Impact of Sustainable Soil Cropping Management on the Production and Stability of Bioactive Compounds in Tanacetum balsamita L. by Cold Pressure Extraction
Abstract
1. Introduction
2. Results and Discussion
2.1. Total Polyphenols
2.2. HPLC Analysis
2.3. Antioxidant Activity (DPPH Test)
2.4. Anti-Radical Activity (Oxygen Radical Absorbance Capacity (ORAC) Test)
3. Materials and Methods
3.1. Experimental Plots
3.2. Timatic Extraction
3.3. Chemical Analysis
3.3.1. Total Polyphenols Quantification
3.3.2. HPLC Analysis
3.3.3. Standard Solution, Calibration Curves, and Calculation of Hydroxycinnamic Acids and Flavonoid Content
3.4. Antioxidant Activity (DPPH Assay)
3.5. Oxygen Radical Absorbance Capacity (ORAC) Assay
3.6. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CP | Compost |
B | Bioinoculant |
C | Control |
RT | Room temperature |
QT | Quercetin |
CGA | Chlorogenic acid |
CA | Caffeic acid |
DCQ | Di-caffeoylquinic acid |
PSBs | Phosphate-solubilizing bacteria |
AM | Arbuscular mycorrhizal |
F-C | Folin–Ciocâlteu |
rt | Retention time |
References
- Rouphael, Y.; Colla, G. Editorial: Biostimulants in Agriculture. Front Plant Sci. 2020, 11, 40. [Google Scholar] [CrossRef] [PubMed]
- Backer, R.; Rokem, J.S.; Ilangumaran, G.; Lamont, J.; Praslickova, D.; Ricci, E.; Subramanian, S.; Smith, D.L. Plant growth-promoting rhizobacteria: Context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture. Front. Plant Sci. 2018, 871, 1–17. [Google Scholar] [CrossRef] [PubMed]
- De Pascale, S.; Rouphael, Y.; Colla, G. Plant biostimulants: Innovative tool for enhancing plant nutrition in organic farming. Eur. J. Hortic. Sci. 2017, 82, 277–285. [Google Scholar] [CrossRef]
- Genre, A.; Lanfranco, L.; Perotto, S.; Bonfante, P. Unique and common traits in mycorrhizal symbioses. Nat. Rev. Microbiol. 2020, 18, 649–660. [Google Scholar] [CrossRef]
- Aseri, G.K.; Neelam, J.; Panwar, J.; Rao, A.V.; Meghwal, P.R. Biofertilizers improve plant growth, fruit yield, nutrition, metabolism and rhizosphere enzyme activities of Pomegranate (Punica granatum L.), Indian Thar Desert. Sci. Hort. 2008, 117, 130–135. [Google Scholar] [CrossRef]
- Ghazi, N.A.K. Nursery inoculation of tomato with arbuscular mycorrhizal fungi and subsequent performance under irrigation with sterile water. Sci. Hortic. 2006, 109, 1–7. [Google Scholar]
- Sinclair, G.; Charest, C.; Dalpe, Y.; Khanizadeh, S. Influence of arbuscular mycorrhizal fungi and a root endophyte on the biomass and root morphology of selected strawberry cultivars under salt conditions. Can. J. Plant Sci. 2013, 93, 997–999. [Google Scholar] [CrossRef]
- Kohler, J.; Caravaca, F.; Carrasco, L.; Rolden, A. Interactions between a plant growth-promoting rhizobacterium, an AM fungus and phosphate-solublizing fungus in the rhizosphere of Lactuca sativa. Appl. Soil Ecol. 2007, 35, 480–487. [Google Scholar] [CrossRef]
- Bianciotto, V.; Victorino, I.; Scariot, V.; Berruti, A. Arbuscular mycorrhizal fungi as natural biofertilizers: Current role and potential for the horticulture industry. Acta Hortic. 2018, 1191, 207–216. [Google Scholar] [CrossRef]
- Kour, R.; Ambardar, S.; Vakhlu, J. Plant growth promoting bacteria associated with corm of Crocus sativus during three growth stages. Lett. Appl. Microbiol. 2018, 67, 458–464. [Google Scholar] [CrossRef]
- Kumar, S.; Arora, N.; Upadhyay, H. Arbuscular mycorrhizal fungi: Source of secondary metabolite production in medicinal plants. In New and Future Developments in Microbial Biotechnology and Bioengineering; Elsevier: Amsterdam, The Netherlands, 2021; pp. 155–164. [Google Scholar] [CrossRef]
- Pandey, D.K.; Kaur, P.; Dey, A. Arbuscular Mycorrhizal Fungi: Effects on Secondary Metabolite Production in Medicinal Plants. In Fungi and Their Role in Sustainable Development: Current Perspectives; Springer: Singapore, 2018; pp. 507–538. [Google Scholar] [CrossRef]
- Rouphael, Y.; Franken, P.; Schneider, C.; Schwarz, D.; Giovannetti, M.; Agnolucci, M.; Pascale, S.D.; Bonini, P.; Colla, G. Arbuscular mycorrhizal fungi act as biostimulants in horticultural crops. Sci. Hortic. 2015, 196, 91–108. [Google Scholar] [CrossRef]
- Pretty, J.; Benton, T.G.; Bharucha, Z.P.; Dicks, L.V.; Butler Flora, C.; Godfray, H.C.J.; Goulson, D.; Hartley, S.; Lampkin, N.; Morris, C.; et al. Global assessment of agricultural system redesign for sustainable intensification. Nat. Sustain. 2018, 1, 441–446. [Google Scholar] [CrossRef]
- Ahmad, S.; Khalid, R.; Abbas, S.; Hayat, R.; Ahmed, I. Chapter 6—Potential of compost for sustainable crop production and soil health. In Recent Advancement in Microbial Biotechnology-Agricultural and Industrial Approach; De Mandal, S., Passari, A.K., Eds.; Academic Press: Cambridge, MA, USA, 2021; pp. 123–170. [Google Scholar]
- Jin, P.; Wang, S.Y.; Wang, C.Y.; Zheng, Y. Effect of cultural system and storage temperature on antioxidant capacity and phenolic compounds in strawberries. Food Chem. 2011, 124, 262–270. [Google Scholar] [CrossRef]
- Lakhdar, A.; Hanen, F.; Ouni, Y.; Oueslati, S.; Debez, A.; Riadh, K.; Abdelly, C. Municipal solid waste compost improves productivity, polyphenol content, and antioxidant capacity of Mesembryanthemum edule. J. Haz. Mat. 2011, 191, 373–379. [Google Scholar] [CrossRef]
- Bylaite, E.; Venskutonis, R.; Roozen, J.P.; Posthumus, M.A. Composition of Essential Oil of Costmary [Balsamita major (L.) Desf.] at Different Growth Phases. J. Agric. Food Chem. 2000, 48, 2409–2414. [Google Scholar] [CrossRef]
- Ena, A.; Nelli, M. Ritorno Alla Natura—BALSAMITA-La Forza Degli Antiossidanti fra Tradizione ed era Moderna; Aracne Editrice: Rome, Italy, 2012; p. 128. [Google Scholar]
- Baranauskienė, R.; Kazernavičiūtė, R.; Pukalskienė, M.; Maždžierienė, R.; Venskutonis, P.R. Agrorefinery of Tanacetum vulgare L. into valuable products and evaluation of their antioxidant properties and phytochemical composition. Ind. Crop Prod. 2014, 60, 113–122. [Google Scholar] [CrossRef]
- Todorova, M.; Ognyanov, I. Sesquiterpene lactones in a population of Balsamita major cultivated in Bulgaria. Phytochemistry 1989, 28, 1115–1117. [Google Scholar] [CrossRef]
- Bonetti, A.; Faraloni, C.; Venturini, S.; Baini, G.; Miraldi, E.; Biagi, M. Characterization of Phenolic Profile and Antioxidant Activity of the Leaves of the Forgotten Medicinal Plant Balsamita Major Grown in Tuscany, Italy, during the Growth Cycle. Plant Biosyst. Int. J. Deal. All Asp. Plant Biol. 2021, 155, 908–913. [Google Scholar] [CrossRef]
- Gallori, S.; Flamini, G.; Bilia, A.R.; Morelli, I.; Landini, A.; Vincieri, F.F. Chemical composition of some traditional herbal drug preparations: Essential oil and aromatic water of costmary (Balsamita suaveolens Pers). J. Agric. Food Chem. 2001, 49, 5907–5910. [Google Scholar] [CrossRef]
- Pérez, M.; Dominguez-López, I.; Lamuela-Raventós, R.M. The Chemistry Behind the Folin–Ciocâlteu Method for the Estimation of (Poly)phenol Content in Food: Total Phenolic Intake in a Mediterranean Dietary Pattern. J. Agric. Food Chem. 2023, 71, 17543–17553. [Google Scholar] [CrossRef]
- Woźniak, D.; Nawrot-Hadzik, I.; Kozłowska, W.; Ślusarczyk, S.; Matkowski, A. Caffeoylquinic Acids. In Handbook of Dietary Phytochemicals; Xiao, J., Sarker, S.D., Asakawa, Y., Eds.; Springer: Singapore, 2020; pp. 1–40. [Google Scholar] [CrossRef]
- Bączek, K.B.; Kosakowska, O.; Przybył, J.L.; PióroJabrucka, E.; Costa, R.; Mondello, L.; Gniewosz, M.; Synowiec, A.; Węglarz, Z. Antibacterial and antioxidant activity of essential oils and extracts from costmary (Tanacetum balsamita L.) and tansy (Tanacetum vulgare L.). Ind. Crop Prod. 2017, 102, 154–163. [Google Scholar] [CrossRef]
- Gevrenova, R.; Zengin, G.; Sinan, K.I.; Zheleva-Dimitrova, D.; Balabanova, V.; Kolmayer, M.; Voynikov, Y.; Jouber, O. An In-Depth Study of Metabolite Profile and Biological Potential of Tanacetum balsamita L. (Costmary). Plants 2023, 12, 22. [Google Scholar] [CrossRef] [PubMed]
- Dawidowicz, A.L.; Typek, R. Thermal Stability of 5-o-Caffeoylquinic Acid in Aqueous Solutions at Different Heating Conditions. J. Agric. Food Chem. 2010, 58, 12578–12584. [Google Scholar] [CrossRef] [PubMed]
- Dawidowicz, A.L.; Typek, R. Transformation of chlorogenic acids during the coffee beans roasting process. Eur. Food Res. Tech. 2017, 243, 379–390. [Google Scholar] [CrossRef]
- Pukalskas, A.; Venskutonis, P.R.; Dijkgraaf, I.; van Beek, T.A. Isolation, identification and activity of natural antioxidants from costmary (Chrysanthemum balsamita) cultivated in Lithuania. Food Chem. 2010, 122, 804–811. [Google Scholar] [CrossRef]
- Benedec, D.; Filip, L.; Vlase, L.; Bele, C.; Sevastre, B.; Raita, O.; Olah, N.-K.; Hanganu, D. In vitro study of antioxidant activity and phenolic content of Chrysanthemum balsamita varieties. Pak. J. Pharm. Sci. 2016, 29, 1359–1364. [Google Scholar] [PubMed]
- Zang, L.-Y.; Cosma, G.; Gardner, H.; Castranova, V.; Vallyathan, V. Effect of chlorogenic acid on hydroxyl radical. Mol. Cell. Biochem. 2003, 247, 205–210. [Google Scholar] [CrossRef]
- Biagi, M.; Manca, D.; Barlozzini, B.; Miraldi, E.; Giachetti, D. Optimization of extraction of drugs containing polyphenols using an innovative technique. Agro Food Ind. Hi-Tech. 2014, 25, 60–65. [Google Scholar]
- Cao, G.; Prior, R.L. Comparison of different analytical methods for assessing total antioxidant capacity of human serum. Clin. Chem. 1998, 44, 1309–1315. [Google Scholar] [CrossRef]
June 2023 | June 2024 | |||||
---|---|---|---|---|---|---|
4 °C | 4 °C | 4 °C | 4 °C | 4 °C | 4 °C | |
TP (µg/mL) | IC50 (µg/mL) | ORAC (µMTE/L) | TP (µg/mL) | IC50 (µg/mL) | ORAC (µMTE/L) | |
C | 461.35 ± 22.25 | 3.15 ± 1.49 | 5679.41 | 476.63 ± 0.11 | 4.72 ± 1.97 | 10,656.07 |
B | 518.43 ± 9.41 | 1.10 ± 0.13 | 8720.12 | 521.11 ± 0.04 | 4.45 ± 2.35 | n.d. |
CP | 567.63 ± 8.44 | 0.87 ± 0.35 | 8116.40 | 489.99 ± 0.08 | 8.42 ± 0.64 | 8812.67 |
CP + B | 461.11 ± 19.77 | 0.62 ± 0.30 | 2845.86 | 532.11 ± 0.08 | 3.10 ± 1.31 | 809.69 |
RT | RT | RT | RT | RT | RT | |
C | 461.35 ± 22.25 | 3.15 ± 1.49 | 5679.41 | 31.11 ± 0.05 | n.d. | n.d. |
B | 518.43 ± 9.41 | 1.10 ± 0.13 | 8720.12 | 381.99 ± 0.08 | 3.69 ± 1.62 | 21,448.69 |
CP | 567.63 ± 8.44 | 0.87 ± 0.35 | 8116.40 | 516.84 ± 0.41 | 1.70 ± 0.26 | 20,196.29 |
CP + B | 461.11 ± 19.77 | 0.62 ± 0.30 | 2845.86 | 30.37 ± 0.02 | n.d. | n.d. |
QT | CGA | DCQ | ||
---|---|---|---|---|
DPPH test | ||||
4 °C | C | 0.45 | 0.31 | 0.87 |
B | 1.00 | 0.70 | 0.97 | |
CP | 1.00 | 0.60 | 0.91 | |
CP + B | 1.00 | 0.77 | 0.8 | |
RT | C | n.d. | n.d. | n.d. |
B | 0.99 | 0.65 | 0.60 | |
CP | 1.00 | 0.01 | 0.60 | |
CP + B | n.d. | n.d. | n.d. | |
ORAC test | ||||
4 °C | C | 0.001 | 0.89 | 0.71 |
B | n.d. | n.d. | n.d. | |
CP | 0.42 | 0.83 | 0.55 | |
CP + B | 0.81 | 0.97 | 0.01 | |
RT | C | n.d. | n.d. | n.d. |
B | 1.00 | 0.67 | 0.51 | |
CP | n.d. | n.d. | n.d. | |
CP + B | n.d. | n.d. | n.d. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bonetti, A.; Grattacaso, M.; Lonardo, S.D.; D’Acqui, L.P. Impact of Sustainable Soil Cropping Management on the Production and Stability of Bioactive Compounds in Tanacetum balsamita L. by Cold Pressure Extraction. Plants 2025, 14, 948. https://doi.org/10.3390/plants14060948
Bonetti A, Grattacaso M, Lonardo SD, D’Acqui LP. Impact of Sustainable Soil Cropping Management on the Production and Stability of Bioactive Compounds in Tanacetum balsamita L. by Cold Pressure Extraction. Plants. 2025; 14(6):948. https://doi.org/10.3390/plants14060948
Chicago/Turabian StyleBonetti, Alessandra, Martina Grattacaso, Sara Di Lonardo, and Luigi Paolo D’Acqui. 2025. "Impact of Sustainable Soil Cropping Management on the Production and Stability of Bioactive Compounds in Tanacetum balsamita L. by Cold Pressure Extraction" Plants 14, no. 6: 948. https://doi.org/10.3390/plants14060948
APA StyleBonetti, A., Grattacaso, M., Lonardo, S. D., & D’Acqui, L. P. (2025). Impact of Sustainable Soil Cropping Management on the Production and Stability of Bioactive Compounds in Tanacetum balsamita L. by Cold Pressure Extraction. Plants, 14(6), 948. https://doi.org/10.3390/plants14060948