, 319–326. [Google Scholar] [CrossRef]
- Dourado, M.N.; Camargo Neves, A.A.; Santos, D.S.; Araújo, W.L. Biotechnological and agronomic potential of endophytic pink-pigmented methylotrophic Methylobacterium spp. BioMed Res. Int. 2015, 2015, 909016. [Google Scholar] [CrossRef]
- Kutschera, U. Plant-associated methylobacteria as co-evolved phytosymbionts: A hypothesis. Plant Signal. Behav. 2007, 2, 74–78. [Google Scholar] [CrossRef]
- Pascual, J.A.; Ros, M.; Martínez, J.; Carmona, F.; Bernabé, A.; Torres, R.; Lucena, T.; Aznar, R.; Arahal, D.R.; Fernández, F. Methylobacterium symbioticum sp. nov., a new species isolated from spores of Glomus iranicum var. tenuihypharum. Curr. Microbiol. 2020, 77, 2031–2041. [Google Scholar] [CrossRef]
- Torres Vera, R.; Bernabé García, A.J.; Carmona Álvarez, F.J.; Martínez Ruiz, J.; Fernández Martín, F. Application and effectiveness of Methylobacterium symbioticum as a biological inoculant in maize and strawberry crops. Folia Microbiol. 2024, 69, 121–131. [Google Scholar] [CrossRef]
- Amato, G.; Cardone, L.; Cicco, N.; Denora, M.; Perniola, M.; Casiello, D.; De Martino, L.; De Feo, V.; Candido, V. Morphological traits, yield, antioxidant activity and essential oil composition of oregano as affected by biostimulant foliar applications. Ind. Crops Prod. 2024, 222, 119702. [Google Scholar] [CrossRef]
- Martínez-Dalmau, J.; Berbel, J.; Ordóñez-Fernández, R. Nitrogen Fertilization. A Review of the Risks Associated with the Inefficiency of Its Use and Policy Responses. Sustainability 2021, 13, 5625. [Google Scholar] [CrossRef]
- Lin, N.; Wang, H.; Moscardelli, L.; Shuster, M. The dual role of low-carbon ammonia in climate-smart farming and energy transition. J. Clean. Prod. 2024, 469, 143188. [Google Scholar] [CrossRef]
- Li, J.; Van Gerrewey, T.; Geelen, D. A Meta-Analysis of Biostimulant Yield Effectiveness in Field Trials. Front. Plant Sci. 2022, 13, 836702. [Google Scholar] [CrossRef]
- Hui, C.; Qi, X.; Qianyong, Z.; Xiaoli, P.; Jundong, Z.; Mantian, M. Flavonoids, flavonoid subclasses and breast cancer risk: A meta-analysis of epidemiologic studies. PLoS ONE 2013, 8, e54318. [Google Scholar] [CrossRef] [PubMed]
- Ertani, A.; Schiavon, M.; Muscolo, A.; Nardi, S. Alfalfa plant-derived biostimulant stimulate short-term growth of salt stressed Zea mays L. plants. Plant Soil 2013, 364, 145–158. [Google Scholar] [CrossRef]
- Mattila, H.; Valev, D.; Havurinne, V.; Khorobrykh, S.; Virtanen, O.; Antinluoma, M.; Mishra, K.B.; Tyystjärvi, E. Degradation of chlorophyll and synthesis of flavonols during autumn senescence—The story told by individual leaves. AoB Plants 2018, 10, 3. [Google Scholar] [CrossRef]
- Li, Z.; Ahammed, G.J. Hormonal regulation of anthocyanin biosynthesis for improved stress tolerance in plants. Plant Physiol. Biochem. 2023, 201, 107835. [Google Scholar] [CrossRef]
- Shi, L.; Li, X.; Fu, Y.; Li, C. Environmental Stimuli and Phytohormones in Anthocyanin Biosynthesis: A Comprehensive Review. Int. J. Mol. Sci. 2023, 24, 16415. [Google Scholar] [CrossRef]
- Franzoni, G.; Bulgari, R.; Florio, F.E.; Gozio, E.; Villa, D.; Cocetta, G.; Ferrante, A. Effect of biostimulant raw materials on soybean (Glycine max) crop, when applied alone or in combination with herbicides. Front. Agron. 2023, 5, 1238273. [Google Scholar] [CrossRef]
- Jezek, M.; Allan, A.C.; Jones, J.J.; Geilfus, C.-M. Why Do Plants Blush When They Are Hungry? New Phytol. 2023, 239, 494–505. [Google Scholar] [CrossRef]
- Kalaji, M.H.; Łoboda, T. Fluorescencja Chlorofilu w Badaniach Stanu Fizjologicznego ro´slin (The Chlorophyll Fluorescence in the Research of the Physiological State of Plants); SGGW: Warszawa, Poland, 2010. [Google Scholar]
- Hazrati, S.; Tahmasebi-Sarvestani, Z.; Modarres-Sanavy, S.A.M.; Mokhtassi-Bidgoli, A.; Nicola, S. Effects of water stress and light intensity on chlorophyll fluorescence parameters and pigments of Aloe vera L. Plant Physiol. Biochem. 2016, 106, 141–148. [Google Scholar] [CrossRef]
- Badr, A.; Brüggemann, W. Comparative Analysis of Drought Stress Response of Maize Genotypes Using Chlorophyll Fluorescence Measurements and Leaf Relative Water Content. Photosynthetica 2020, 58, 638–645. [Google Scholar] [CrossRef]
- Radzikowska-Kujawska, D.; John, P.; Piechota, T.; Nowicki, M.; Kowalczewski, P.Ł. Response of Winter Wheat to Selected Biostimulants under Drought Conditions. Agriculture 2023, 13, 121. [Google Scholar] [CrossRef]
- Aslam, M.; Maqbool, M.A.; Cengiz, R. Drought Stress in Maize (Zea mays L.) Effects, Resistance Mechanisms, Global Achievements and Biological Strategies for Improvement; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Daryanto, S.; Wang, L.; Jacinthe, P.A. Global Synthesis of Drought Effects on Maize and Wheat Production. PLoS ONE 2016, 11, e0156362. [Google Scholar] [CrossRef]
- De Clercq, P.; Pauwels, E.; Top, S.; Steppe, K.; Van Labeke, M.-C. Effect of Seaweed-Based Biostimulants on Growth and Development of Hydrangea paniculate under Continuous or Periodic Drought Stress. Horticulturae 2023, 9, 509. [Google Scholar] [CrossRef]
- Kumar, H.D.; Aloke, P. Role of biostimulant formulations in crop production: An overview. Int. J. Appl. Res. Vet. M. 2020, 8, 38–46. [Google Scholar]
- Stoffel, S.C.G.; Soares, C.R.F.S.; Meyer, E.; Lovato, P.E.; Gianchini, A.J. Yield increase of corn inoculated with a commercial arbuscular mycorrhizal inoculant in Brazil. Cienc. Rural 2020, 50, 1–10. [Google Scholar] [CrossRef]
- Amerian, M.R.; Stewart, W.S.; Griffiths, H. Effect of two species of arbuscular mycorrhizal fungi on growth, assimilation and leaf water relations in maize (Zea mays). Asp. Appl. Biol. 2001, 63, 71–76. [Google Scholar]
- Rahouma, M.A.A. Maize growth and yield response to different rates of humic acid and zinc. Alex. Sci. Exch. J. 2021, 42, 823–829. [Google Scholar] [CrossRef]
- Guo, Y.; Ma, Z.; Ren, B.; Zhao, B.; Liu, P.; Zhang, J. Effects of Humic Acid Added to Controlled-Release Fertilizer on Summer Maize Yield, Nitrogen Use Efficiency and Greenhouse Gas Emission. Agriculture 2022, 12, 448. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, N.; Bi, X.; Bi, T.; Baloch, F.B.; Miao, J.; Zeng, N.; Li, B.; An, Y. Growth promotion on maize and whole-genome sequence analysis of Bacillus velezensis D103. Microbiol. Spectr. 2024, 12, e01147-24. [Google Scholar] [CrossRef]
- Akhtar, S.S.; Amby, D.B.; Hegelund, J.N.; Fimognari, L.; Großkinsky, D.K.; Westergaard, J.C.; Müller, R.; Moelbak, L.; Liu, F.; Roitsch, T. Bacillus licheniformis FMCH001 increases water use efficiency via growth stimulation in both normal and drought conditions. Front. Plant Sci. 2020, 11, 297. [Google Scholar] [CrossRef]
- Kulimushi, P.Z.; Basime, G.C.; Nachigera, G.M.; Thonart, P.; Ongena, M. Efficacy of Bacillus amyloliquefaciens as biocontrol agent to fight fungal diseases of maize under tropical climates: From lab to field assays in south Kivu. Environ. Sci. Pollut. Res. 2018, 25, 29808–29821. [Google Scholar] [CrossRef]
- Rodrigues, M.Â.; Correia, C.M.; Arrobas, M. The Application of a Foliar Spray Containing Methylobacterium symbioticum Had a Limited Effect on Crop Yield and Nitrogen Recovery in Field and Pot-Grown Maize. Plants 2024, 13, 2909. [Google Scholar] [CrossRef]
- Skowera, B.; Puła, J. Skrajne warunki pluwiotermiczne w okresie wiosennym na obszarze Polski w latach 1971–2000. (Pluviometric extreme conditions in spring season in Poland in the years 1971–2000). Acta Agrophys. 2004, 3, 171–177. [Google Scholar]
No. | Feature | Moisture Conditions | |
---|---|---|---|
Optimum | Drought | ||
1. | Height | 80.6 a | 75.9 b |
2. | ChlM | 0.57 a | 0.60 a |
3. | FlvM | 0.32 a | 0.34 a |
4. | AnthM | 0.024 b | 0.031 a |
5. | F0 | 202.2 b | 205.6 a |
6. | Fv | 843.8 a | 798.4 b |
7. | Fm | 1046.0 a | 1003.9 b |
8. | Fv/Fm | 0.806 a | 0.795 b |
No. | Preparation | Height | ChlM | FlvM | AnthM | F0 | Fv | Fm | Fv/Fm |
---|---|---|---|---|---|---|---|---|---|
1. | Untreated check | 75.0 b | 0.54 a | 0.40 a | 0.033 a | 202.6 a | 809.4 a | 1012 a | 0.799 a |
2. | Rhizophagus irregularis (1) | 80.2 a | 0.60 a | 0.35 ab | 0.028 ab | 202.8 a | 822.1 a | 1025 a | 0.801 a |
3. | Rhizophagus irregularis (2) | 79.3 a | 0.61 a | 0.35 ab | 0.028 ab | 201.1 a | 815.2 a | 1016 a | 0.802 a |
4. | Humic acids | 79.4 a | 0.58 a | 0.27 c | 0.028 ab | 205.9 a | 831.8 a | 1038 a | 0.801 a |
5. | Bacillus velezensis + Bacillus licheniformis | 80.7 a | 0.60 a | 0.32 abc | 0.028 ab | 205.1 a | 825.4 a | 1031 a | 0.800 a |
6. | Methylobacterium symbioticum | 75.2 b | 0.59 a | 0.29 bc | 0.021 b | 205.9 a | 822.8 a | 1029 a | 0.799 a |
No. | Biostimulant | Yield [t ha−1] | TKW [g] | HLW [kg 100 L−1] | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2022 | SE | 2023 | SE | 2022 | SE | 2023 | SE | 2022 | SE | 2023 | SE | ||
1. | Untreated check | 9.2 a | 0.38 | 12.4 c | 0.14 | 283.7 a | 3.36 | 379.6 a | 1.20 | 66.7 a | 0.31 | 69.1 a | 0.68 |
2. | Rhizophagus irregularis (1) | 9.5 a | 0.15 | 12.6 c | 0.08 | 292.6 a | 5.64 | 376.4 a | 5.14 | 67.0 a | 0.05 | 70.2 a | 0.77 |
3. | Rhizophagus irregularis (2) | 9.2 a | 0.15 | 13.7 a | 0.10 | 287.4 a | 2.99 | 376.5 a | 5.16 | 67.0 a | 0.36 | 71.2 a | 0.35 |
4. | Humic acids | 9.4 a | 0.14 | 13.2 ab | 0.17 | 285.9 a | 1.99 | 373.2 a | 3.77 | 67.0 a | 0.31 | 71.2 a | 0.54 |
5. | Bacillus velezensis + Bacillus licheniformis | 9.9 a | 0.15 | 13.3 a | 0.07 | 295.4 a | 2.56 | 376.7 a | 2.31 | 66.6 a | 0.15 | 70.5 a | 0.86 |
6. | Methylobacterium symbioticum | 9.9 a | 0.40 | 12.7 bc | 0.11 | 296.3 a | 3.08 | 374.3 a | 2.34 | 66.1 a | 0.31 | 70.1 a | 0.74 |
No. | Biostimulant | Content % | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Protein | Oil | Starch | |||||||||||
2022 | SE | 2023 | SE | 2022 | SE | 2023 | SE | 2022 | SE | 2023 | SE | ||
1. | Untreated check | 11.8 a | 0.23 | 12.1 a | 0.19 | 3.5 a | 0.06 | 3.6 a | 0.06 | 69.1 a | 0.19 | 70.2 a | 0.12 |
2. | Rhizophagus irregularis (1) | 12.3 a | 0.11 | 12.3 a | 0.36 | 3.6 a | 0.04 | 3.6 a | 0.04 | 68.9 a | 0.28 | 70.0 a | 0.05 |
3. | Rhizophagus irregularis (2) | 11.5 a | 0.30 | 11.7 a | 0.28 | 3.5 a | 0.03 | 3.6 a | 0.03 | 69.4 a | 0.29 | 70.3 a | 0.19 |
4. | Humic acids | 11.7 a | 0.15 | 11.9 a | 0.19 | 3.6 a | 0.02 | 3.6 a | 0.01 | 69.0 a | 0.30 | 70.4 a | 0.10 |
5. | Bacillus velezensis + Bacillus licheniformis | 12.0 a | 0.53 | 12.1 a | 0.49 | 3.6 a | 0.02 | 3.7 a | 0.03 | 68.7 a | 0.26 | 70.1 a | 0.21 |
6. | Methylobacterium symbioticum | 11.4 a | 0.19 | 11.0 a | 0.33 | 3.5 a | 0.02 | 3.6 a | 0.04 | 69.4 a | 0.17 | 70.4 a | 0.13 |
No. | Preparation | Abbreviation | Dose (kg ha−1) | Maize Development Stage |
---|---|---|---|---|
1 | Untreated check | C | - | - |
2 | Rhizophagus irregularis (1) | R.i.1 | 0.25 L | 2–3 leaves |
3 | Rhizophagus irregularis (2) | R.i.2 | 0.2 kg | 2–3 leaves |
4 | Humic acids | H.a. | 1.0 kg | 2–3 leaves |
5 | Bacillus velezensis + Bacillus licheniformis | B.v. + B.l. | 0.5 L | 4–5 leaves |
6 | Methylobacterium symbioticum | M.s. | 0.333 kg | 4–5 leaves |
Months | Decade of the Month | Average for the Month | |||
---|---|---|---|---|---|
I | II | III | |||
2022 | |||||
April | S. index | 4.2 | 1.6 | 0.0 | 1.4 |
rainfall | 20.6 | 12.1 | 0.0 | 32.7 | |
May | S. index | 0.6 | 0.7 | 0.6 | 0.6 |
rainfall | 8.2 | 11.4 | 9.2 | 28.8 | |
June | S. index | 0.9 | 1.7 | 0.4 | 0.9 |
rainfall | 14.9 | 31.7 | 9.4 | 56.0 | |
July | S. index | 0.5 | 0.5 | 0.4 | 0.5 |
rainfall | 8.6 | 9.5 | 9.3 | 27.4 | |
August | S. index | 0.0 | 0.7 | 1.2 | 0.6 |
rainfall | 0.0 | 17.3 | 24.8 | 42.1 | |
September | S. index | 1.1 | 0.7 | 0.5 | 0.8 |
rainfall | 17.8 | 9.4 | 5.5 | 32.7 | |
October | S. index | 0.3 | 1.1 | 0.7 | 0.7 |
rainfall | 3.9 | 12.0 | 10.1 | 26.0 | |
Total rainfall | 245.7 | ||||
2023 | |||||
April | S. index | 2.1 | 4.6 | 0.5 | 2.3 |
rainfall | 9.6 | 40 | 4.7 | 54.3 | |
May | S. index | 1.7 | 1.0 | 0.6 | 1.0 |
rainfall | 18.6 | 13.2 | 9.5 | 41.3 | |
June | S. index | 0.0 | 0.3 | 1.4 | 0.6 |
rainfall | 0.0 | 6.1 | 28.7 | 34.8 | |
July | S. index | 0.4 | 0.5 | 2.0 | 1.0 |
rainfall | 8.0 | 11.6 | 37.0 | 56.6 | |
August | S. index | 5.6 | 0.9 | 2.2 | 2.7 |
rainfall | 95.6 | 19.7 | 39.9 | 155.2 | |
September | S. index | 0.0 | 0.3 | 0.6 | 0.2 |
rainfall | 0.0 | 5.2 | 6.7 | 11.9 | |
October | S. index | 1.6 | 1.4 | 5.3 | 2.8 |
rainfall | 20.8 | 14.3 | 60.1 | 95.2 | |
Total rainfall | 449.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sobiech, Ł.; Grzanka, M.; Idziak, R.; Blecharczyk, A. The Effect of Post-Emergence Application of Biostimulants and Soil Amendments in Maize Cultivation on the Growth and Yield of Plants. Plants 2025, 14, 1274. https://doi.org/10.3390/plants14091274
Sobiech Ł, Grzanka M, Idziak R, Blecharczyk A. The Effect of Post-Emergence Application of Biostimulants and Soil Amendments in Maize Cultivation on the Growth and Yield of Plants. Plants. 2025; 14(9):1274. https://doi.org/10.3390/plants14091274
Chicago/Turabian StyleSobiech, Łukasz, Monika Grzanka, Robert Idziak, and Andrzej Blecharczyk. 2025. "The Effect of Post-Emergence Application of Biostimulants and Soil Amendments in Maize Cultivation on the Growth and Yield of Plants" Plants 14, no. 9: 1274. https://doi.org/10.3390/plants14091274
APA StyleSobiech, Ł., Grzanka, M., Idziak, R., & Blecharczyk, A. (2025). The Effect of Post-Emergence Application of Biostimulants and Soil Amendments in Maize Cultivation on the Growth and Yield of Plants. Plants, 14(9), 1274. https://doi.org/10.3390/plants14091274