Unlocking the Therapeutic Potential of Patchouli Leaves: A Comprehensive Review of Phytochemical and Pharmacological Insights
Abstract
:1. Introduction
2. Botanical Description
2.1. Taxonomy
- Kingdom: Plantae
- Family: Lamiaceae
- Genus: Pogostemon
- Species: Pogostemon cablin (Patchouli)
2.2. General Habitat and Distribution
2.3. Morphology
3. Phytochemical Composition of Patchouli Leaves
3.1. Volatile Chemical Composition
3.2. Non-Volatile Chemical Composition
4. Pharmacological Activities
4.1. Antimicrobial Activities
4.1.1. Antibacterial Activities
4.1.2. Antifungal Activities
4.1.3. Antiviral Activities
Anti-IFV Treatment of HIV/AIDS and Opportunistic Infections
4.2. Anticancer and Tumor-Related Activities
4.2.1. Anticancer Activity
4.2.2. Apoptosis Induction
4.2.3. Effects on Tumors/Cancer Cells and the Immune System
Immunoregulatory Effect
4.3. Gastrointestinal Protective Activities
4.3.1. Gastrointestinal Protective Activity
4.3.2. Antiemetic Activity
4.3.3. Defecation and Constipation
Anti-Peptic Ulcer Effect
4.3.4. Anti-Diarrheal Effect
4.4. Blood-Related Activities
4.4.1. Blood Coagulation and Fibrinolytic Activities
4.4.2. Antithrombotic Activities
Antihypertensive Activity
4.5. General Protective and Therapeutic Activities
4.5.1. Anti-Oxidant Activity
4.5.2. Photoaging Activity
4.5.3. Analgesic and Anti-Inflammatory Activities
Analgesic Activity
Anti-Inflammatory Activity
4.5.4. Anti-Mutagenic Activity
4.5.5. Dermato-Protective Activity
4.5.6. Insecticidal Activity
4.5.7. Aromatherapeutic Activity
4.5.8. Aphrodisiac Activities
4.5.9. Antidepressant Activity
4.6. Metabolic and Obesity-Related Activities
4.6.1. Gut Microbiota Modulatory Activity
4.6.2. Antidiabetic Effect
4.7. Other Activities
5. Mechanisms of Action
6. Commercial Applications
6.1. Applications in Pharmaceuticals: Role in Medicine
6.2. Applications in Cosmetics: Role in Beauty and Skincare
6.3. Other Industries: Additional Commercial Applications
7. Challenges and Limitations
7.1. Phytochemical and Genetic Variabilities
7.2. Methodology and Quality Control
7.3. Regulatory, Standardization and Safety Issues
7.4. Bioavailability and Efficacy
8. Future Perspectives
8.1. Emerging Trends: New Directions in Research
8.2. Potential for New Applications: Opportunities for Novel Therapeutic Uses
8.3. Directions for Future Studies: Suggestions for Further Research
9. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
BCL-2 | B-cell lymphoma 2 |
cAMP | cyclic adenosine monophosphate pathway |
CAT | catalase |
CDK 1 | cyclin-dependent kinase 1 |
CDK4 | cyclin-dependent kinase 4 |
COPD | chronic obstructive pulmonary disease |
COX-1 | cyclooxygenase 1 |
DNA | deoxyribonucleic acid |
DSS | dextran sodium sulfate |
FDA | food and drug administration |
GC/MS | gas chromatography mass spectrum |
GCLC | glutamate cysteine ligase comprising of catalytic subunit |
GCLM | glutamate-cysteine ligase, modifier subunit |
GES-1 | gastric epithelial cells |
GSH | glutathione |
GUs | gastric ulcers |
HCT116 | human carcinoma cells and large intestine cells |
HDAC | histone deacetylase |
HFD | high-fat diet |
HIV/AIDS | human immunodeficiency virus/acquired immunodeficiency syndrome |
HO-1 | heme oxygenase-1 |
HPLC-DAD | high-performance liquid chromatography-diode array detection |
IBD | inflammatory bowel disease |
ICAM-1 | intercellular adhesion molecule 1 |
IFN-γ | interferon gamma |
IkB-α | inhibitor of kappa B alpha |
IL-1β | interleukin-1 beta |
IP3R | inositol triphosphate receptors |
KEAP1 | kelch-like ECH-associated protein 1 |
LC50 | lethal concentration 50 |
M1 | macrophages markers-1 |
MCP-1 | monocyte chemotactic protein-1 |
MDA | malondialdehyde |
MIC | minimum inhibitory concentration |
MMPs | matrix metalloproteinases |
MOR | mu-opioid receptor |
MR | mannose receptor |
NAD(P)H | nicotinamide adenine dinucleotide (phosphate) |
NAFLD | non-alcoholic fatty liver disease |
NF-κB | nuclear factor-kappa B |
NMR | nuclear magnetic resonance |
NO | nitrous oxide |
NQO1 | quinone oxidoreductase 1 |
Nrf2 | nuclear factor erythroid 2-related factor 2 |
NSAIDs | nonsteroidal anti-inflammatory drugs |
NSCLC | non-small cell lung cancer |
PCLE | patchouli ethyl acetate |
PCLH | patchouli hexane |
PFOS | perfluoro octane sulfonate |
PGE2 | prostaglandin E2 |
P-gp | P-glycoprotein |
PHE | phenylephrine |
PXR | pregnane X receptor |
ROCCS | rapid overlay of chemical conformations and structures |
ROCCS | receptor-operated Ca2+ channels |
ROS | reactive oxygen species |
RYR | ryanodine receptors |
SCFA-GPR | short-chain fatty acid-G protein-coupled receptor |
SCLC | small cell lung cancer |
SOD | superoxide dismutase |
SOM | secretory otitis media |
TLC | thin-layer chromatography |
TNF-α | tumor necrosis factor-α |
TOF | time-of-flight |
UC | ulcerative colitis |
VCAM-1 | vascular cell adhesion molecule 1 |
VCR | vincristine |
VDCCS | voltage-dependent calcium channel subunit |
VLDL | very low-density lipoproteins |
β-PAE | β-patchoulene |
References
- Yeşilyurt, S.; Gürgan, M.; Sertkahya, M. Biologically Active Compounds from Medicinal and Aromatic Plants for Industrial Applications. In Medicinal and Aromatic Plants: Current Research Status, Value-Addition to Their Waste, and Agro-Industrial Potential (Vol I); Springer: Cham, Switzerland, 2024; pp. 1–11. [Google Scholar] [CrossRef]
- Abate, L.; Bachheti, A.; Bachheti, R.K.; Husen, A.; Getachew, M.; Pandey, D.P. Potential Role of Forest-Based Plants in Essential Oil Production: An Approach to Cosmetic and Personal Health Care Applications. In Non-Timber Forest Products; Springer: Cham, Switzerland, 2021; pp. 1–18. [Google Scholar] [CrossRef]
- Ahad, B.; Shahri, W.; Rasool, H.; Reshi, Z.A.; Rasool, S.; Hussain, T. Medicinal Plants and Herbal Drugs: An Overview. In Medicinal and Aromatic Plants; Springer: Cham, Switzerland, 2021; pp. 1–40. [Google Scholar] [CrossRef]
- Najmi, A.; Javed, S.A.; Al Bratty, M.; Alhazmi, H.A. Modern Approaches in the Discovery and Development of Plant-Based Natural Products and Their Analogues as Potential Therapeutic Agents. Molecules 2022, 27, 349. [Google Scholar] [CrossRef] [PubMed]
- Yan, W.; Liu, X.; Cao, S.; Yu, J.; Zhang, J.; Yao, G.; Yang, H.; Yang, D.; Wu, Y. Molecular Basis of Pogostemon cablin Responding to Continuous Cropping Obstacles Revealed by Integrated Transcriptomic, MiRNA and Metabolomic Analyses. Ind. Crops Prod. 2023, 200, 116862. [Google Scholar] [CrossRef]
- Bano, H.; Khan, J.A. Identification of Viruses Naturally Infecting Patchouli (Pogostemon cablin (Blanco) Benth.) in India. Biol. Forum Int. J. 2023, 15, 549–558. [Google Scholar]
- Ijaz, M.U.; Azmat, R.; Yeni, D.K.; Ashraf, A.; Mariappan, V. Pachypodol, a Plant Flavonoid, Mitigates Cisplatin-Induced Hepatotoxicity Through Anti-Oxidant, Anti-Inflammatory and Anti-Apoptotic Mechanisms. J. Food Nutr. Res. 2023, 11, 513–518. [Google Scholar] [CrossRef]
- Chen, X.; Li, J.; Liu, Y.; Wu, D.; Huang, H.; Zhan, R.; Chen, W.; Chen, L. PatSWC4, a Methyl Jasmonate-Responsive MYB (v-Myb Avian Myeloblastosis Viral Oncogene Homolog)-Related Transcription Factor, Positively Regulates Patchoulol Biosynthesis in Pogostemon cablin. Ind. Crops Prod. 2020, 154, 112672. [Google Scholar] [CrossRef]
- Kumar, A.; Sharma, N.; Chanotiya, C.S.; Lal, R.K. The Pharmacological Potential and the Agricultural Significance of the Aromatic Crop Patchouli (Pogostemon cablin Benth.): A Review. Ecol. Front. 2024, 44, 1109–1118. [Google Scholar] [CrossRef]
- Yeong, K.Y.; Chin, K.W. Neuroprotection with the Functional Herbs from the Lamiaceae Family. Front. Nat. Prod. Chem. 2021, 8, 173–212. [Google Scholar] [CrossRef]
- Zhou, Q.-M.; Zhu, H.; Ma, C.; Guo, L.; Peng, C.; Xiong, L. Pogocablanols A–G, a New Class of Sesquiterpenoids with an Unprecedented Bicyclic Sesquiterpenoid Skeleton from Pogostemon cablin (Patchouli) and Their Activities. Arab. J. Chem. 2023, 16, 105245. [Google Scholar] [CrossRef]
- Zahra, S.S.; Nayik, G.A.; Khalida, T. Patchouli Essential Oil. In Essential Oils; Elsevier: Amsterdam, The Netherlands, 2023; pp. 429–457. [Google Scholar] [CrossRef]
- Wan, F.; Peng, F.; Xiong, L.; Chen, J.; Peng, C.; Dai, M. In Vitro and in Vivo Antibacterial Activity of Patchouli Alcohol from Pogostemon cablin. Chin. J. Integr. Med. 2021, 27, 125–130. [Google Scholar] [CrossRef] [PubMed]
- Isnaini, N.; Khairan, K.; Faradhilla, M.; Sufriadi, E.; Prajaputra, V.; Ginting, B.; Muhammad, S.; Lufika, R.D. A Study of Essential Oils from Patchouli (Pogostemon cablin Benth.) and Its Potential as an Antivirus Agent to Relieve Symptoms of COVID-19. J. Patchouli Essent. Oil Prod. 2022, 1, 27–35. [Google Scholar] [CrossRef]
- Yunus, R.; Supiati, S.; Suwarni, S.; Afrini, I.M.; Mubarak, M. Larvicidal and Repellent Potential of Patchouli Extract (Pogostemon cablin) Varieties of Southeast Sulawesi for Aedes aegypti Vector. Egypt. J. Chem. 2023, 66, 89–98. [Google Scholar] [CrossRef]
- Lallo, S.; Hasmiranti, A.; Hardianti, B. Effect of the Growth Environment on Patchouli (Pogostemon cablin Benth.) Oil Character at Southeast Sulawesi, Indonesia. Med. Plants-Int. J. Phytomed. Relat. Ind. 2020, 12, 77–81. [Google Scholar] [CrossRef]
- Jadid, N.; Soleha, I.D.; Rahayu, A.E.; Puspaningtyas, I.; Sari, S.A.; Rahmawati, M.; Hidayati, D. Exogenous Methyl Jasmonate (MeJA) Altered Phytochemical Composition and Enhanced the Expression of PatAACT Gene of in Vitro Culture-Derived Patchouli Var. Sidikalang (Pogostemon cablin Benth.). J. King Saud Univ. 2024, 36, 103301. [Google Scholar] [CrossRef]
- Ermaya, D.; Widodo, Y.R.; Teguh, D. Isolation and Utilization of Patchouli Oil (Pogostemon cablin Benth) as an Anti-Bacterial Alternative. IOP Conf. Ser. Earth Environ. Sci. 2022, 1012, 12015. [Google Scholar] [CrossRef]
- Muhammad, S.; HPS, A.K.; Abd Hamid, S.; Danish, M.; Marwan, M.; Yunardi, Y.; Abdullah, C.K.; Faisal, M.; Yahya, E.B. Characterization of Bioactive Compounds from Patchouli Extracted via Supercritical Carbon Dioxide (SC-CO2) Extraction. Molecules 2022, 27, 6025. [Google Scholar] [CrossRef]
- Wu, Z.; Zeng, H.; Zhang, L.; Pu, Y.; Li, S.; Yuan, Y.; Zhang, T.; Wang, B. Patchouli Alcohol: A Natural Sesquiterpene against Both Inflammation and Intestinal Barrier Damage of Ulcerative Colitis. Inflammation 2020, 43, 1423–1435. [Google Scholar] [CrossRef]
- Srivastava, S.; Lal, R.K.; Singh, V.R.; Rout, P.K.; Padalia, R.C.; Yadav, A.K.; Bawitlung, L.; Bhatt, D.; Maurya, A.K.; Pal, A. Chemical Investigation and Biological Activities of Patchouli (Pogostemon cablin (Blanco) Benth) Essential Oil. Ind. Crops Prod. 2022, 188, 115504. [Google Scholar] [CrossRef]
- Khairan, K.; Amanda, R.; Hasbi, S.Y.; Diah, M.; Hasballah, K. A Perspective Study of Pogostemon cablin Benth as an Aphrodisiac. Malacca Pharm. 2023, 1, 62–70. [Google Scholar] [CrossRef]
- Lima Santos, L.; Barreto Brandão, L.; da Costa, P.; Luiz, A.; Lopes Martins, R.; Lobato Rodrigues, A.B.; Alves Lobato, A.; Moreira da Silva de Almeida, S.S. Bioinsecticidal and Pharmacological Activities of the Essential Oil of Pogostemon cablin Benth Leaves: A Review. Pharmacogn. Rev. 2022, 16, 139–145. [Google Scholar] [CrossRef]
- de Sousa, D.P.; de Assis Oliveira, F.; Arcanjo, D.D.R.; da Fonsêca, D.V.; Duarte, A.B.S.; de Oliveira Barbosa, C.; Ong, T.P.; Brocksom, T.J. Essential Oils: Chemistry and Pharmacological Activities—Part II. Biomedicines 2024, 12, 1185. [Google Scholar] [CrossRef]
- Tian, Y.; Wang, L.; Fan, X.; Zhang, H.; Dong, Z.; Tao, T. β-Patchoulene Alleviates Cognitive Dysfunction in a Mouse Model of Sepsis Associated Encephalopathy by Inhibition of Microglia Activation through Sirt1/Nrf2 Signaling Pathway. PLoS ONE 2023, 18, e0279964. [Google Scholar] [CrossRef]
- Muhammad, S.; Isnaini, N.; Indra, I.; Prajaputra, V.; Sufriadi, E.; Ernawati, E. Patchouli Essential Oil: Unlocking Antimicrobial Potential for Dandruff Control. IOP Conf. Ser. Earth Environ. Sci. 2024, 1356, 12095. [Google Scholar] [CrossRef]
- Handayani, W.; Yunilawati, R.; Imawan, C. The Antibacterial Effect from Combining Cinnamon, Patchouli and Coriander Essential Oils. In Proceedings of the 2nd International Conference of Essential Oils, Banda Aceh, Indonesia, 29–30 October 2020; pp. 153–158. [Google Scholar] [CrossRef]
- Da Cunha, S.M.D.; Alves, C.A.; Ribeiro, L.S.M.; Macedo, M.A.; Da Silva, A.L.S.; Cunha, F.N.; De Lima, B.; Silva, D.F.; Lima, E.O. Bioprospecting of the Antifungal Activity of Patchouli Essential Oil (Pogostemon cablin Benth) against Strains of the Genus Candida. J. Med. Plants Res. 2023, 17, 1–7. [Google Scholar] [CrossRef]
- Green, M. Aromatherapy in the Treatment of Sexual Dysfunction and Relationship Problems. In Integrative Sexual Health; Oxford University Press: Oxford, UK, 2018; pp. 471–497. [Google Scholar]
- Arya, R.K.K.; Sethiya, N.K.; Bisht, D.; Rashid, M.; Kumar, D.; Singh, A.; Gupta, R.; Rana, V.S. An Overview on Chemical Features and Metabolism of Synthetic and Natural Product-Based Medicine for Combating COVID-19. Res. J. Pharm. Technol. 2023, 16, 908–916. [Google Scholar] [CrossRef]
- Kemala, P.; Idroes, R.; Khairan, K.; Ramli, M.; Tallei, T.E.; Helwani, Z.; Abd Rahman, S. The Potent Antimicrobial Spectrum of Patchouli: Systematic Review of Its Antifungal, Antibacterial, and Antiviral Properties. Malacca Pharm. 2024, 2, 10–17. [Google Scholar] [CrossRef]
- Wang, X.; Tang, Y.; Huang, H.; Wu, D.; Chen, X.; Li, J.; Zheng, H.; Zhan, R.; Chen, L. Functional Analysis of Pogostemon cablin Farnesyl Pyrophosphate Synthase Gene and Its Binding Transcription Factor PcWRKY44 in Regulating Biosynthesis of Patchouli Alcohol. Front. Plant Sci. 2022, 13, 946629. [Google Scholar] [CrossRef]
- Pérez-González, C.; Pérez-Ramos, J.; Méndez-Cuesta, C.A.; Serrano-Vega, R.; Martell-Mendoza, M.; Pérez-Gutiérrez, S. Cytotoxic Activity of Essential Oils of Some Species from Lamiaceae Family. In Cytotoxicity—Definition, Identification, and Cytotoxic Compounds; IntechOpen: London, UK, 2019; pp. 29–43. [Google Scholar] [CrossRef]
- Ferreira, D.L.; de Mendonça, M.S.; de Araujo3 Branca, M.G.P.; Lescano, F.M.; Simão, M.O. de A.R. Leaf Anatomy and Histochemistry of Oriza (Pogostemon cablin Beth., LAMIACEAE): Medicinal Plant Used in Community Arari Region, Itacoatiara, Amazonas. Int. J. Adv. Eng. Res. Sci. 2020, 7, 2349–6495. [Google Scholar] [CrossRef]
- Dongare, P.; Dhande, S.; Kadam, V. A Review on Pogostemon Patchouli. Res. J. Pharmacogn. Phytochem. 2014, 6, 41–47. [Google Scholar]
- Deliana, F.; Illian, D.N.; Nadirah, S.; Sari, F.; Khairan, K. Therapeutic Effects of Patchouli (Pogostemon cablin) Essential Oil in Relieving Eczema Symptoms in Infants and Toddlers: A Literature Review. J. Patchouli Essent. Oil Prod. 2023, 2, 1–8. [Google Scholar] [CrossRef]
- Yao, G.; Drew, B.T.; Yi, T.-S.; Yan, H.-F.; Yuan, Y.-M.; Ge, X.-J. Phylogenetic Relationships, Character Evolution and Biogeographic Diversification of Pogostemon s.l. (Lamiaceae). Mol. Phylogenet. Evol. 2016, 98, 184–200. [Google Scholar] [CrossRef]
- Lubis, A.; Mandang, T.; Hermawan, W. Study of the Physical and Mechanical Characteristics of Patchouli Plants. AIMS Agric. Food 2021, 6, 525–537. [Google Scholar] [CrossRef]
- Adhayani, L.; Suhartono, S.; Amalia, A. Aceh Patchouli Oil (Pogostemon cablin Benth) as Antibacterial and Antibiofilm: Mechanism, Challenges, and Opportunities. AIP Conf. Proc. 2023, 2480, 050005. [Google Scholar] [CrossRef]
- Qur’ania, A.; Herdiyeni, Y.; Kusuma, W.A.; Wigena, A.H.; Suhesti, S. Detection and Calculation of Stomatal Density Using YOLOv5: A Study of High-Yielding Patchouli Varieties. J. Image Graph. 2024, 12, 228–238. [Google Scholar] [CrossRef]
- Swamy, M.K.; Sinniah, U.R. A Comprehensive Review on the Phytochemical Constituents and Pharmacological Activities of Pogostemon cablin Benth.: An Aromatic Medicinal Plant of Industrial Importance. Molecules 2015, 20, 8521–8547. [Google Scholar] [CrossRef]
- Singh, S.; Agrawal, N. Exploring the Pharmacological Potential and Bioactive Components of Pogostemon cablin (Blanco) Benth, Traditional Chinese Medicine. Pharmacol. Res.—Mod. Chin. Med. 2024, 10, 100382. [Google Scholar] [CrossRef]
- Ijaz, M.U.; Akbar, A.; Anwar, H.; Inam, S.; Ashraf, A.; Riaz, M. Patchouli. In Essentials of Medicinal and Aromatic Crops; Springer: Cham, Switzerland, 2023; pp. 249–279. [Google Scholar]
- Tang, Y.; Zhong, L.; Wang, X.; Zheng, H.; Chen, L. Molecular Identification and Expression of Sesquiterpene Pathway Genes Responsible for Patchoulol Biosynthesis and Regulation in Pogostemon cablin. Bot. Stud. 2019, 60, 11. [Google Scholar] [CrossRef]
- Jain, P.L.B.; Patel, S.R.; Desai, M.A. Patchouli Oil: An Overview on Extraction Method, Composition and Biological Activities. J. Essent. Oil Res. 2022, 34, 1–11. [Google Scholar] [CrossRef]
- Pandey, S.K.; Bhandari, S.; Sarma, N.; Begum, T.; Munda, S.; Baruah, J.; Gogoi, R.; Haldar, S.; Lal, M. Essential Oil Compositions, Pharmacological Importance and Agro Technological Practices of Patchouli (Pogostemon cablin Benth.): A Review. J. Essent. Oil Bear. Plants 2021, 24, 1212–1226. [Google Scholar] [CrossRef]
- Sundarajan, S.; Abdurahman, N.H. Chemical Compound Characterizations of Patchouli Leaf Extract via GC-MS, LC-QTOF-MS, FTIR, and 1H NMR. Int. J. Eng. Res. 2019, 8, 1054–1059. [Google Scholar] [CrossRef]
- van Beek, T.A.; Joulain, D. The Essential Oil of Patchouli, Pogostemon cablin: A Review. Flavour Fragr. J. 2018, 33, 6–51. [Google Scholar] [CrossRef]
- Hanh, N.P.; Binh, N.Q.; Thuy, D.T.T.; Ogunwande, I.A. Chemical Constituents and Antimicrobial Activity of Essential Oils from Pogostemon cablin (Blanco) Benth and Coriandrum sativum L. from Vietnam. Am. J. Essent. Oil Nat. Prod 2022, 10, 10–15. [Google Scholar]
- Keerthiraj, M. Bioprospecting of Pogostemon cablin Benth. for Insecticidal Activity. Ph.D. Thesis, Division of Agricultural Chemicals ICAR-Indian Agricultural Research Institute, New Delhi, India, 2020. [Google Scholar]
- Reyon, D.; Tsai, S.Q.; Khayter, C.; Foden, J.A.; Sander, J.D.; Joung, J.K. FLASH Assembly of TALENs for High-Throughput Genome Editing. Nat. Biotechnol. 2012, 30, 460–465. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.F.; Li, S.P.; Cao, H.; Liu, J.J.; Gao, J.L.; Yang, F.Q.; Wang, Y.T. GC–MS Fingerprint of Pogostemon cablin in China. J. Pharm. Biomed. Anal. 2006, 42, 200–206. [Google Scholar] [CrossRef] [PubMed]
- Tsai, Y.-C.; Hsu, H.-C.; Yang, W.-C.; Tsai, W.-J.; Chen, C.-C.; Watanabe, T. α-Bulnesene, a PAF Inhibitor Isolated from the Essential Oil of Pogostemon cablin. Fitoterapia 2007, 78, 7–11. [Google Scholar] [CrossRef]
- Bunrathep, S.; Lockwood, G.B.; Songsak, T.; Ruangrungsi, N. Chemical Constituents from Leaves and Cell Cultures of Pogostemon cablin and Use of Precursor Feeding to Improve Patchouli Alcohol Level. Sci. Asia 2006, 32, 293–296. [Google Scholar] [CrossRef]
- Akhila, A.; Sharma, P.K.; Thakur, R.S. Biosynthetic Relationships of Patchouli Alcohol, Seychellene and Cycloseychellene in Pogostemon cablin. Phytochemistry 1988, 27, 2105–2108. [Google Scholar] [CrossRef]
- Rakotonirainy, O.; Gaydou, E.M.; Faure, R.; Bombarda, I. Sesquiterpenes from Patchouli (Pogostemon cablin) Essential Oil. Assignment of the Proton and Carbon-13 NMR Spectra. J. Essent. Oil Res. 1997, 9, 321–327. [Google Scholar] [CrossRef]
- Karimi, A. Characterization and Antimicrobial Activity of Patchouli Essential Oil Extracted from Pogostemon cablin [Blanco] Benth. [Lamiaceae]. Adv. Environ. Biol. 2014, 8, 2301–2310. [Google Scholar]
- Buré, C.M.; Sellier, N.M. Analysis of the Essential Oil of Indonesian Patchouli (Pogostemon cabin Benth.) Using GC/MS (EI/CI). J. Essent. Oil Res. 2004, 16, 17–19. [Google Scholar] [CrossRef]
- Silva, M.A.S.; Ehlert, P.A.D.; Ming, L.C.; Marques, M.O.M. Composition and Chemical Variation during Daytime of Constituents of the Essential Oil of Pogostemon Pachouli Pellet Leaves. Acta Hortic. 2004, 629, 145–147. [Google Scholar] [CrossRef]
- Souhoka, F.A.; Al Aziz, A.Z.; Nazudin, N. Patchouli Oil Isolation and Identification of Chemical Components Using GC-MS. Indones. J. Chem. Res. 2020, 8, 108–113. [Google Scholar] [CrossRef]
- Kusumaningrum, H.P.; Ni’mah, R.S.; Nurlindasari, Y.; Imrani, A.; Arrois, S.; Purnomo, E.; Arfiansyah, F.R.; Setyowati, E.; Loka, B.D. Patchouli Oil Analysis of Chemical Components Using FT-IR and GCMS Method. AIP Conf. Proc. 2023, 2738, 040026. [Google Scholar] [CrossRef]
- Xie, S.; Li, L.; Zhan, B.; Shen, X.; Deng, X.; Tan, W.; Fang, T. Pogostone Enhances the Antibacterial Activity of Colistin against MCR-1-Positive Bacteria by Inhibiting the Biological Function of MCR-1. Molecules 2022, 27, 2819. [Google Scholar] [CrossRef]
- Cano-Reinoso, D.M.; Purwanto, Y.A.; Budiastra, I.W.; Kuroki, S.; Widodo, S.; Kamanga, B.M. Determination of α-Guaiene and Azulene Chemical Content in Patchouli Aromatic Oil (Pogostemon cablin Benth.) from Indonesia by Near-Infrared Spectroscopy. Indian J. Nat. Prod. Resour. (IJNPR) 2021, 12, 256–262. [Google Scholar]
- Singh, S.; Pathak, S.; Sharma, N.; Agrawal, N. Patchouli (Pogostemon cablin Benth.): A Comprehensive Review on Medicinal Aromatic Plant with Industrial Utilization. In Advances in Medicinal and Aromatic Plants; Apple Academic Press: Palm Bay, FL, USA, 2025. [Google Scholar] [CrossRef]
- Sufriadi, E.; Meilina, H.; Munawar, A.A.; Idroes, R. Fourier Transformed Infrared (FTIR) Spectroscopy Analysis of Patchouli Essential Oils Based on Different Geographical Area in Aceh. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1087, 12067. [Google Scholar] [CrossRef]
- Luo, J.; Feng, Y.; Guo, X.; Li, X. GC-MS analysis of volatile oil of herba Pogostemonis collected from Gaoyao county. J. Chin. Med. Mater. 1999, 22, 25–28. [Google Scholar]
- Feng, Y.; Guo, X.; Luo, J. GC-MS Analysis of Volatile Oil of Herba Pogostemonis Collected from Leizhou County. J. Chin. Med. Mater. 1999, 22, 241–243. [Google Scholar]
- Zhi, Z.; Lixian, T.; Shaojin, M.; Han, Z. Study on the Chemical Constituents and Fingerprint of Pogostemon cablin from Three Culture Varieties. Chin. J. Anal. Chem. 2006, 34, 1249–1254. [Google Scholar]
- Hasegawa, Y.; Tajima, K.; Toi, N.; Sugimura, Y. An Additional Constituent Occurring in the Oil from a Patchouli Cultivar. Flavour Fragr. J. 1992, 7, 333–335. [Google Scholar] [CrossRef]
- Verma, R.S.; Padalia, R.C.; Chauhan, A.; Singh, V.R. Chemical Composition of Leaves, Inflorescence, Whole Aerial-Parts and Root Essential Oils of Patchouli {Pogostemon cablin (Blanco) Benth.}. J. Essent. Oil Res. 2019, 31, 319–325. [Google Scholar] [CrossRef]
- Fahmi, Z.; Mudasir, M.; Rohman, A. Attenuated Total Reflectance-FTIR Spectra Combined with Multivariate Calibration and Discrimination Analysis for Analysis of Patchouli Oil Adulteration. Indones. J. Chem. 2020, 20, 1–8. [Google Scholar] [CrossRef]
- Lima Santos, L.; Barreto Brandão, L.; Lopes Martins, R.; de Menezes Rabelo, E.; Lobato Rodrigues, A.B.; da Conceição Vieira Araújo, C.M.; Fernandes Sobral, T.; Ribeiro Galardo, A.K.; Moreira da Silva de Ameida, S.S. Evaluation of the Larvicidal Potential of the Essential Oil Pogostemon cablin (Blanco) Benth in the Control of Aedes aegypti. Pharmaceuticals 2019, 12, 53. [Google Scholar] [CrossRef] [PubMed]
- IToKAWA, H.; SUTO, K.; TAKEYA, K. Studies on a Novel P-Coumaroyl Glucoside of Apigenin and on Other Flavonoids Isolated from Patchouli (Labiatae). Chem. Pharm. Bull. 1981, 29, 254–256. [Google Scholar] [CrossRef]
- Li, P.; Yin, Z.-Q.; Li, S.L.; Huang, X.; Ye, W.; Zhang, Q.-W. Simultaneous Determination of Eight Flavonoids and Pogostone in Pogostemon cablin by High Performance Liquid Chromatography. J. Liq. Chromatogr. Relat. Technol. 2014, 37, 1771–1784. [Google Scholar] [CrossRef]
- Amakura, Y.; Yoshimura, M.; Mouri, C.; Mikage, M.; Kawahara, N.; Goda, Y.; Yoshida, T. Convenient TLC-Based Identification Test for the Crude Drug “Pogostemoni Herba”. Yakugaku Zasshi 2008, 128, 1833–1837. [Google Scholar] [CrossRef]
- Chen, J.; Han, L.; Li, G.; Sun, L.; Qian, F.; Chen, K.; Zhang, L.; Li, Y. Lignans and Phenylethanoid Glycosides from the Aerial Parts of Pogostemon cablin. Chem. Biodivers. 2022, 19, e202200889. [Google Scholar] [CrossRef]
- Kim, K.H.; Beemelmanns, C.; Clardy, J.; Cao, S. A New Antibacterial Octaketide and Cytotoxic Phenylethanoid Glycosides from Pogostemon cablin (Blanco) Benth. Bioorg. Med. Chem. Lett. 2015, 25, 2834–2836. [Google Scholar] [CrossRef]
- Xie, B.; Wu, X.-F.; Luo, H.-T.; Huang, X.-L.; Huang, F.; Zhang, Q.-Y.; Zhou, X.; Wu, H.-Q. Chemical Profiling and Quality Evaluation of Pogostemon cablin Benth by Liquid Chromatography Tandem Mass Spectrometry Combined with Multivariate Statistical Analysis. J. Pharm. Biomed. Anal. 2022, 209, 114526. [Google Scholar] [CrossRef]
- Wenguang, J.; Xiaoyu, L.; Chu, L.I.; Xiaoliang, Z.; Xianlong, C.; Penglong, W.; Feng, W.; Shuangcheng, M.A. Anti-Inflammatory Mechanism of the Non-Volatile Ingredients Originated from Guanghuoxiang Based on High Performance Liquid Chromatography-Heated Electron Spray Ionization-High Resolution Mass Spectroscope and Cell Metabolomics. J. Tradit. Chin. Med. 2024, 44, 260–267. [Google Scholar] [CrossRef]
- Junren, C.; Xiaofang, X.; Mengting, L.; Qiuyun, X.; Gangmin, L.; Huiqiong, Z.; Guanru, C.; Xin, X.; Yanpeng, Y.; Fu, P.; et al. Pharmacological Activities and Mechanisms of Action of Pogostemon cablin Benth: A Review. Chin. Med. 2021, 16, 5. [Google Scholar] [CrossRef]
- Kim, E.K.; Kim, J.H.; Jeong, S.; Choi, Y.W.; Choi, H.J.; Kim, C.Y.; Kim, Y.-M. Pachypodol, a Methoxyflavonoid Isolated from Pogostemon cablin Bentham Exerts Antioxidant and Cytoprotective Effects in HepG2 Cells: Possible Role of ERK-Dependent Nrf2 Activation. Int. J. Mol. Sci. 2019, 20, 4082. [Google Scholar] [CrossRef]
- Huang, X.; Li, P.; Yin, Z.; Lu, J.; Lin, L.; Wang, Y.; Ye, W.; Zhang, Q. Cablinosides A and B, Two Glycosidic Phenylacetic Acid Derivatives from the Leaves of Pogostemon cablin. Chem. Biodivers. 2019, 16, e1900137. [Google Scholar] [CrossRef]
- Huang, L.; Mu, S.; Zhang, J.; Deng, B.; Song, Z.; Hao, X. Chemical constituents from involatile moiety of Pogostemon cablin. China J. Chin. Mater. Medica 2009, 34, 410–413. [Google Scholar]
- Li, K.; Zhang, H.; Xie, H.; Liang, Y.; Wang, X.; Ito, Y. Preparative Isolation and Purification of Five Flavonoids from Pogostemon cablin Benth by High-Speed Countercurrent Chromatography and Preparative High-Performance Liquid Chromatography. J. Liq. Chromatogr. Relat. Technol. 2011, 34, 1617–1629. [Google Scholar] [CrossRef]
- Zhou, Q.-M.; Peng, C.; Li, X.-H.; Guo, L.; Xiong, L.; Lin, D.-S. Study on constituents of the aerial parts of Pogostemon cablin. J. Chin. Med. Mater. 2013, 36, 915–918. [Google Scholar]
- Beşirik, N.Ş.; Göger, G. Antimicrobial Evaluation of the Patchouli (Pogostemon cablin Benth.) Leaf Essential Oil Combination with Standard Antimicrobial Compounds. Int. J. Second. Metab. 2023, 10, 385–393. [Google Scholar] [CrossRef]
- Fatima, S.; Farzeen, I.; Ashraf, A.; Aslam, B.; Ijaz, M.U.; Hayat, S.; Sarfraz, M.H.; Zafar, S.; Zafar, N.; Unuofin, J.O. A Comprehensive Review on Pharmacological Activities of Pachypodol: A Bioactive Compound of an Aromatic Medicinal Plant Pogostemon cablin Benth. Molecules 2023, 28, 3469. [Google Scholar] [CrossRef]
- Alves-Silva, J.M.; Romane, A.; Efferth, T.; Salgueiro, L. North African Medicinal Plants Traditionally Used in Cancer Therapy. Front. Pharmacol. 2017, 8, 383. [Google Scholar] [CrossRef]
- Chien, J.-H.; Lee, S.-C.; Chang, K.-F.; Huang, X.-F.; Chen, Y.-T.; Tsai, N.-M. Extract of Pogostemon cablin Possesses Potent Anticancer Activity against Colorectal Cancer Cells In Vitro and In Vivo. Evid. Based Complement. Altern. Med. 2020, 2020, 9758156. [Google Scholar] [CrossRef]
- Chen, X.-Y.; Chen, H.-M.; Liu, Y.-H.; Zhang, Z.-B.; Zheng, Y.-F.; Su, Z.-Q.; Zhang, X.; Xie, J.-H.; Liang, Y.-Z.; Fu, L.-D.; et al. The Gastroprotective Effect of Pogostone from Pogostemonis herba against Indomethacin-Induced Gastric Ulcer in Rats. Exp. Biol. Med. 2016, 241, 193–204. [Google Scholar] [CrossRef]
- Han, H.; Gao, M.; Wang, F.; Luo, Z.; Jiang, X.; Qiu, Y.; Su, J.; Duan, X.; Luo, S.; Tang, S. Protective Effects of Patchouli Alcohol against DSS-Induced Ulcerative Colitis. Sci. Rep. 2024, 14, 16745. [Google Scholar] [CrossRef]
- Ojangba, T.; Boamah, S.; Miao, Y.; Guo, X.; Fen, Y.; Agboyibor, C.; Yuan, J.; Dong, W. Comprehensive Effects of Lifestyle Reform, Adherence, and Related Factors on Hypertension Control: A Review. J. Clin. Hypertens. 2023, 25, 509–520. [Google Scholar] [CrossRef]
- Reddy, V.P. Oxidative Stress in Health and Disease. Biomedicines 2023, 11, 2925. [Google Scholar] [CrossRef]
- Kıran, T.R.; Otlu, O.; Karabulut, A.B. Oxidative Stress and Antioxidants in Health and Disease. J. Lab. Med. 2023, 47, 1–11. [Google Scholar] [CrossRef]
- Clark, J.A.; Coopersmith, C.M. Intestinal Crosstalk: A New Paradigm for Understanding the Gut as the “Motor” of Critical Illness. Shock 2007, 28, 384–393. [Google Scholar] [CrossRef]
- Gerritsen, J.; Smidt, H.; Rijkers, G.T.; de Vos, W.M. Intestinal Microbiota in Human Health and Disease: The Impact of Probiotics. Genes Nutr. 2011, 6, 209–240. [Google Scholar] [CrossRef] [PubMed]
- de Barros, D.B.; e Lima, L.d.O.; da Silva, L.A.; Fonseca, M.C.; Ferreira, R.C.; Neto, H.D.; da Nóbrega Alves, D.; da Silva Rocha, W.P.; Scotti, L.; de Oliveira Lima, E. α-Pinene: Docking Study, Cytotoxicity, Mechanism of Action, and Anti-Biofilm Effect against Candida albicans. Antibiotics 2023, 12, 480. [Google Scholar] [CrossRef]
- Nóbrega, J.R.; Silva, D.d.F.; de Andrade, F.P., Jr.; Sousa, P.M.S.; de Figueiredo, P.T.R.; Cordeiro, L.V.; Lima, E.d.O. Antifungal Action of α-Pinene against Candida Spp. Isolated from Patients with Otomycosis and Effects of Its Association with Boric Acid. Nat. Prod. Res. 2021, 35, 6190–6193. [Google Scholar] [CrossRef]
- Allenspach, M.; Steuer, C. α-Pinene: A Never-Ending Story. Phytochemistry 2021, 190, 112857. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, X.; Chen, H.; Wang, L.; Liang, J.; Luo, D.; Liu, Y.; Yang, H.; Li, Y.; Xie, J. Anti-Inflammatory Activity of β-Patchoulene Isolated from Patchouli Oil in Mice. Eur. J. Pharmacol. 2016, 781, 229–238. [Google Scholar] [CrossRef] [PubMed]
- Liang, P.; Peng, X.; Wu, R.; Jin, J.; Ang, S.; Li, D. Four New Sesquiterpenoids from the Aerial Parts of Pogostemon cablin (Blanco.) Benth. and Their Hypoglycemic Activity. Fitoterapia 2024, 177, 106054. [Google Scholar] [CrossRef] [PubMed]
- Cai, J.; Zhao, J.; Gao, P.; Xia, Y. Patchouli Alcohol Suppresses Castration-Resistant Prostate Cancer Progression by Inhibiting NF-ΚB Signal Pathways. Transl. Androl. Urol. 2022, 11, 528. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Zhang, J.; Zhang, Y.; Sui, Y.; Du, Y.; Yang, L.; Yin, Y. Antifungal and Anti-Biofilm Activities of Patchouli Alcohol against Candida albicans. Int. J. Med. Microbiol. 2024, 314, 151596. [Google Scholar] [CrossRef]
- Zhong, Y.; Tang, L.; Deng, Q.; Jing, L.; Zhang, J.; Zhang, Y.; Yu, F.; Ou, Y.; Guo, S.; Huang, B. Unraveling the Novel Effect of Patchouli Alcohol against the Antibiotic Resistance of Helicobacter pylori. Front. Microbiol. 2021, 12, 674560. [Google Scholar] [CrossRef]
- Chen, M.; Wen, H.; Zhou, S.; Yan, X.; Li, H. Patchouli Alcohol Inhibits D-gal Induced Oxidative Stress and Ameliorates the Quality of Aging Cartilage via Activating the Nrf2/HO-1 Pathway in Mice. Oxid. Med. Cell. Longev. 2022, 2022, 6821170. [Google Scholar] [CrossRef]
- Xu, L.; Huang, Q.; Tan, X.; Zhao, Q.; Wu, J.; Liao, H.; Ai, W.; Liu, Y.; Lai, Z.; Fu, L. Patchouli Alcohol Ameliorates Acute Liver Injury via Inhibiting Oxidative Stress and Gut-Origin LPS Leakage in Rats. Int. Immunopharmacol. 2021, 98, 107897. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Chen, H.; Li, R.; Li, H.; Rui, X.; Zhou, L.; Liu, N.; Ji, Q.; Li, Q. Mufangji Decoction and Its Active Ingredient Patchouli Alcohol Inhibit Tumor Growth through Regulating Akt/MTOR-mediated Autophagy in Nonsmall-cell Lung Cancer. Evid.-Based Complement. Altern. Med. 2021, 2021, 2373865. [Google Scholar] [CrossRef]
- Zhou, X.; Zhou, X.; Ma, J.; Wu, J.; Li, H.; Li, R.; Chen, X. Anti-Influenza Patchoulol-Type Sesquiterpenoids from Pogostemon cablin. Phytochem. Lett. 2022, 48, 34–39. [Google Scholar] [CrossRef]
- Li, D.; Xing, Z.; Yu, T.; Dong, W.; Wang, Z.; Peng, C.; Yang, C. Pogostone Attenuates Adipose Tissue Inflammation by Regulating the Adipocyte–Macrophage Crosstalk via Activating SIRT1. Food Funct. 2022, 13, 11853–11864. [Google Scholar] [CrossRef]
- Yang, Y.; Xie, Y.; Zhao, X.; Qi, M.; Liu, X. Pogostone Alleviates Angiotensin II-Induced Cardiomyocyte Hypertrophy in H9c2 Cells through MAPK and Nrf2 Pathway. Trop. J. Pharm. Res. 2023, 22, 1373–1378. [Google Scholar] [CrossRef]
- Zheng, T.; Lin, Z.; Jiang, G.; Chen, H.; Yang, Y.; Zeng, X. Pogostone Attenuates Osteolysis in Breast Cancer by Inhibiting the NF-KB and JNK Signaling Pathways of Osteoclast. Life Sci. 2023, 328, 121611. [Google Scholar] [CrossRef]
- Zhang, G.; Zhang, Y.; Ma, X.; Yang, X.; Cai, Y.; Yin, W. Pogostone Inhibits the Activity of CYP3A4, 2C9, and 2E1 In Vitro. Pharm. Biol. 2021, 59, 530–534. [Google Scholar] [CrossRef]
- Rezazadeh, D.; Asadi, S.; Nemati, H.; Jalili, C. The Effect of Pogostone on Viability, Membrane Integrity, and Apoptosis of Liver Cancer Cells. World Cancer Res. J. 2022, 9, e2436. [Google Scholar] [CrossRef]
- Wang, D.; Yuan, C.; Li, J.; Fang, Y.; Zhang, Z. Synthesis of Pogostone-Inspired Dehydroacetic Acid Derivatives and Their Antifungal Activity against Sclerotinia sclerotiorum (Lib.) de Bary. Chem. Biodivers. 2023, 20, e202300128. [Google Scholar] [CrossRef]
- Wang, D.; Yuan, C.; Li, Y.; Bai, S.; Feng, J.; Wang, Y.; Fang, Y.; Zhang, Z. Chelation of the Optimal Antifungal Pogostone Analogue with Copper (II) to Explore the Dual Antifungal and Antibacterial Agent. J. Agric. Food Chem. 2024, 72, 3894–3903. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-H.; Wu, J.-X.; Yang, S.-F.; Yang, C.-K.; Chen, T.-H.; Hsiao, Y.-H. Anticancer Effects and Molecular Mechanisms of Apigenin in Cervical Cancer Cells. Cancers 2022, 14, 1824. [Google Scholar] [CrossRef]
- Imran, M.; Aslam Gondal, T.; Atif, M.; Shahbaz, M.; Batool Qaisarani, T.; Hanif Mughal, M.; Salehi, B.; Martorell, M.; Sharifi-Rad, J. Apigenin as an Anticancer Agent. Phyther. Res. 2020, 34, 1812–1828. [Google Scholar] [CrossRef]
- Syahraini, A.; Harnelly, E.; Hermanto, F.E. Pro-Apoptosis Activity of Pogostemon cablin Benth. Against Nasopharyngeal Carcinoma through the BCL-2 Inhibition Signaling Pathway: A Computational Investigation. Makara J. Sci. 2023, 27, 6. [Google Scholar] [CrossRef]
- Nisari, M.; Bozkurt, Ö.; Ertekin, T.; Ceylan, D.; İnanç, N.; Al, Ö.; Güler, H.; Unur, E. Rhamnetin Improves Antioxidant Status in the Liver of Ehrlich Solid Tumor Bearing Mice. Med. Sci. Discov. 2020, 7, 494–500. [Google Scholar] [CrossRef]
- Li, B.; Feng, F.; Jia, H.; Jiang, Q.; Cao, S.; Wei, L.; Zhang, Y.; Lu, J. Rhamnetin Decelerates the Elimination and Enhances the Antitumor Effect of the Molecular-Targeting Agent Sorafenib in Hepatocellular Carcinoma Cells via the MiR-148a/PXR Axis. Food Funct. 2021, 12, 2404–2417. [Google Scholar] [CrossRef]
- Peng, X.; Ang, S.; Zhang, Y.; Fan, F.; Wu, M.; Liang, P.; Wen, Y.; Gan, L.; Zhang, K.; Li, D. Chemical Constituents with Antiproliferative Activity from Pogostemon cablin (Blanco) Benth. Front. Chem. 2022, 10, 938851. [Google Scholar] [CrossRef] [PubMed]
- Krithika, S.; Sadiq, M.; Ramanujam, G.M.; Maruthapillai, A. Trimethoxy Flavone, Pachypodol Containing Pogostemon cablin Leaf Extract Shows Broad Spectrum Antimicrobial Activity. Mater. Today Proc. 2022, 50, 297–300. [Google Scholar] [CrossRef]
- Zhang, J.; Zhu, M.; Zhang, J. Pachypodol Protects Newborn Rats from Anaesthesia-induced Apoptosis in the Developing Brain by Regulating the JNK/ERK Pathway. Int. J. Dev. Neurosci. 2021, 81, 633–642. [Google Scholar] [CrossRef]
- Ijaz, M.U.; Rauf, A.; Mustafa, S.; Ahmed, H.; Ashraf, A.; Al-Ghanim, K.; Mruthinti, S.S.; Mahboob, S. Pachypodol Attenuates Perfluorooctane Sulphonate-Induced Testicular Damage by Reducing Oxidative Stress. Saudi J. Biol. Sci. 2022, 29, 1380–1385. [Google Scholar] [CrossRef] [PubMed]
- Bernardi, M.; Ghaani, M.R.; Bayazeid, O. Phenylethanoid Glycosides as a Possible COVID-19 Protease Inhibitor: A Virtual Screening Approach. J. Mol. Model. 2021, 27, 341. [Google Scholar] [CrossRef]
- Park, E.J.; Park, H.R.; Lee, J.S.; Kim, J. Licochalcone A: An Inducer of Cell Differentiation and Cytotoxic Agent from Pogostemon cabling. Planta Med. 1998, 64, 464–466. [Google Scholar] [CrossRef]
- Punithavathy, P.M.; Nalina, K.; Menon, T. Antifungal Susceptibility Testing of Candida Tropicalis Biofilms against Fluconazole Using Calorimetric Indicator Resazurin. Indian J. Pathol. Microbiol. 2012, 55, 72–74. [Google Scholar] [CrossRef]
- Chuwen, L.; Wu, X.-L.; Zhao, X.-N.; Su, Z.-Q.; Chen, H.-M.; Wang, X.-F.; Zhang, X.-J.; Zeng, H.-F.; Chen, J.-N.; Li, Y.-C.; et al. Anti-Inflammatory Property of the Ethanol Extract of the Root and Rhizome of Pogostemon cablin (Blanco) Benth. Sci. World J. 2013, 2013, 434151. [Google Scholar] [CrossRef]
- Lavanya, G.; Brahmaprakash, G.P. Phytochemical Screening and Antimicrobial Activity of Compounds from Selected Medicinal and Aromatic Plants. Int. J. Sci. Nat. 2010, 2, 287–291. [Google Scholar]
- Mansuri, A.; Lokhande, K.; Kore, S.; Gaikwad, S.; Nawani, N.; Swamy, K.V.; Junnarkar, M.; Pawar, S. Antioxidant, Anti-Quorum Sensing, Biofilm Inhibitory Activities and Chemical Composition of Patchouli Essential Oil: In Vitro and in Silico Approach. J. Biomol. Struct. Dyn. 2022, 40, 154–165. [Google Scholar] [CrossRef]
- Tang, Z.; Peng, C.; Dai, M.; Han, B. Cytotoxic and Antibacterial Activities of the Analogues of Pogostone. Fitoterapia 2015, 106, 41–45. [Google Scholar] [CrossRef] [PubMed]
- Thakur, A. Therapeutic Potential of Pogostemon cablin Herb: A Comprehensive Review. Pharm. Pat. Anal. 2022, 11, 213–224. [Google Scholar] [CrossRef]
- Kim, J.; Wang, T.C. Helicobacter pylori and Gastric Cancer. Gastrointest. Endosc. Clin. 2021, 31, 451–465. [Google Scholar] [CrossRef]
- Leong, W.; Huang, G.; Liao, W.; Xia, W.; Li, X.; Su, Z.; Liu, L.; Wu, Q.; Wong, V.K.W.; Law, B.Y.K. Traditional Patchouli Essential Oil Modulates the Host’s Immune Responses and Gut Microbiota and Exhibits Potent Anti-Cancer Effects in ApcMin/+ Mice. Pharmacol. Res. 2022, 176, 106082. [Google Scholar] [CrossRef]
- Tran, T.H.; Luong, T.M.N.; Le Bui, V.; Tran, T.H. Effects of Plant Essential Oils and Their Constituents on Helicobacter pylori: A Review. Plant Sci. Today 2023, 10, 334–344. [Google Scholar] [CrossRef]
- Ren, W.-K.; Xu, Y.-F.; Wei, W.-H.; Huang, P.; Lian, D.-W.; Fu, L.-J.; Yang, X.-F.; Chen, F.-J.; Wang, J.; Cao, H.-Y. Effect of Patchouli Alcohol on Helicobacter pylori-Induced Neutrophil Recruitment and Activation. Int. Immunopharmacol. 2019, 68, 7–16. [Google Scholar] [CrossRef] [PubMed]
- Yi, Y.-Y.; He, J.-J.; Su, J.-Q.; Kong, S.-Z.; Su, J.-Y.; Li, Y.-C.; Li, C.-W.; Lai, X.-P.; Su, Z.-R. Synthesis and Antimicrobial Evaluation of Pogostone and Its Analogues. Fitoterapia 2013, 84, 135–139. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.-C.; Liang, H.-C.; Chen, H.-M.; Tan, L.-R.; Yi, Y.-Y.; Qin, Z.; Zhang, W.-M.; Wu, D.-W.; Li, C.-W.; Lin, R.-F. Anti-Candida albicans Activity and Pharmacokinetics of Pogostone Isolated from Pogostemonis herba. Phytomedicine 2012, 20, 77–83. [Google Scholar] [CrossRef]
- Kiyohara, H.; Ichino, C.; Kawamura, Y.; Nagai, T.; Sato, N.; Yamada, H. Patchouli Alcohol: In Vitro Direct Anti-Influenza Virus Sesquiterpene in Pogostemon cablin Benth. J. Nat. Med. 2012, 66, 55–61. [Google Scholar] [CrossRef]
- Wu, H.; Li, B.; Wang, X.; Jin, M.; Wang, G. Inhibitory Effect and Possible Mechanism of Action of Patchouli Alcohol against Influenza A (H2N2) Virus. Molecules 2011, 16, 6489–6501. [Google Scholar] [CrossRef]
- Li, Y.C.; Peng, S.Z.; Chen, H.M.; Zhang, F.X.; Xu, P.P.; Xie, J.H.; He, J.J.; Chen, J.N.; Lai, X.P.; Su, Z.R. Oral Administration of Patchouli Alcohol Isolated from Pogostemonis herba Augments Protection against Influenza Viral Infection in Mice. Int. Immunopharmacol. 2012, 12, 294–301. [Google Scholar] [CrossRef]
- Mandal, A.; Biswas, D.; Hazra, B. Natural Products from Plants with Prospective Anti-HIV Activity and Relevant Mechanisms of Action. Stud. Nat. Prod. Chem. 2020, 66, 225–271. [Google Scholar] [CrossRef]
- Buckle, J. Clinical Aromatherapy and AIDS. J. Assoc. Nurses AIDS Care 2002, 13, 81–99. [Google Scholar] [CrossRef]
- Ali, H.-A.; Chowdhury, A.K.A.; Rahman, A.K.M.; Borkowski, T.; Nahar, L.; Sarker, S.D. Pachypodol, a Flavonol from the Leaves of Calycopteris floribunda, Inhibits the Growth of CaCo 2 Colon Cancer Cell Line In Vitro. Phytother. Res. 2008, 22, 1684–1687. [Google Scholar] [CrossRef] [PubMed]
- Sreekanth, P.; Narayana, K.; Shridhar, N.B.; Bhat, A. Toxicity Studies of Calycopteris floribunda Lam. in Calf, Rabbit and Rat. J. Ethnopharmacol. 2006, 107, 229–233. [Google Scholar] [CrossRef] [PubMed]
- Uddin, S.J.; Nahar, L.; Shilpi, J.A.; Shoeb, M.; Borkowski, T.; Gibbons, S.; Middleton, M.; Byres, M.; Sarker, S.D. Gedunin, a Limonoid from Xylocarpus granatum, Inhibits the Growth of CaCo-2 Colon Cancer Cell Line In Vitro. Phytother. Res. 2007, 21, 757–761. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Lee, H.-S.; Lee, S.-H. Preventive Activity of Patchouli Alcohol against Colorectal Cancer and Diabetes. J. Med. Food 2023, 26, 255–261. [Google Scholar] [CrossRef]
- Jeong, J.B.; Choi, J.; Lou, Z.; Jiang, X.; Lee, S.H. Patchouli alcohol, an essential oil of Pogostemon cablin, exhibits antitumorigenic activity in human colorectal cancer cells. Int. Immunopharmacol. 2013, 16, 184–190. [Google Scholar] [CrossRef]
- Gao, F.; Niu, Y.; Sun, L.; Li, W.; Xia, H.; Zhang, Y.; Geng, S.; Guo, Z.; Lin, H.; Du, G. Integrating Network Pharmacology and Transcriptomic Validation to Investigate the Efficacy and Mechanism of Mufangji Decoction Preventing Lung Cancer. J. Ethnopharmacol. 2022, 298, 115573. [Google Scholar] [CrossRef]
- Škubník, J.; Pavlíčková, V.S.; Ruml, T.; Rimpelová, S. Vincristine in Combination Therapy of Cancer: Emerging Trends in Clinics. Biology 2021, 10, 849. [Google Scholar] [CrossRef]
- Liang, C.; Chang, K.; Huang, Y.; Huang, X.; Sheu, G.; Kuo, C.; Hsiao, C.; Tsai, N. Patchouli Alcohol Induces G0/G1 Cell Cycle Arrest and Apoptosis in Vincristine-resistant Non-small Cell Lung Cancer through ROS-mediated DNA Damage. Thorac. Cancer 2023, 14, 2007–2017. [Google Scholar] [CrossRef] [PubMed]
- Friedel, W.E.; Matthes, H.; Bock, P.R.; Zänker, K.S. Systematic Evaluation of the Clinical Effects of Supportive Mistletoe Treatment within Chemo- and/or Radiotherapy Protocols and Long-Term Mistletoe Application in Nonmetastatic Colorectal Carcinoma: Multicenter, Controlled, Observational Cohort Study. J. Soc. Integr. Oncol. 2009, 7, 137–145. [Google Scholar] [PubMed]
- Burkhart, J.; Wälchli, C.; Heusser, P.; Weissenstein, U.; Baumgartner, S.; Andres, A.-C. In Vitro Investigation into the Potential of a Mistletoe Extract to Alleviate Adverse Effects of Cyclophosphamide. Altern. Ther. Health Med. 2010, 16, 40–48. [Google Scholar]
- Hu, G.; Peng, C.; Xie, X.; Zhang, S.; Cao, X. Availability, Pharmaceutics, Security, Pharmacokinetics, and Pharmacological Activities of Patchouli Alcohol. Evid.-Based Complement. Altern. Med. 2017, 2017, 4850612. [Google Scholar] [CrossRef]
- Sheng, X.; Yan, J.; Meng, Y.; Kang, Y.; Han, Z.; Tai, G.; Zhou, Y.; Cheng, H. Immunomodulatory Effects of Hericium erinaceus Derived Polysaccharides Are Mediated by Intestinal Immunology. Food Funct. 2017, 8, 1020–1027. [Google Scholar] [CrossRef]
- Liao, J.B.; Wu, D.W.; Peng, S.Z.; Xie, J.H.; Li, Y.C.; Su, J.Y.; Chen, J.N.; Su, Z.R. Immunomodulatory Potential of Patchouli Alcohol Isolated from Pogostemon cablin (Blanco) Benth (Lamiaceae) in Mice. Trop. J. Pharm. Res. 2013, 12, 559–565. [Google Scholar] [CrossRef]
- Tanaka, C.; Okada, A.; Nedachi, M.; Noda, S.; Takahashi-Ando, N. The Effects of Essential Oils on Skin Homeostasis and Inflammation Using Human Keratinocyte HaCaT Cells. Cell Biol. Res. 2023, 4, 10–25. [Google Scholar]
- Sim, L.Y.; Abd Rani, N.Z.; Husain, K. Lamiaceae: An Insight on Their Anti-Allergic Potential and Its Mechanisms of Action. Front. Pharmacol. 2019, 10, 677. [Google Scholar] [CrossRef]
- Chang, K.; Lai, H.; Lee, S.; Huang, X.; Huang, Y.; Chou, T.; Hsiao, C.; Tsai, N. The Effects of Patchouli Alcohol and Combination with Cisplatin on Proliferation, Apoptosis and Migration in B16F10 Melanoma Cells. J. Cell. Mol. Med. 2023, 27, 1423–1435. [Google Scholar] [CrossRef]
- Song, Y.; Chang, L.; Wang, X.; Tan, B.; Li, J.; Zhang, J.; Zhang, F.; Zhao, L.; Liu, G.; Huo, B. Regulatory Mechanism and Experimental Verification of Patchouli Alcohol on Gastric Cancer Cell Based on Network Pharmacology. Front. Oncol. 2021, 11, 711984. [Google Scholar] [CrossRef]
- Tsoupras, A.; Gkika, D.A.; Siadimas, I.; Christodoulopoulos, I.; Efthymiopoulos, P.; Kyzas, G.Z. The Multifaceted Effects of Non-Steroidal and Non-Opioid Anti-Inflammatory and Analgesic Drugs on Platelets: Current Knowledge, Limitations, and Future Perspectives. Pharmaceuticals 2024, 17, 627. [Google Scholar] [CrossRef] [PubMed]
- Orf, M.; Kurian, M.; Nelson, C.; Simmons, D.; Espinosa, L.; Chickos, J. Correlation Gas Chromatographic Study of the Vaporization Enthalpies and Vapor Pressures of the Major Sesquiterpene Hydrocarbons in Patchouli Oil. J. Chem. Eng. Data 2021, 66, 2538–2549. [Google Scholar] [CrossRef]
- Xie, Y.-C.; Tang, F. Protective effect of Pogostemon cablin on membrane fluidity of intestinal epithelia cell in ischemia/reperfusion rats after ischemia/reperfusion. Chin. J. Integr. Tradit. West. Med. 2009, 29, 639–641. [Google Scholar]
- Li, Y.; Su, Z.; Lin, S.; Li, C.; Zhao, Y.; Gao, X.; Lai, Y.; Wu, X.; Wu, H.; Cai, Z. Characterisation of the Metabolism of Pogostone In Vitro and In Vivo Using Liquid Chromatography with Mass Spectrometry. Phytochem. Anal. 2014, 25, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Kinoshita, K.; Koyama, K.; Takahashi, K.; Tai, T.; Nunoura, Y.; Watanabe, K. Anti-Emetic Principles of Pogostemon cablin (Blanco) Benth. Phytomedicine 1999, 6, 89–93. [Google Scholar] [CrossRef]
- Khan, A.H.; Dar, M.A.; Mir, M.A. Gastric Ulcer: An Overview. Int. J. Curr. Res. Physiol. Pharmacol. 2023, 1–7. [Google Scholar]
- He, P. Study on the Fingerprint of Patchouli Leaves and Its Medicinal Chemistry in Serum. Master’s Thesis, Liaoning University of Traditional Chinese Medicine, Shenyang, China, 2010. [Google Scholar]
- Lu, Q.; Tan, D.; Luo, J.; Ye, Y.; Zuo, M.; Wang, S.; Li, C. Potential of Natural Products in the Treatment of Irritable Bowel Syndrome. Phytomedicine 2022, 106, 154419. [Google Scholar] [CrossRef]
- Almikhlafi, M.A. A Review of the Gastrointestinal, Olfactory, and Skin Abnormalities in Patients with Parkinson’s Disease. Neurosci. J. 2024, 29, 4–9. [Google Scholar] [CrossRef]
- Pujari, N.M.; Khushtar, M.; Mishra, A.; Gupta, D. Comprehensive Insights into Gastric Ulcer Therapies: A Review of Current Approaches. J. Appl. Pharm. Sci. Res. 2024, 7, 4–12. [Google Scholar] [CrossRef]
- Saad, R.A.; Qutob, H.M.H. Alterations in Hemostatic and Hematological Parameters after Gastric Ulcer Induction in Rats. Possible Role of IL-6 and TNF-α. J. Evol. Biochem. Physiol. 2023, 59, 82–93. [Google Scholar] [CrossRef]
- Chen, G.; Xie, X.; Peng, F.; Wang, T.; Chen, J.; Li, G.; Liu, J.; Peng, C. Protective Effect of the Combination of Essential Oil from Patchouli and Tangerine Peel against Gastric Ulcer in Rats. J. Ethnopharmacol. 2022, 282, 114645. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Liang, J.-L.; Liu, Y.-H.; Wu, J.-Z.; Huang, Q.-H.; Li, Y.-C.; Xie, Q.-F. Comparison of Anti-Inflammatory Effect between β-Patchoulene Epoxide and β-Patchoulene in LPS-Stimulated RAW264.7 Macrophages. Eur. J. Inflamm. 2018, 16, 205873921878507. [Google Scholar] [CrossRef]
- Hao, D.-C.; Wang, F.; Xiao, P.-G. Impact of Drug Metabolism/Pharmacokinetics and Its Relevance Considering Traditional Medicine-Based Anti-COVID-19 Drug Research. Curr. Drug Metab. 2022, 23, 374–393. [Google Scholar] [CrossRef]
- Liu, Y.; Liang, J.; Wu, J.; Chen, H.; Zhang, Z.; Yang, H.; Chen, L.; Chen, H.; Su, Z.; Li, Y. Transformation of Patchouli Alcohol to β-Patchoulene by Gastric Juice: β-Patchoulene Is More Effective in Preventing Ethanol-Induced Gastric Injury. Sci. Rep. 2017, 7, 5591. [Google Scholar] [CrossRef]
- Ashton, J.J.; Beattie, R.M. Inflammatory Bowel Disease: Recent Developments. Arch. Dis. Child. 2024, 109, 370–376. [Google Scholar] [CrossRef]
- Yu, X.; Yang, G.; Jiang, H.; Lin, S.; Liu, Y.; Zhang, X.; Zeng, H.; Su, Z.; Huang, S.; Shen, L.; et al. Patchouli Oil Ameliorates Acute Colitis: A Targeted Metabolite Analysis of 2,4,6-Trinitrobenzenesulfonic Acid-Induced Rats. Exp. Ther. Med. 2017, 14, 1184–1192. [Google Scholar] [CrossRef]
- Qu, C.; Yuan, Z.-W.; Yu, X.-T.; Huang, Y.-F.; Yang, G.-H.; Chen, J.-N.; Lai, X.-P.; Su, Z.-R.; Zeng, H.-F.; Xie, Y.; et al. Patchouli Alcohol Ameliorates Dextran Sodium Sulfate-Induced Experimental Colitis and Suppresses Tryptophan Catabolism. Pharmacol. Res. 2017, 121, 70–82. [Google Scholar] [CrossRef]
- Di Rosa, C.; Altomare, A.; Terrigno, V.; Carbone, F.; Tack, J.; Cicala, M.; Guarino, M.P.L. Constipation-Predominant Irritable Bowel Syndrome (IBS-C): Effects of Different Nutritional Patterns on Intestinal Dysbiosis and Symptoms. Nutrients 2023, 15, 1647. [Google Scholar] [CrossRef]
- Zhou, T.-R.; Huang, J.-J.; Huang, Z.-T.; Cao, H.-Y.; Tan, B. Inhibitory Effects of Patchouli Alcohol on Stress-Induced Diarrhea-Predominant Irritable Bowel Syndrome. World J. Gastroenterol. 2018, 24, 693–705. [Google Scholar] [CrossRef]
- Pei, Y.; Huang, C.; Chen, W.; Zhang, Y.; Bao, R.; Yi, S.; Li, T.; Xu, Y.; Cao, H.; Tan, B. Patchouli Alcohol Improves Intestinal Motility in Ibs-D Rats Through Muscularis Macrophages Modulation of Enteric Neurons; Elsevier: Amsterdam, The Netherlands, 2023. [Google Scholar]
- Ettehad, D.; Emdin, C.A.; Kiran, A.; Anderson, S.G.; Callender, T.; Emberson, J.; Chalmers, J.; Rodgers, A.; Rahimi, K. Blood Pressure Lowering for Prevention of Cardiovascular Disease and Death: A Systematic Review and Meta-Analysis. Lancet 2016, 387, 957–967. [Google Scholar] [CrossRef]
- Liu, X.; Luo, D.; Zhang, J.; Du, L. Distribution and Relative Expression of Vasoactive Receptors on Arteries. Sci. Rep. 2020, 10, 15383. [Google Scholar] [CrossRef] [PubMed]
- Padilla-Pérez, J.; López-Canales, Ó.A.; Castillo-Hernández, M.C.; Padilla-Keymole, J.; López-Canales, J.S.; Zambrano-Padilla, R. Fast Kinetics of Fundamental Aortic Contraction to Phenylephrine Compared to KCl Only in Male Prepubertal and Adult Rats. Rev. Méd. Hosp. Gen. Méx. 2023, 86, 93–98. [Google Scholar] [CrossRef]
- Moser, J.C.; da Silva, R.d.C.V.; Costa, P.; da Silva, L.M.; Cassemiro, N.S.; Gasparotto Junior, A.; Silva, D.B.; de Souza, P. Role of K+ and Ca2+ Channels in the Vasodilator Effects of Plectranthus barbatus (Brazilian Boldo) in Hypertensive Rats. Cardiovasc. Ther. 2023, 2023, 9948707. [Google Scholar] [CrossRef] [PubMed]
- Muraki, K.; Bolton, T.B.; Imaizumi, Y.; Watanabe, M. Effect of Isoprenaline on Ca2+ Channel Current in Single Smooth Muscle Cells Isolated from Taenia of the Guinea-pig Caecum. J. Physiol. 1993, 471, 563–582. [Google Scholar] [CrossRef]
- Tugrul, I.; Dost, T.; Demir, O.; Gokalp, F.; Oz, O.; Girit, N.; Birincioglu, M. Effects of a PPAR-Gamma Receptor Agonist and an Angiotensin Receptor Antagonist on Aortic Contractile Responses to Alpha Receptor Agonists in Diabetic and/or Hypertensive Rats: Cardiovascular Topics. Cardiovasc. J. Afr. 2016, 27, 164–169. [Google Scholar] [CrossRef]
- Zhu, H.; Zhou, Q.-M.; Peng, C.; Chen, M.-H.; Li, X.-N.; Lin, D.-S.; Xiong, L. Pocahemiketals A and B, Two New Hemiketals with Unprecedented Sesquiterpenoid Skeletons from Pogostemon cablin. Fitoterapia 2017, 120, 67–71. [Google Scholar] [CrossRef]
- Hu, G.-Y.; Peng, C.; Xie, X.-F.; Xiong, L.; Zhang, S.-Y.; Cao, X.-Y. Patchouli Alcohol Isolated from Pogostemon cablin Mediates Endothelium-Independent Vasorelaxation by Blockade of Ca2+ Channels in Rat Isolated Thoracic Aorta. J. Ethnopharmacol. 2018, 220, 188–196. [Google Scholar] [CrossRef]
- Lin, R.-F.; Feng, X.-X.; Li, C.-W.; Zhang, X.-J.; Yu, X.-T.; Zhou, J.-Y.; Zhang, X.; Xie, Y.-L.; Su, Z.-R.; Zhan, J.Y.-X. Prevention of UV Radiation-Induced Cutaneous Photoaging in Mice by Topical Administration of Patchouli Oil. J. Ethnopharmacol. 2014, 154, 408–418. [Google Scholar] [CrossRef]
- Kowalczyk, T.; Merecz-Sadowska, A.; Ghorbanpour, M.; Szemraj, J.; Piekarski, J.; Bijak, M.; Śliwiński, T.; Zajdel, R.; Sitarek, P. Enhanced Natural Strength: Lamiaceae Essential Oils and Nanotechnology in in Vitro and in Vivo Medical Research. Int. J. Mol. Sci. 2023, 24, 15279. [Google Scholar] [CrossRef]
- Liu, X.; Jiang, L.; Liu, F.; Chen, Y.; Xu, L.; Li, D.; Ma, Y.; Li, H.; Xu, J. Effect of Patchouli Alcohol on the Regulation of Heat Shock-Induced Oxidative Stress in IEC-6 Cells. Int. J. Hyperth. 2016, 32, 474–482. [Google Scholar] [CrossRef]
- Lee, H.; Hong, Y.; Kim, M. Structural and Functional Changes and Possible Molecular Mechanisms in Aged Skin. Int. J. Mol. Sci. 2021, 22, 12489. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Zhi, J.; Zhao, R.; Sun, Y.; Wen, H.; Cai, H.; Chen, W.; Jiang, X.; Bai, R. Discovery of Matrix Metalloproteinase Inhibitors as Anti-Skin Photoaging Agents. Eur. J. Med. Chem. 2024, 267, 116152. [Google Scholar] [CrossRef] [PubMed]
- Pittayapruek, P.; Meephansan, J.; Prapapan, O.; Komine, M.; Ohtsuki, M. Role of Matrix Metalloproteinases in Photoaging and Photocarcinogenesis. Int. J. Mol. Sci. 2016, 17, 868. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.-F.; Huang, Y.-F.; Wang, L.; Xu, L.-Q.; Yu, X.-T.; Liu, Y.-H.; Li, C.-L.; Zhan, J.Y.-X.; Su, Z.-R.; Chen, J.-N.; et al. Photo-Protective Activity of Pogostone against UV-Induced Skin Premature Aging in Mice. Exp. Gerontol. 2016, 77, 76–86. [Google Scholar] [CrossRef]
- Gupta, A.K.; Parasar, D.; Sagar, A.; Choudhary, V.; Chopra, B.S.; Garg, R.; Ashish; Khatri, N. Analgesic and Anti-Inflammatory Properties of Gelsolin in Acetic Acid Induced Writhing, Tail Immersion and Carrageenan Induced Paw Edema in Mice. PLoS ONE 2015, 10, e0135558. [Google Scholar] [CrossRef]
- Desai, S.J.; Prickril, B.; Rasooly, A. Mechanisms of Phytonutrient Modulation of Cyclooxygenase-2 (COX-2) and Inflammation Related to Cancer. Nutr. Cancer 2018, 70, 350–375. [Google Scholar] [CrossRef]
- Thirkettle-Watts, D. Impedance-Based Analysis of Mu Opioid Receptor Signaling and Underlying Mechanisms. Biochem. Biophys. Rep. 2016, 6, 32–38. [Google Scholar] [CrossRef]
- Li, J.; Hu, G.; Liu, W.; Cao, X.; Chen, G.; Peng, F.; Xiaofang, X.; Peng, C. Patchouli Alcohol against Renal Fibrosis of Spontaneously Hypertensive Rats via Ras/Raf-1/ERK1/2 Signalling Pathway. J. Pharm. Pharmacol. 2023, 75, 995–1010. [Google Scholar] [CrossRef]
- Yu, X.; Wang, X.; Yan, X.; Jiang, J.; Lei, F.; Xing, D.; Guo, Y.; Du, L. Anti-Nociceptive Effect of Patchouli Alcohol: Involving Attenuation of Cyclooxygenase 2 and Modulation of Mu-Opioid Receptor. Chin. J. Integr. Med. 2019, 25, 454–461. [Google Scholar] [CrossRef]
- Zhang, H.; Dhalla, N.S. The Role of Pro-Inflammatory Cytokines in the Pathogenesis of Cardiovascular Disease. Int. J. Mol. Sci. 2024, 25, 1082. [Google Scholar] [CrossRef]
- Kobayashi, E.H.; Suzuki, T.; Funayama, R.; Nagashima, T.; Hayashi, M.; Sekine, H.; Tanaka, N.; Moriguchi, T.; Motohashi, H.; Nakayama, K.; et al. Nrf2 Suppresses Macrophage Inflammatory Response by Blocking Proinflammatory Cytokine Transcription. Nat. Commun. 2016, 7, 11624. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.-H.; Liu, Y.-H.; Liang, J.-L.; Lin, Z.; Kong, Q.-L.; Xian, Y.; Guo, D.-Q.; Lai, Z.-Q.; Su, Z.-R.; Xiaoqi, H. β-Patchoulene, Isolated from Patchouli Oil, Suppresses Inflammatory Mediators in LPS-Stimulated RAW264.7 Macrophages. Eur. J. Inflamm. 2017, 15, 1721727X1771469. [Google Scholar] [CrossRef]
- Hijazy, H.H.A.; Dahran, N.; Althagafi, H.A.; Alharthi, F.; Habotta, O.A.; Oyouni, A.A.A.; Algahtani, M.; Theyab, A.; Al-Amer, O.; Lokman, M.S. Thymoquinone Counteracts Oxidative and Inflammatory Machinery in Carrageenan-Induced Murine Paw Edema Model. Environ. Sci. Pollut. Res. 2023, 30, 16597–16611. [Google Scholar] [CrossRef]
- Stojanović, N.M.; Ranđelović, P.J.; Simonović, M.; Radić, M.; Todorović, S.; Corrigan, M.; Harkin, A.; Boylan, F. Essential Oil Constituents as Anti-Inflammatory and Neuroprotective Agents: An Insight through Microglia Modulation. Int. J. Mol. Sci. 2024, 25, 5168. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Dou, Y.; Wu, X.; Li, H.; Wu, J.; Huang, Q.; Luo, D.; Yi, T.; Liu, Y.; Su, Z. Prophylactic Efficacy of Patchoulene Epoxide against Ethanol-Induced Gastric Ulcer in Rats: Influence on Oxidative Stress, Inflammation and Apoptosis. Chem. Biol. Interact. 2018, 283, 30–37. [Google Scholar] [CrossRef]
- Miyazawa, M.; Okuno, Y.; Nakamura, S.; Kosaka, H. Antimutagenic Activity of Flavonoids from Pogostemon cablin. J. Agric. Food Chem. 2000, 48, 642–647. [Google Scholar] [CrossRef]
- Lu, T.-C.; Liao, J.-C.; Huang, T.-H.; Lin, Y.-C.; Liu, C.-Y.; Chiu, Y.; Peng, W.-H. Analgesic and Anti-Inflammatory Activities of the Methanol Extract from Pogostemon cablin. Evidence-Based Complement. Altern. Med. 2011, 2011, 671741. [Google Scholar] [CrossRef]
- Xian, Y.-F.; Li, Y.-C.; Ip, S.-P.; Lin, Z.-X.; Lai, X.-P.; Su, Z.-R. Anti-Inflammatory Effect of Patchouli Alcohol Isolated from Pogostemonis herba in LPS-Stimulated RAW264.7 Macrophages. Exp. Ther. Med. 2011, 2, 545–550. [Google Scholar] [CrossRef]
- van Den Berg, H.; Velayudhan, R.; Yadav, R.S. Management of Insecticides for Use in Disease Vector Control: Lessons from Six Countries in Asia and the Middle East. PLoS Negl. Trop. Dis. 2021, 15, e0009358. [Google Scholar] [CrossRef]
- Fu, Q.; Zeng, B.; Xiao, Q.; He, B.; Huang, C.; Bao, M. Essential Oils for the Treatment of Dust Mites. E3S Web Conf. 2021, 271, 4032. [Google Scholar] [CrossRef]
- Phal, D.; Naik, R.K.; Deobhankar, K.P.; Vitonde, S.; Ghatpande, N. Laboratory Evaluation of Herbal Mosquito Coils against Aedes aegypti Mosquito. Bull. Environ. Pharmacol. Life Sci. 2012, 1, 16–20. [Google Scholar]
- Huang, S.-H.; Xian, J.-D.; Kong, S.-Z.; Li, Y.-C.; Xie, J.-H.; Lin, J.; Chen, J.-N.; Wang, H.-F.; Su, Z.-R. Insecticidal Activity of Pogostone against Spodoptera litura and Spodoptera exigua (Lepidoptera: Noctuidae). Pest Manag. Sci. 2014, 70, 510–516. [Google Scholar] [CrossRef] [PubMed]
- Ga’al, H.; Fouad, H.; Mao, G.; Tian, J.; Jianchu, M. Larvicidal and Pupicidal Evaluation of Silver Nanoparticles Synthesized Using Aquilaria sinensis and Pogostemon cablin Essential Oils against Dengue and Zika Viruses Vector Aedes albopictus Mosquito and Its Histopathological Analysis. Artif. Cells Nanomed. Biotechnol. 2018, 46, 1171–1179. [Google Scholar] [CrossRef]
- Tennyson, S.; Samraj, A.D.; Jeyasundar, D.; Chalieu, K. Larvicidal Efficacy of Plant Oils against the Dengue Vector Aedes aegypti (L.) (Diptera: Culicidae). World J. Pharm. Res. 2013, 13, 64–68. [Google Scholar] [CrossRef]
- Gokulakrishnan, J.; Kuppusamy, E.; Shanmugam, D.; Appavu, A.; Kaliyamoorthi, K. Pupicidal and Repellent Activities of Pogostemon Cablin Essential Oil Chemical Compounds against Medically Important Human Vector Mosquitoes. Asian Pacific J. Trop. Dis. 2013, 3, 26–31. [Google Scholar] [CrossRef]
- Widawati, M.; Riandi, M.U. Study of Herbal Topical Repellent Made of Betel Leaves (Piper Betle) and Patchouli Oil (Pogostemon cablin) Mixture Against Yellow Fever Mosquito (Aedes aegypti). Biotropia 2015, 22, 45–51. [Google Scholar] [CrossRef]
- Mardin, S.; Ramadhan, A.; Afiat, N.; Istadewi, I. Repellent and Larvacidal Activity of Patchouli Oil and Curcuma Aeruginosarhizome Extract against Aedesaegypti. L. (Diptera: Culicidae). Egypt. J. Chem. 2024, 67, 117–125. [Google Scholar] [CrossRef]
- Shin, Y.K.; Lee, S.-Y.; Lee, J.-M.; Kang, P.; Seol, G.H. Effects of Short-Term Inhalation of Patchouli Oil on Professional Quality of Life and Stress Levels in Emergency Nurses: A Randomized Controlled Trial. J. Altern. Complement. Med. 2020, 26, 1032–1038. [Google Scholar] [CrossRef] [PubMed]
- Thangaleela, S.; Sivamaruthi, B.S.; Kesika, P.; Bharathi, M.; Kunaviktikul, W.; Klunklin, A.; Chanthapoon, C.; Chaiyasut, C. Essential Oils, Phytoncides, Aromachology, and Aromatherapy—A Review. Appl. Sci. 2022, 12, 4495. [Google Scholar] [CrossRef]
- Vishali, S.; Kavitha, E.; Selvalakshmi, S. Therapeutic Role of Essential Oils. In Essential Oils: Extraction Methods and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2023; pp. 953–976. [Google Scholar] [CrossRef]
- Le Callaway, P. Aromatherapy and Its Applications for Body, Mind and Spirit; Lulu Press: Morrisville, NC, USA, 2019; ISBN 0359964354. [Google Scholar]
- Lizarraga-Valderrama, L.R. Effects of Essential Oils on Central Nervous System: Focus on Mental Health. Phyther. Res. 2021, 35, 657–679. [Google Scholar] [CrossRef]
- Ermaya, D.; Sari, S.P.; Patria, A.; Hidayat, F.; Razi, F. Identification of Patchouli Oil Chemical Components as the Results on Distillation Using GC-MS. IOP Conf. Ser. Earth Environ. Sci. 2019, 365, 12039. [Google Scholar] [CrossRef]
- Triana, K.Y.; Allenidekania, A.; Hayati, H. The Effect of Aromatherapy Inhalation on Reducing Chronic Pain for Children with Cancer: A Pilot Study. Trends Sci. 2022, 19, 2669. [Google Scholar] [CrossRef]
- Sah, S.P.; Mathela, C.S.; Chopra, K. Antidepressant Effect of Valeriana wallichii Patchouli Alcohol Chemotype in Mice: Behavioural and Biochemical Evidence. J. Ethnopharmacol. 2011, 135, 197–200. [Google Scholar] [CrossRef]
- Astuti, P.; Khairan, K.; Marthoenis, M.; Hasballah, K. Antidepressant-like Activity of Patchouli Oil Var. Tapak Tuan (Pogostemon cablin Benth) via Elevated Dopamine Level: A Study Using Rat Model. Pharmaceuticals 2022, 15, 608. [Google Scholar] [CrossRef] [PubMed]
- Marchesi, J.R.; Adams, D.H.; Fava, F.; Hermes, G.D.A.; Hirschfield, G.M.; Hold, G.; Quraishi, M.N.; Kinross, J.; Smidt, H.; Tuohy, K.M. The Gut Microbiota and Host Health: A New Clinical Frontier. Gut 2016, 65, 330–339. [Google Scholar] [CrossRef]
- Ekstedt, N.; Jamioł-Milc, D.; Pieczyńska, J. Importance of Gut Microbiota in Patients with Inflammatory Bowel Disease. Nutrients 2024, 16, 2092. [Google Scholar] [CrossRef]
- Cho, K.Y. Association of Gut Microbiota with Obesity in Children and Adolescents. Clin. Exp. Pediatr. 2023, 66, 148. [Google Scholar] [CrossRef]
- Leong, W.; Huang, G.; Khan, I.; Xia, W.; Li, Y.; Liu, Y.; Li, X.; Han, R.; Su, Z.; Hsiao, W.L.W. Patchouli Essential Oil and Its Derived Compounds Revealed Prebiotic-Like Effects in C57BL/6J Mice. Front. Pharmacol. 2019, 10, 1229. [Google Scholar] [CrossRef]
- Sninsky, J.A.; Shore, B.M.; Lupu, G.V.; Crockett, S.D. Risk Factors for Colorectal Polyps and Cancer. Gastrointest. Endosc. Clin. N. Am. 2022, 32, 195–213. [Google Scholar] [CrossRef]
- Bel, S.; Pendse, M.; Wang, Y.; Li, Y.; Ruhn, K.A.; Hassell, B.; Leal, T.; Winter, S.E.; Xavier, R.J.; Hooper, L. V Paneth Cells Secrete Lysozyme via Secretory Autophagy during Bacterial Infection of the Intestine. Science 2017, 357, 1047–1052. [Google Scholar] [CrossRef]
- Förster, C. Tight Junctions and the Modulation of Barrier Function in Disease. Histochem. Cell Biol. 2008, 130, 55–70. [Google Scholar] [CrossRef] [PubMed]
- Orbán, E.; Szabó, E.; Lotz, G.; Kupcsulik, P.; Páska, C.; Schaff, Z.; Kiss, A. Different Expression of Occludin and ZO-1 in Primary and Metastatic Liver Tumors. Pathol. Oncol. Res. 2008, 14, 299–306. [Google Scholar] [CrossRef] [PubMed]
- Wagener, F.A.; Feldman, E.; De Witte, T.; Abraham, N.G. Heme Induces the Expression of Adhesion Molecules ICAM-1, VCAM-1, and E Selectin in Vascular Endothelial Cells. Proc. Soc. Exp. Biol. Med. 1997, 216, 456–463. [Google Scholar] [CrossRef]
- Maurer, C.A.; Friess, H.; Kretschmann, B.; Wildi, S.; Müller, C.; Graber, H.; Schilling, M.; Büchler, M.W. Over-expression of ICAM-1, VCAM-1 and ELAM-1 Might Influence Tumor Progression in Colorectal Cancer. Int. J. Cancer 1998, 79, 76–81. [Google Scholar] [CrossRef]
- West, A.C.; Johnstone, R.W. New and Emerging HDAC Inhibitors for Cancer Treatment. J. Clin. Investig. 2014, 124, 30–39. [Google Scholar] [CrossRef]
- Sampath, S.J.P.; Venkatesan, V.; Ghosh, S.; Kotikalapudi, N. Obesity, Metabolic Syndrome, and Osteoarthritis—An Updated Review. Curr. Obes. Rep. 2023, 12, 308–331. [Google Scholar] [CrossRef]
- Kim, T.; Al Mijan, M.; Lee, J.; Yun, J.; Chung, J.H.; Son, S.M.; Kwon, R.J. Essential Oils for the Treatment and Management of Nonalcoholic Fatty Liver Disease (NAFLD). Nat. Prod. Commun. 2024, 19, 4. [Google Scholar] [CrossRef]
- Hong, S.J.; Cho, J.; Boo, C.G.; Youn, M.Y.; Pan, J.H.; Kim, J.K.; Shin, E.-C. Inhalation of Patchouli (Pogostemon cablin Benth.) Essential Oil Improved Metabolic Parameters in Obesity-Induced Sprague Dawley Rats. Nutrients 2020, 12, 2077. [Google Scholar] [CrossRef]
- Wong, V.W.-S.; Ekstedt, M.; Wong, G.L.-H.; Hagström, H. Changing Epidemiology, Global Trends and Implications for Outcomes of NAFLD. J. Hepatol. 2023, 79, 842–852. [Google Scholar] [CrossRef] [PubMed]
- Teng, M.L.P.; Ng, C.H.; Huang, D.Q.; Chan, K.E.; Tan, D.J.H.; Lim, W.H.; Yang, J.D.; Tan, E.; Muthiah, M.D. Global Incidence and Prevalence of Nonalcoholic Fatty Liver Disease. Clin. Mol. Hepatol. 2023, 29, S32. [Google Scholar] [CrossRef]
- Wu, X.; Xu, N.; Li, M.; Huang, Q.; Wu, J.; Gan, Y.; Chen, L.; Luo, H.; Li, Y.; Huang, X.; et al. Protective Effect of Patchouli Alcohol Against High-Fat Diet Induced Hepatic Steatosis by Alleviating Endoplasmic Reticulum Stress and Regulating VLDL Metabolism in Rats. Front. Pharmacol. 2019, 10, 1134. [Google Scholar] [CrossRef]
- Cole, L.K.; Rajala-Schultz, P.J.; Lorch, G.; Daniels, J.B. Bacteriology and Cytology of Otic Exudates in 41 Cavalier King Charles Spaniels with Primary Secretory Otitis Media. Vet. Dermatol. 2019, 30, 151-e44. [Google Scholar] [CrossRef] [PubMed]
- Borek, I.; Birnhuber, A.; Voelkel, N.F.; Marsh, L.M.; Kwapiszewska, G. The Vascular Perspective on Acute and Chronic Lung Disease. J. Clin. Investig. 2023, 133, e170502. [Google Scholar] [CrossRef]
- Zhang, G.; Liu, M.; Song, M.; Wang, J.; Cai, J.; Lin, C.; Li, Y.; Jin, X.; Shen, C.; Chen, Z. Patchouli Alcohol Activates PXR and Suppresses the NF-ΚB-Mediated Intestinal Inflammatory. J. Ethnopharmacol. 2020, 248, 112302. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.-T.; Wang, Z.-Z.; Wang, Z.-C.; Wang, S.-M.; Cai, X.-J.; Su, G.-H.; Yuan, Z.-Y. Patchouli Alcohol Attenuates Experimental Atherosclerosis via Inhibiting Macrophage Infiltration and Its Inflammatory Responses. Biomed. Pharmacother. 2016, 83, 930–935. [Google Scholar] [CrossRef] [PubMed]
- Aisyah, Y.; Yunita, D.; Amanda, A. Antimicrobial Activity of Patchouli (Pogostemon cablin Benth) Citronella (Cymbopogon nardus), and Nutmeg (Myristica fragrans) Essential Oil and Their Mixtures against Pathogenic and Food Spoilage Microbes. IOP Conf. Ser. Earth Environ. Sci. 2021, 667, 12020. [Google Scholar] [CrossRef]
- Xie, L.; Guo, Y.; Chen, Y.; Zhang, L.; Wang, Z.; Zhang, T.; Wang, B. A Potential Drug Combination of Omeprazole and Patchouli Alcohol Significantly Normalizes Oxidative Stress and Inflammatory Responses against Gastric Ulcer in Ethanol-Induced Rat Model. Int. Immunopharmacol. 2020, 85, 106660. [Google Scholar] [CrossRef]
- Lu, Y.; Li, S.; Lou, H. Patchouli Alcohol Protects against Myocardial Ischaemia–Reperfusion Injury by Regulating the Notch1/Hes1 Pathway. Pharm. Biol. 2022, 60, 949–957. [Google Scholar] [CrossRef]
- Lee, H.-S.; Lee, J.; Smolensky, D.; Lee, S.-H. Potential Benefits of Patchouli Alcohol in Prevention of Human Diseases: A Mechanistic Review. Int. Immunopharmacol. 2020, 89, 107056. [Google Scholar] [CrossRef]
- Homayoun, M.; Sajedi, N.; Soleimani, M. In Vitro Evaluation of the Pogostone Effects on the Expression of PTEN and DACT1 Tumor Suppressor Genes, Cell Cycle, and Apoptosis in Ovarian Cancer Cell Line. Res. Pharm. Sci. 2022, 17, 164–175. [Google Scholar] [CrossRef]
- Ji, L.; Lou, S.; Fang, Y.; Wang, X.; Zhu, W.; Liang, G.; Lee, K.; Luo, W.; Zhuang, Z. Patchouli Alcohol Protects the Heart against Diabetes-Related Cardiomyopathy through the JAK2/STAT3 Signaling Pathway. Pharmaceuticals 2024, 17, 631. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.-X.; Yao, Y.-Y.; Ai, C.-H.; Yang, G.; Liang, X.-Y.; Liu, T.-D.; He, M.-L.; Xia, J.-H. Dietary Supplementation of Patchouli Oil Increases the Resistance against Streptococcus Agalactiae Infection in GIFT Tilapia as Revealed by Transcriptome and 16s Amplicon Profiling. Aquac. Rep. 2023, 33, 101754. [Google Scholar] [CrossRef]
- Tang, S.; Huang, S.; Huang, J.; Lai, X.; Guo, J.; Huang, J.; Zhong, Y. Pogostone Attenuated High-Fat Diet–Induced Nonalcoholic Fatty Liver Disease in Mice through Inhibition of NLRP3 Inflammasome Signaling. Eur. J. Pharmacol. 2024, 970, 176463. [Google Scholar] [CrossRef]
- Lee, J.; Kong, B.; Lee, S.-H. Patchouli Alcohol, a Compound from Pogostemon cablin, Inhibits Obesity. J. Med. Food 2020, 23, 326–334. [Google Scholar] [CrossRef] [PubMed]
- Wei, L.-L.; Chen, Y.; Yu, Q.-Y.; Wang, Y.; Liu, G. Patchouli Alcohol Protects against Ischemia/Reperfusion-Induced Brain Injury via Inhibiting Neuroinflammation in Normal and Obese Mice. Brain Res. 2018, 1682, 61–70. [Google Scholar] [CrossRef] [PubMed]
- Fei, F.; Zhang, C. Patchouli Alcohol Suppresses Inflammation and Autophagy, and Reduces Osteoclast Formation in Periodontitis via Regulation of ERK and NF ΚB Signaling Pathways. Trop. J. Pharm. Res. 2022, 21, 1607–1613. [Google Scholar] [CrossRef]
- Lalthafamkimi, L.; Kumar, A.; Wann, S.B.; Kumar, D.; Bhattacharyya, P.; Kumar, S. Metabolite Bioprospection and Expression Analysis of Patchoulol Synthase Gene in Different in Vitro Systems of Pogostemon cablin: An Important Medicinal Aromatic Plant. Ind. Crops Prod. 2023, 205, 116689. [Google Scholar] [CrossRef]
- Kusumaningrum, H.P.; Subagio, A.; Zainuri, M.; Herida, A.P.; Wiryawan, A.Z.T.P.; Nuha, I.; Syaifudin, A.M.P.; Ghozi, A.F.; Suhariyanto, B.G.; Samudra, J.A. Antibacterial Activity Test of Patchouli Essential Oil (Pogostemon cablin Benth.), Clove (Syzygium aromaticum), and Lemongrass (Cymbopogon citratus) against Bacteria Escherichia coli and Bacillus subtilis. AIP Conf. Proc. 2024, 3165, 050009. [Google Scholar] [CrossRef]
- González-Minero, F.J.; Bravo-Díaz, L.; Moreno-Toral, E. Pharmacy and Fragrances: Traditional and Current Use of Plants and Their Extracts. Cosmetics 2023, 10, 157. [Google Scholar] [CrossRef]
- Devi, M.; Thalkari, A.B.; Thorat, V.M. Overview of Herbal Cosmetics. Res. J. Top. Cosmet. Sci. 2022, 13, 27–34. [Google Scholar] [CrossRef]
- Sharma, A.; Gumber, K.; Gohain, A.; Bhatia, T.; Sohal, H.S.; Mutreja, V.; Bhardwaj, G. Importance of Essential Oils and Current Trends in Use of Essential Oils (Aroma Therapy, Agrofood, and Medicinal Usage). In Essential Oils; Elsevier: Amsterdam, The Netherlands, 2023; pp. 53–83. [Google Scholar] [CrossRef]
- Taufik, M.; Rizal, S.; Harnelly, E.; Muhammad, S.; Syahrizal, D.; Prajaputra, V.; Isnaini, N. The Therapeutic Potential of Aceh Patchouli Oil (Pogostemon cablin Benth.) in Enhancing Full-Thickness Wound Healing in Mice. Trop. J. Nat. Prod. Res. 2024, 8. [Google Scholar] [CrossRef]
- Rahmi, D.; Yunilawati, R.; Jati, B.N.; Setiawati, I.; Riyanto, A.; Batubara, I.; Astuti, R.I. Antiaging and Skin Irritation Potential of Four Main Indonesian Essential Oils. Cosmetics 2021, 8, 94. [Google Scholar] [CrossRef]
- Kumar, K.J.S.; Vani, M.G.; Chinnasamy, M.; Lin, W.-T.; Wang, S.-Y. Patchouli Alcohol: A Potent Tyrosinase Inhibitor Derived from Patchouli Essential Oil with Potential in the Development of a Skin-Lightening Agent. Cosmetics 2024, 11, 38. [Google Scholar] [CrossRef]
- Arahman, N.; Deski, D.; Akbar, A.; Surya, A.; Pitra, M.N.; Pratama, R.N. Effect of Addition of Patchouli Leaf Essential Oil (Pogostemon cablin Benth) on Eyecream Products. J. Patchouli Essent. Oil Prod. 2023, 2, 16–20. [Google Scholar] [CrossRef]
- Khare, N.; Khokhar, D.; Patel, S.; Mishra, N.K. Study on Physico-Chemical Properties of Patchouli Oil. Int. J. Chem. Stud. 2020, 8, 1206–1211. [Google Scholar] [CrossRef]
- Hassid, A.; Salla, M.; Krayem, M.; Khaled, S.; Hassan, H.; El Khatib, S. A Review on the Versatile Applications of Plant-Based Essential Oils in Food Flavoring, Culinary Uses and Health Benefits. Preprint 2024. [Google Scholar] [CrossRef]
- Hikal, W.M.; Baz, M.M.; Alshehri, M.A.; Bahattab, O.; Baeshen, R.S.; Selim, A.M.; Alhwity, L.; Bousbih, R.; Alshourbaji, M.S.; Ahl, H.A.H.S.-A. Sustainable Pest Management Using Novel Nanoemulsions of Honeysuckle and Patchouli Essential Oils against the West Nile Virus Vector, Culex Pipiens, under Laboratory and Field Conditions. Plants 2023, 12, 3682. [Google Scholar] [CrossRef]
- Silvério, M.R.S.; Espindola, L.S.; Lopes, N.P.; Vieira, P.C. Plant Natural Products for the Control of Aedes aegypti: The Main Vector of Important Arboviruses. Molecules 2020, 25, 3484. [Google Scholar] [CrossRef]
- Ahmad, I.; Ayu, N.A.; Sushanti, G.; Muhtar, I. Aromatherapy Candle Formulation Using Grapefruit Essential Oil with Patchouli Essential Oil Fixative. J. Agric. 2022, 1, 159–166. [Google Scholar] [CrossRef]
- Ramya, H.G.; Palanimuthu, V.; Rachna, S. An Introduction to Patchouli (Pogostemon cablin Benth.)–A Medicinal and Aromatic Plant: It’s Importance to Mankind. Agric. Eng. Int. CIGR J. 2013, 15, 243–250. [Google Scholar]
- Soh, S.H.; Jain, A.; Lee, L.Y.; Chin, S.K.; Yin, C.-Y.; Jayaraman, S. Techno-Economic and Profitability Analysis of Extraction of Patchouli Oil Using Supercritical Carbon Dioxide. J. Clean. Prod. 2021, 297, 126661. [Google Scholar] [CrossRef]
- Zaizen, K.; Kusano, Y.; Kabayahi, T. Study about a Novel Odor-active Compound in Patchouli Oil. In Proceedings of the 58th Symposium Chemistry Terpenes, Essential Oils, and Aromatics (TEAC), Wakayama, Japan, 20–22 September 2014. [Google Scholar]
- Peter, K.V.; Sharangi, A.B. Medicinal Plants: Future Thrust Areas and Research Directions. In Medicinal Plants; Apple Academic Press: Palm Bay, FL, USA, 2022; pp. 521–536. [Google Scholar]
- Istiningrum, R.B.; Saepuloh, A.; Jannah, W.; Aji, D.W. Measurement Uncertainty of Ester Number, Acid Number and Patchouli Alcohol of Patchouli Oil Produced in Yogyakarta. AIP Conf. Proc. 2017, 1823, 020080. [Google Scholar] [CrossRef]
- Mortimer, S.; Reeder, M. Botanicals in Dermatology: Essential Oils, Botanical Allergens, and Current Regulatory Practices. Dermatitis 2016, 27, 317–324. [Google Scholar] [CrossRef]
- Barbieri, C.; Borsotto, P. Essential Oils: Market and Legislation. In Potential of Essential Oils; IntechOpen: London, UK, 2018; pp. 107–127. [Google Scholar] [CrossRef]
- Zhang, R.; Yan, P.; Li, Y.; Xiong, L.; Gong, X.; Peng, C. A Pharmacokinetic Study of Patchouli Alcohol after a Single Oral Administration of Patchouli Alcohol or Patchouli Oil in Rats. Eur. J. Drug Metab. Pharmacokinet. 2016, 41, 441–448. [Google Scholar] [CrossRef]
- Nour, A.H.; Modather, R.H.; Yunus, R.M.; Elnour, A.A.M.; Ismail, N.A. Characterization of Bioactive Compounds in Patchouli Oil Using Microwave-Assisted and Traditional Hydrodistillation Methods. Ind. Crops Prod. 2024, 208, 117901. [Google Scholar] [CrossRef]
- de Matos, S.P.; Lucca, L.G.; Koester, L.S. Essential Oils in Nanostructured Systems: Challenges in Preparation and Analytical Methods. Talanta 2019, 195, 204–214. [Google Scholar] [CrossRef] [PubMed]
- Achagar, R.; Ait-Touchente, Z.; El Ati, R.; Boujdi, K.; Thoume, A.; Abdou, A.; Touzani, R. A Comprehensive Review of Essential Oil–Nanotechnology Synergy for Advanced Dermocosmetic Delivery. Cosmetics 2024, 11, 48. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, X.; Liu, Y.; Yu, J.; Yao, G.; Yang, H.; Yang, D.; Wu, Y. An Integrated Transcriptome and Metabolome Analysis Reveals the Gene Network Regulating Flower Development in Pogostemon cablin. Front. Plant Sci. 2023, 14, 1201486. [Google Scholar] [CrossRef]
- Kusuma, H.S.; Mahfud, M. The Extraction of Essential Oils from Patchouli Leaves (Pogostemon cablin Benth) Using a Microwave Air-Hydrodistillation Method as a New Green Technique. RSC Adv. 2017, 7, 1336–1347. [Google Scholar] [CrossRef]
- Lin, L.-T.; Zhang, S.-T.; Shang, B.-L.; Dai, Y.-Q.; Cheng, X.-Q.; Wu, Q.-G.; Zhan, R.-T.; Liu, S.-J. The Effect and Mechanism of Patchouli Alcohol on Cognitive Dysfunction in AD Mice Induced by Aβ1-42 Oligomers through AMPK/MTOR Pathway. Brain Res. Bull. 2024, 215, 111030. [Google Scholar] [CrossRef]
- Yan, W.; Ye, Z.; Cao, S.; Yao, G.; Yu, J.; Yang, D.; Chen, P.; Zhang, J.; Wu, Y. Transcriptome Analysis of Two Pogostemon cablin Chemotypes Reveals Genes Related to Patchouli Alcohol Biosynthesis. PeerJ 2021, 9, e12025. [Google Scholar] [CrossRef] [PubMed]
Compound Name | Formula | Part | Analytical Method | Reference |
---|---|---|---|---|
Monoterpenes | ||||
(−)-camphor | C10H16O | aerial part | GC×GC–TOF-MS | [41] |
β-phellandrene | C10H16 | leaves | GC×GC–TOF-MS | [41] |
β-pinene | C10H16 | aerial part | GC×GC–TOF-MS | [41,49,50] |
Sesquiterpenes | ||||
α-bulnesene | C15H21 | leaves | GC-MS | [41,49,51] |
α-, β, δ-guaiene | C15H24 | leaves | GC-MS, GC | [49,52] |
cycloseychellene | C15H24 | leaves | GC-MS | [49] |
limonene | C10H16 | aerial part | GC-MS, GC | [49] |
globulol | C15H26O | aerial part | GC-TOF-MS, GC | [53] |
α-, β -patchoulene | C15H24 | leaves | GC-TOF-MS | [49,54] |
patchouli alcohol | C15H26O | aerial part | GC-MS, GC | [49] |
nortetrapatchoulol | C14H24O | aerial part | GC-TOF-MS, GC-MS | [49] |
pogostol | C15H26O | aerial part | GC×GC-TOF-MS | [49] |
α-humulene | C15H24 | leaves | GC-MS | [49] |
seychellene | C15H24 | leaves | GC-MS | [49,55,56] |
trans-caryophyllene | C15H24 | leaves/shoot | GC-MS | [57] |
α-elemenone | C15H22O | leaves | GC×GC–TOF-MS | [41] |
(-)-α-selinene | C15H24 | leaves | GC-MS | [50] |
β-caryophyllene | C15H24 | leaves | GC-MS | [41,49,50] |
δ-patchoulene | C15H24 | leaves | GC-MS, GC, NMR | [49,52] |
γ-gurjunene | C15H24 | leaves | GC-MS | [50,58] |
δ-elemene | C15H24 | leaves | GC-MS | [49,59] |
cis-β-elemene | C15H24 | leaves | GC-MS | [49] |
β-selinene | C15H24 | leaves | GC-MS | [49,50] |
β-elemene | C15H24 | leaves | GC-MS, NMR | [59] |
germacrene D | C15H24 | leaves | GC-MS, GC | [49,58] |
zizanal | C15H22O | leaves | GC-MS | [49] |
Alcohols | ||||
norpatchuolenol | C14H22O | leaves | GC-MS | [49] |
Ketones | ||||
pogostone | C12H16O4 | leaves | GC-MS | [41,49] |
3-iso-thujopsanone | C15H24O | leaves | GC-MS | [49] |
Compounds Name | Formula | Part | Analytical Method | Reference |
---|---|---|---|---|
Flavonoids | ||||
apigenin | C15H10O5 | aerial part | HPLC-DAD | [41,73] |
pachypodol | C16H12O6 | aerial part | CC | [41,73] |
3,5-dihydroxy-7,4′-dimethoxy-flavone | C17H14O6 | aerial part | HPLC-DAD | [74] |
rhamnetin | C16H12O7 | aerial part | HPLC-DAD | [73] |
4′,5-dihydroxy-3,3′,7-trimethoxyflavone | C18H18O7 | aerial part | HPLC-DAD | [74] |
5-hydroxy-3,3′,4′,7-tetramethoxyflavone | C18H18O6 | aerial part | HPLC-DAD | [74] |
5-hydroxy-3,4′,7-trimethoxyflavone | C17H16O6 | aerial part | HPLC-DAD | [74] |
5-hydroxy-7,3′,4′-trimethoxyflavanone | C17H16O6 | aerial part | HPLC-DAD | [74] |
4′,5,7-trihydroxyflavone | C15H10O5 | aerial part | HPLC-DAD | [74] |
Glycosides | ||||
isoacteosides | C29H36015 | aerial part | TLC, HPLC, HPLC-Q-TOF-MS | [62,75] |
7R-campeoside II | C29H36O16 | aerial part | HPLC | [76] |
7S-campeoside II | C29H36O16 | aerial part | HPLC | [76] |
verbascoside | C29H36O15 | aerial part | HPLC | [77] |
osmanthuside B | C29H36O13 | aerial part | HPLC-DAD | [76] |
actinoside | C36H44O20 | leaves | HPLC-DAD | [14] |
pedicularioside G | C17H26O11 | aerial part | HPLC-DAD | [77] |
crenatosides | C29H34O15 | aerial part | TLC, HPLC | [75] |
2″,3″-O-acetylmartynoside | C35H46O17 | aerial part | HPLC-DAD | [76] |
3′-methoxyisocrenatoside | C30H34O16 | aerial part | HPLC-DAD | [76] |
isocrenatoside | C29H34O15 | leaves | CC | [41,52] |
acteoside | C29H36O15 | aerial part | TLC, HPLC, HPLC-Q-TOF-MS | [75,78] |
Triterpenoids | ||||
oleanolic acid | C30H48O3 | aerial part | NMR, IR, MS, UV | [41] |
friedelin | C30H50O | aerial part | NMR, IR, MS, UV | [41] |
epifriedelinol | C30H52O | aerial part | NMR, IR, MS, UV | [41] |
methyl oleanolate | C31H50O3 | aerial part | NMR, IR, MS, UV | [41] |
Other compounds | ||||
lariketoester | C33H39O10 | aerial part | HPLC | [76] |
isolariketoester | C33H39O10 | aerial part | HPLC | [76] |
cytosporone W | C12H15O5 | aerial part | HPLC | [76] |
cytosporone V | C13H16O5 | aerial part | HPLC | [41] |
Components | Chemical Group | Pharmacological Activity |
---|---|---|
α-pinene | Monoterpenes | Antifungal [97] Anticancer [98] Respiratory diseases [99] |
β-patchoulene | Sesquiterpene | Anti-inflammatory, Antitumor [100] |
guainine-sesquiterpenoids | Anti-hypoglycemic [101] | |
patchouli alcohol | Anticancer [102] Antibacterial [13,103,104] Anti-oxidative [105,106] Antitumor [107] | |
pogostol | Anti-influenza [108] | |
pogostone | Ketone | Anti-inflammatory [109,110] Anticancer [111,112] Anti-apoptosis [113] Antimicrobial [62] Antifungal [114,115] |
Components | Chemical Group | Pharmacological Activity |
apigenin | Flavonoid | Anticancer [116,117] Apoptosis [118] Aphrodisiac [22] |
rhamnetin | Apoptosis [118] Anti-oxidant [119] Antitumor [120] | |
5,4′-dihydroxy-7-methoxyflavone | Antiproliferative [121] Apoptosis [121] | |
pachypodol | Antimicrobial [122] Apoptosis [123] Anti-oxidative [124] Anti-inflammatory [7] Anti-apoptotic [7] Anticancer [123] Antiemetic [14] | |
5,7-dihydroxy-3,4-dimethoxyflavanone | Anti-apoptotic [125] Antiviral activity [125] | |
ombuine | Anticancer [14] | |
licochalcone | Anticancer [14,126] | |
isoacteoside | Glycoside | Anti-inflammation [126] Antiviral activities [125] |
acteoside | Anti-inflammation [126] | |
verbascoside | Anti-apoptotic [125] Antiviral activity [125] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mrisho, I.I.; Musazade, E.; Chen, H.; Zhao, H.; Xing, J.; Li, X.; Han, J.; Cai, E. Unlocking the Therapeutic Potential of Patchouli Leaves: A Comprehensive Review of Phytochemical and Pharmacological Insights. Plants 2025, 14, 1034. https://doi.org/10.3390/plants14071034
Mrisho II, Musazade E, Chen H, Zhao H, Xing J, Li X, Han J, Cai E. Unlocking the Therapeutic Potential of Patchouli Leaves: A Comprehensive Review of Phytochemical and Pharmacological Insights. Plants. 2025; 14(7):1034. https://doi.org/10.3390/plants14071034
Chicago/Turabian StyleMrisho, Isack Ibrahim, Elshan Musazade, Haobo Chen, Huixuan Zhao, Junjia Xing, Xue Li, Jiahong Han, and Enbo Cai. 2025. "Unlocking the Therapeutic Potential of Patchouli Leaves: A Comprehensive Review of Phytochemical and Pharmacological Insights" Plants 14, no. 7: 1034. https://doi.org/10.3390/plants14071034
APA StyleMrisho, I. I., Musazade, E., Chen, H., Zhao, H., Xing, J., Li, X., Han, J., & Cai, E. (2025). Unlocking the Therapeutic Potential of Patchouli Leaves: A Comprehensive Review of Phytochemical and Pharmacological Insights. Plants, 14(7), 1034. https://doi.org/10.3390/plants14071034