Environmental Contamination and Mining Impact: Physico-Chemical and Biological Characterization of Propolis as an Indicator of Pollution in the Roșia Montană Area, Romania
Abstract
1. Introduction
2. Results
2.1. Soil Analysis
2.2. River Water
2.3. Characterization of the Vegetation in the Roșia Montană Area [31]
2.4. Physico-Chemical Analysis of Propolis
2.5. Metal Cations in Propolis
3. Discussion
4. Materials and Methods
4.1. Study Area
4.2. Sample Collection and Preparation
4.2.1. Soil Sampling and Preparation
4.2.2. Water Sample Collection and Preparation
4.2.3. Sampling and Preparation of Vegetables
4.2.4. Propolis Sampling and Preparation
4.3. Chemicals and Reagents
4.4. Physico-Chemical and Microbiological Analysis of Samples
4.4.1. Soil Sample Analysis
4.4.2. River Water Analysis
4.4.3. Analysis of Plant Material
4.4.4. Propolis Analysis
- Qualitative physico-chemical parameters
4.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tchounwou, P.B.; Yedjou, C.G.; Patlolla, A.K.; Sutton, D.J. Heavy metal toxicity and the environment. Exp. Suppl. 2012, 101, 133–164. [Google Scholar] [CrossRef] [PubMed]
- Dehkordi, M.M.; Nodeh, Z.P.; Dehkordi, K.S.; Salmanvandi, H.; Khorjestan, R.R.; Ghaffarzadeh, M. Soil, air, and water pollution from mining and industrial activities: Sources of pollution, environmental impacts, and prevention and control methods. Results Eng. 2024, 23, 102729. [Google Scholar] [CrossRef]
- El-Kady, A.A.; Abdel-Wahhab, M.A. Occurrence of trace metals in foodstuffs and their health impact. Trends Food Sci. Technol. 2018, 75, 36–45. [Google Scholar] [CrossRef]
- Iatan, L.E. Environmental issues of mining activities in the northern part of the Metaliferi Mountains, Romania. In Proceedings of the Annual Scientific Session of the Institute of Geodynamics, Bucharest, Romania, 27–28 March 2018. [Google Scholar]
- Girotti, S.; Ghini, S.; Ferri, E.N.; Bolelli, L.; Colombo, R.; Serra, G.; Porrini, C.; Sangiorgi, S. Bioindicators and biomonitoring: Honeybees and hive products as pollution impact assessment tools for the Mediterranean area. Euro-Mediterr. J. Environ. Integr. 2020, 5, 62. [Google Scholar] [CrossRef]
- Alengebawy, A.; Abdelkhalek, S.T.; Qureshi, S.R.; Wang, M.Q. Heavy Metals and Pesticides Toxicity in Agricultural Soil and Plants: Ecological Risks and Human Health Implications. Toxics 2021, 9, 42. [Google Scholar] [CrossRef]
- Porrini, C.; Sabatini, A.G.; Girotti, S.; Ghini, S.; Medrzycki, P.; Grillenzoni, F.; Bortolotti, L.; Gattavecchia, E.; ROMAN, G. Honey bees and bee products as monitors of the environmental contamination. APIACTA 2003, 38, 63–70. [Google Scholar]
- Celli, G.; Maccagnani, B. Honey bees as bioindicators of environmental pollution. Bull. Insectol. 2003, 56, 137–139. [Google Scholar]
- Cvek, J.; Medic-Saric, M.; Witali, D.; Vedrina-Dragojevic, I.; Smit, Z.; Tomic, S. The content of essential and toxic elements in Croatian propolis samples and their tinctures. J. Apic. Res. 2008, 47, 35–45. [Google Scholar] [CrossRef]
- Jones, K.C. Honey as an indicator of heavy metal contamination. Water Air Soil Pollut. 1987, 33, 179–189. [Google Scholar] [CrossRef]
- Leita, L.; Muhlbachova, G.; Cesco, S.; Barbattini, R.; Mondini, C. Investigation of the use of honey bees and honey bee products to assess heavy metals contamination. Environ. Monit. Assess. 1996, 43, 1–9. [Google Scholar] [CrossRef]
- Roman, A. Bees and their products as pollution bioindicator in the copper (LGOM) and lime-cement (Opole) industry areas. Sci. Pap. Agric. Univ. Wrocław Ser. Zootech. 1997, 323, 175–193. [Google Scholar]
- Stankovska, E.; Stafilov, T.; Sajn, R. Monitoring of trace elements in honey from the Republic of Macedonia by atomic absorption spectrometry. Environ. Monit. Assess. 2008, 142, 117–126. [Google Scholar] [CrossRef]
- Yazgan, S.; Horn, H.; Isengard, H.-D. Honey as bio indicator by screening the heavy metal content of the environment. Dtsch. Lebensm.-Rundsch. 2006, 102, 192–194. [Google Scholar]
- Conti, M.E.; Botre, F. Honeybees and their products as potential bioindicators of heavy metals contamination. Environ. Monit. Assess. 2001, 69, 267–282. [Google Scholar] [CrossRef] [PubMed]
- Cunningham, M.M.; Tran, L.; McKee, C.G.; Polo, R.O.; Newman, T.; Lansing, L.; Griffiths, J.S.; Bilodeau, G.J.; Rott, M.; Guarna, M.M. Honey bees as biomonitors of environmental contaminants, pathogens, and climate change. Ecol. Indic. 2022, 134, 108457. [Google Scholar] [CrossRef]
- Hristov, P.; Shumkova, R.; Palova, N.; Neov, B. Factors Associated with Honey Bee Colony Losses: A Mini-Review. Vet. Sci. 2020, 7, 166. [Google Scholar] [CrossRef]
- Katumo, D.M.; Liang, H.; Ochola, A.C.; Lv, M.; Wang, Q.F.; Yang, C.F. Pollinator diversity benefits natural and agricultural ecosystems, environmental health, and human welfare. Plant Divers. 2022, 44, 429–435. [Google Scholar] [CrossRef] [PubMed]
- Anjum, S.I.; Ullah, A.; Khan, K.A.; Attaullah, M.; Khan, H.; Ali, H.; Bashir, M.A.; Tahir, M.; Ansari, M.J.; Ghramh, H.A.; et al. Composition and functional properties of propolis (bee glue): A review. Saudi J. Biol. Sci. 2019, 26, 1695–1703. [Google Scholar] [CrossRef]
- Chuttong, B.; Lim, K.; Praphawilai, P.; Danmek, K.; Maitip, J.; Vit, P.; Wu, M.-C.; Ghosh, S.; Jung, C.; Burgett, M.; et al. Exploring the Functional Properties of Propolis, Geopropolis, and Cerumen, with a Special Emphasis on Their Antimicrobial Effects. Foods 2023, 12, 3909. [Google Scholar] [CrossRef]
- Sulaeman, A.; Fikri, A.M.; Mulyati, A.H. Chapter 32—The bee propolis for preventing and healing non-communicable diseases. In Functional Foods and Nutraceuticals in Metabolic and Non-Communicable Diseases; Singh, R.B., Watanabe, S., Isaza, A.A., Eds.; Academic Press: London, UK, 2022; pp. 465–479. [Google Scholar] [CrossRef]
- Bhatti, N.; Hajam, Y.A.; Mushtaq, S.; Kaur, L.; Kumar, R.; Rai, S. A review on dynamic pharmacological potency and multifaceted biological activities of propolis. Discov. Sustain. 2024, 5, 185. [Google Scholar] [CrossRef]
- Wagh, V.D. Propolis: A wonder bees product and its pharmacological potentials. Adv. Pharmacol. Sci. 2013, 2013, 308249. [Google Scholar] [CrossRef]
- Castaldo, S.; Capasso, F. Propolis, an old remedy used in modern medicine. Fitoterapia 2002, 73 (Suppl. S1), S1–S6. [Google Scholar] [CrossRef] [PubMed]
- Thompson, D.M.; Booth, L.; Moore, D.; Mathers, J. Peer support for people with chronic conditions: A systematic review of reviews. BMC Health Serv. Res. 2022, 22, 427. [Google Scholar] [CrossRef] [PubMed]
- Oryan, A.; Alemzadeh, E.; Moshiri, A. Potential role of propolis in wound healing: Biological properties and therapeutic activities. Biomed. Pharmacother. 2018, 98, 469–483. [Google Scholar] [CrossRef]
- Weis, W.A.; Ripari, N.; Conte, F.L.; Honorio, M.D.S.; Sartori, A.A.; Matucci, R.H.; Sforcin, J.M. An overview about apitherapy and its clinical applications. Phytomedicine Plus 2022, 2, 100239. [Google Scholar] [CrossRef]
- Order No. 756 of November 3, 1997 for the Approval of the Regulation on the Assessment of Environmental Pollution, Ministry of Waters, Forests and Environmental Protection, Published in Official Gazette No. 300 Bis of November 6. 1997. Available online: https://legislatie.just.ro/Public/DetaliiDocument/13572 (accessed on 5 January 2025). (In Romanian).
- Order No. 161 of February 16, 2006 for the Approval of the Norm Regarding the Classification of Surface Water Quality in Order to Establish the Ecological Status of Water Bodies, Ministry of the Environment and Water Management, Published in Official Gazette No. 511 of June 13. 2006. Available online: https://legislatie.just.ro/Public/DetaliiDocumentAfis/72574 (accessed on 10 January 2025). (In Romanian).
- Decision No. 202 of February 28, 2002 for the Approval of the Technical Norms Regarding the Quality of Surface Waters Requiring Protection and Improvement in Order to Support Fish Life, Issuer Government of Romania. Available online: https://legislatie.just.ro/Public/DetaliiDocument/34696 (accessed on 10 January 2025). (In Romanian).
- S.C. Roșia Montană Gold Corporation S.A.—Report on the Environmental Impact Assessment Study, Chapter 4.6 Biodiversity, Section 3: Initial Conditions. 2011. Available online: https://www.mmediu.ro/articol/rosia-montana/608 (accessed on 3 February 2025). (In Romanian).
- Roman, A.; Gafta, D.; Cristea, V.; Mihut, S. Small-scale structure change in plant assemblages on abandoned gold mining waste dumps (Roșia Montană, Romania). Contrib. Bot. 2009, XLIV, 83–91. [Google Scholar]
- Official Journal of the European Union Commission Regulation (EC) No. 1881/2006 of 19 December 2006 Setting Maximum Levels for Certain Contaminants in Foodstuffs. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2006:364:0005:0024:EN:PDF (accessed on 4 January 2025).
- Food and Agriculture Organization of the United Nations (FAO); The World Health Organization (WHO). Codex Allimentarius International Food Standards. General Standard for Contaminants and Toxins in Food and Feed. (Last Amended 2019). CODEX STAN. 193/1995. Available online: http://www.fao.org/fao-who-codexalimentarius/codex-texts/list-standards/en/ (accessed on 10 February 2025).
- Agency for Toxic Substance Disease Registry (ATSDR). Toxicological Profile for Cadmium. Available online: https://www.atsdr.cdc.gov/toxprofiles/tp5.pdf (accessed on 10 February 2025).
- EFSA: Total Copper Intakes Below New Safe Level. Available online: https://www.efsa.europa.eu/ro/news/total-copper-intakes-below-new-safe-level (accessed on 19 November 2024).
- Monchanin, C.; Drujont, E.; Le Roux, G.; Lösel, P.D.; Barron, A.B.; Devaud, J.M.; Elger, A.; Lihoreau, M. Environmental exposure to metallic pollution impairs honey bee brain development and cognition. J. Hazard. Mater. 2024, 465, 133218. [Google Scholar] [CrossRef]
- Alloway, B.J. Heavy Metals in Soils; Blackie Academic and Professional, Chapman and Hall: London, UK, 1995; pp. 168–170. [Google Scholar]
- Kovács, R. Metallogenetic Reinterpretations of Epithermal Deposits Associated with Neogene Volcanism in the Băiuț Metallogenetic Field, Baia Mare District. Ph.D. Thesis, Faculty of Biology and Geology, Babeș-Bolyai University, Cluj-Napoca, Romania, 2024. [Google Scholar]
- Fodor, D. The Influence of the Mining Industry on the Environment. Bul. AGIR 2006, 3, 2–13. (In Romanian) [Google Scholar]
- Worobec, M.D.; Hogue, C.; Bureau of National Affairs. Toxic Substances Controls Guide: Federal Regulation of Chemicals in the Environment; BNA Books: Arlington, VA, SUA, 1992; pp. 182–184. [Google Scholar]
- Balafrej, H.; Bogusz, D.; Triqui, Z.-E.A.; Guedira, A.; Bendaou, N.; Smouni, A.; Fahr, M. Zinc Hyperaccumulation in Plants: A Review. Plants 2020, 9, 562. [Google Scholar] [CrossRef]
- Alloway, B.J. Zinc in Soil and Crop Nutrition, 2nd ed.; IZA: Brussels, Belgium; IFA: Paris, France, 2008; pp. 45–46. [Google Scholar]
- Ali, Z.; Khan, I.; Iqbal, M.S.; Zhang, Q.; Ai, X.; Shi, H.; Ding, L.; Hong, M. Toxicological effects of copper on bioaccumulation and mRNA expression of antioxidant, immune, and apoptosis-related genes in Chinese striped-necked turtle (Mauremys sinensis). Front. Physiol. 2023, 14, 1296259. [Google Scholar] [CrossRef]
- Popa, M.; Corches, M.; Popa, D.; Glevitzky, M. Educating Future Engineers for the Prevention of Heavy Metals Contamination of Surface Waters in Mining Areas. The Case of Zlatna, Alba County. Procedia Soc. Behav. Sci. 2013, 83, 408–412. [Google Scholar] [CrossRef]
- Akoto, O.; Yakubu, S.; Ofori, L.A.; Bortey-Sam, N.; Boadi, N.O.; Horgah, J.; Sackey, L.N.A. Multivariate studies and heavy metal pollution in soil from gold mining area. Heliyon 2023, 9, e12661. [Google Scholar] [CrossRef] [PubMed]
- Haghighizadeh, A.; Rajabi, O.; Nezarat, A.; Hajyani, Z.; Haghmohammadi, M.; Hedayatikhah, S.; Asl, S.D.; Beni, A.A. Comprehensive analysis of heavy metal soil contamination in mining Environments: Impacts, monitoring Techniques, and remediation strategies. Arab. J. Chem. 2024, 17, 105777. [Google Scholar] [CrossRef]
- Roman, A.; Popiela, E.; Dobrzanski, Z. The Propolis as a Bioindicator of Environmental Heavy Metals Pollution, 1151–1153. Available online: https://www.cabidigitallibrary.org/doi/pdf/10.5555/20113298458 (accessed on 28 February 2025).
- Vakhonina, E.A.; Lapynina, E.P.; Lizunova, A.S. Study of toxic elements in propolis. IOP Conf. Ser. Earth Environ. Sci. 2021, 845, 012122. [Google Scholar] [CrossRef]
- Popa, M.; Jitaru, M. Study on Heavy Metal Accumulation Level of Soils from Zlatna Region. Chem. Bull. “POLITEHNICA“ Univ. Timişoara 2005, 50, 127–129. [Google Scholar]
- Popa, M.; Glevitzky, M.; Popa, D.; Varvara, S.; Dumitrel, G.A. Study on soil pollution with heavy metals near the river Ampoi, the Alba County. J. Environ. Prot. Ecol. 2012, 13, 2123–2129. [Google Scholar]
- Jiao, Y.; Liu, Y.; Wang, W.; Li, Y.; Chang, W.; Zhou, A.; Mu, R. Heavy Metal Distribution Characteristics, Water Quality Evaluation, and Health Risk Evaluation of Surface Water in Abandoned Multi-Year Pyrite Mine Area. Water 2023, 15, 3138. [Google Scholar] [CrossRef]
- Fashola, M.O.; Ngole-Jeme, V.M.; Babalola, O.O. Heavy Metal Pollution from Gold Mines: Environmental Effects and Bacterial Strategies for Resistance. Int. J. Environ. Res. Public Health 2016, 13, 1047. [Google Scholar] [CrossRef]
- Edwards, K.J.; Bond, P.L.; Gihring, T.M.; Banfield, J.F. An archaeal iron-oxidizing extreme acidophile important in acid mine drainage. Science 2000, 287, 1796–1799. [Google Scholar] [CrossRef]
- Senila, M.; Levei, E.A.; Senila, L.R.; Roman, M. Preliminary Investigation concerning Metals Bioavailability in Waters of Aries River Catchment by Using the Diffusive Gradients in Thin Films Technique. J. Chem. 2015, 2015, 762121. [Google Scholar] [CrossRef]
- Levei, E.; Ponta, M.; Senila, M.; Miclean, M.; Frentiu, T. Assessment of contamination and origin of metals in mining affected river sediments: A case study of the Aries River catchment, Romania. J. Serb. Chem. Soc. 2014, 79, 1019–1036. [Google Scholar] [CrossRef]
- Corcheş, M.T.; Glevitzky, M. Studies regarding the heavy metals pollution of Arieş River. J. Agroaliment. Process. Technol. 2010, 16, 452–456. [Google Scholar]
- Glevitzky, M.; Popa, M. Quality of Groundwater—Theoretical Principles and Case Studies; Aeternitas Publishing: Alba Iulia, Romania, 2012; pp. 54–56. (In Romanian) [Google Scholar]
- Egiebor, N.O.; Oni, B. Acid rock drainage formation and treatment: A review. Asia-Pac. J. Chem. Eng. 2007, 2, 47–62. [Google Scholar] [CrossRef]
- Servida, D.; Comero, S.; Dal Santo, M.; de Capitani, L.; Grieco, G.; Marescotti, P.; Porro, S.; Forray, S.F.; Gál, A.; Szakács, A. Waste rock dump investigation at Roșia Montană gold mine (Romania): A geostatistical approach. Environ. Earth Sci. 2013, 70, 13–31. [Google Scholar] [CrossRef]
- Punia, A.; Singh, S.K. Chapter 1—Contamination of water resources in the mining region. In Contamination of Water. Health Risk Assessment and Treatment Strategies; Ahamad, A., Siddiqui, S.I., Singh, P., Eds.; Academic Press: London, UK, 2021; pp. 3–17. [Google Scholar] [CrossRef]
- Gomes, P.; Valente, T. Seasonal impact of acid mine drainage on water quality and potential ecological risk in an old sulfide exploitation. Environ. Sci. Pollut. Res. Int. 2024, 31, 21124–21135. [Google Scholar] [CrossRef]
- Mason, L.H.; Harp, J.P.; Han, D.Y. Pb neurotoxicity: Neuropsychological effects of lead toxicity. BioMed Res. Int. 2014, 2014, 840547. [Google Scholar] [CrossRef] [PubMed]
- Althomali, R.H.; Abbood, M.A.; Saleh, E.A.M.; Djuraeva, L.; Abdullaeva, S.B.; Habash, R.T.; Alhassan, M.S.; Alawady, A.H.R.; Alsaalamy, A.H.; Najafi, M.L. Exposure to heavy metals and neurocognitive function in adults: A systematic review. Environ. Sci. Eur. 2024, 36, 18. [Google Scholar] [CrossRef]
- Dumitrel, G.A.; Popa, M.; Glevitzky, M.; Vica, M.; Todoran, A. Evaluation of soil heavy metal pollution in the Zlatna region. J. Environ. Prot. Ecol. 2013, 14, 1569–1576. [Google Scholar]
- Rahman, S.U.; Qin, A.; Zain, M.; Mushtaq, Z.; Mehmood, F.; Riaz, L.; Naveed, S.; Ansari, M.J.; Saeed, M.; Ahmad, I.; et al. Pb uptake, accumulation, and translocation in plants: Plant physiological, biochemical, and molecular response: A review. Heliyon 2024, 10, e27724. [Google Scholar] [CrossRef]
- Popa, M.; Varvara, S.; Albulescu, M.; Glevitzky, M.; Popa, D. Study Concerning Coefficients Transfer of Heavy Metals In Agriculturally Food. Ann. W.U.T.-Ser. Chem. 2010, 19, 23–32. [Google Scholar]
- Popa, M.; Glevitzky, I.; Dumitrel, G.-A.; Popa, D.; Virsta, A.; Glevitzky, M. Qualitative Analysis and Statistical Models between Spring Water Quality Indicators in Alba County, Romania. Sci. Pap. Ser. E Land Reclam. Earth Obs. Surv. Environ. Eng. 2022, 11, 358–366. [Google Scholar]
- Monchanin, C.; Gabriela de Brito Sanchez, M.; Lecouvreur, L.; Boidard, O.; Méry, G.; Silvestre, J.; Le Roux, G.; Baqué, D.; Elger, A.; Barron, A.B.; et al. Honey bees cannot sense harmful concentrations of metal pollutants in food. Chemosphere 2022, 297, 134089. [Google Scholar] [CrossRef] [PubMed]
- Bayouli, I.T.; Bayouli, H.T.; Dell’Oca, A.; Meers, E.; Sun, J. Ecological indicators and bioindicator plant species for biomonitoring industrial pollution: Eco-based environmental assessment. Ecol. Indic. 2021, 125, 107508. [Google Scholar] [CrossRef]
- Angon, P.B.; Islam, M.S.; Kc, S.; Das, A.; Anjum, N.; Poudel, A.; Suchi, S.A. Sources, effects and present perspectives of heavy metals contamination: Soil, plants and human food chain. Heliyon 2024, 10, e28357. [Google Scholar] [CrossRef]
- Lewicki, P.P. Water as the determinant of food engineering properties. A review. J. Food Eng. 2004, 61, 483–495. [Google Scholar] [CrossRef]
- Kumar, S.; Pandey, A.K. Chemistry and biological activities of flavonoids: An overview. Sci. World J. 2013, 2013, 162750. [Google Scholar] [CrossRef] [PubMed]
- Kejík, Z.; Kaplánek, R.; Masařík, M.; Babula, P.; Matkowski, A.; Filipenský, P.; Veselá, K.; Gburek, J.; Sýkora, D.; Martásek, P.; et al. Iron Complexes of Flavonoids-Antioxidant Capacity and Beyond. Int. J. Mol. Sci. 2021, 22, 646. [Google Scholar] [CrossRef]
- Bănăduc, D.; Curtean-Bănăduc, A.; Cianfaglione, K.; Akeroyd, J.R.; Cioca, L.-I. Proposed Environmental Risk Management Elements in a Carpathian Valley Basin, within the Roșia Montană European Historical Mining Area. Int. J. Environ. Res. Public Health 2021, 18, 4565. [Google Scholar] [CrossRef]
- Dumitrel, G.A.; Glevitzky, M.; Popa, M.; Vica, M.L. Studies regarding the heavy metals pollution of streams and rivers in Roșia Montană area, Romania. J. Environ. Prot. Ecol. 2015, 16, 850–860. [Google Scholar]
- UNESCO World Heritage Convention—Decision 44 COM 8B.26 Roșia Montană Mining Landscape (Romania). Available online: https://whc.unesco.org/en/decisions/7945/ (accessed on 17 October 2024).
- UNESCO World Heritage Convention—List of World Heritage in Danger—Roșia Montană Mining Landscape. Available online: https://whc.unesco.org/en/list/1552 (accessed on 18 October 2024).
- STAS 7184/1:1984; Soils. Sampling for Pedologycal and Agrochemical Investigations. Romanian Standards Association: Bucharest, Romania, 1984.
- ISO 16934:2007; Glass in Building—Explosion-Resistant Security Glazing—Test and Classification by Shock-Tube Loading. ISO: Geneva, Switzerland, 2007; Edition 1.
- SR ISO 8288: 2001; Water Quality. Determination of Cobalt, Nickel, Copper, Zinc, Cadmium and Lead: Flame Atomic Absorption Spectrometric Methods. Available online: https://www.iso.org/standard/15408.html (accessed on 12 October 2024). (In Romanian)
- SR EN ISO 5961: 2002; Water Quality. Determination of Cadmium by Atomic Absorption Spectrometry. National Standardisation Body—ASRO: Bucharest, Romania, 2002. (In Romanian)
- ISO 9174: 1998; Water Quality. Determination of Chromium—Atomic Absorption Spectrometric Methods. International Organizational for Standardization (ISO): Geneva, Switzerland, 1998.
- ISO 11969: 1996; Water Quality—Determination of Arsenic—Atomic Absorption Spectrometric Method (Hydride Technique). International Organizational for Standardization (ISO): Geneva, Switzerland, 1996.
- The Perkin-Elmer Corporation—Analytical Methods for Atomic Absorption Spectroscopy. 1996. Available online: http://www1.lasalle.edu/~prushan/Intrumental%20Analysis_files/AA-Perkin%20Elmer%20guide%20to%20all!.pdf (accessed on 18 December 2024).
- APHA Method 4500-SO42−: Standard Methods for the Examination of Water and Wastewater. Available online: https://law.resource.org/pub/us/cfr/ibr/002/apha.method.4500-so42.1992.pdf (accessed on 10 December 2024).
- SR EN 1899-2:2002; Water Quality—Determination of Biochemical Oxygen Demand After n Days (CBOn). Part 2: Method for Undiluted Samples. National Standardisation Body—ASRO: Bucharest, Romania, 2002. (In Romanian)
- SR EN 25813:2000; Water Quality. Determination of Dissolved Oxygen Content. Iodometric Method. National Standardisation Body—ASRO: Bucharest, Romania, 2000. (In Romanian)
- SR EN ISO 8467:2001; Water Quality. Determination of Permanganate Index. National Standardisation Body—ASRO: Bucharest, Romania, 2001. (In Romanian)
- Committee for the Approval of Veterinary Medical Diagnostic Methods and Methodologies, Subcommittee for the Approval of Diagnostic Methods for Hygiene and Environmental Protection (2004)—Approved Methods; Internal Procedure—Sanitary Veterinary and Food Safety Directorate of Alba County: Alba Iulia, Romania, 2004; Chapter 10. (In Romanian)
- SR EN ISO 6222/2004; Water Quality. Enumeration of Cultured Microorganisms. Colony Counting by Plating on Nutrient Agar Culture Medium. National Standardisation Body—ASRO: Bucharest, Romania, 2004. (In Romanian)
- SR EN ISO 8199:2008; Water Quality. Guidelines for the Enumeration of Microorganisms in Culture Media. National Standardisation Body—ASRO: Bucharest, Romania, 2008. (In Romanian)
- Ali, M.H.H.; Al-Qahtani, K.M. Assessment of some heavy metals in vegetables, cereals and fruits in Saudi Arabian markets. Egypt. J. Aquat. Res. 2012, 38, 31–37. [Google Scholar] [CrossRef]
- ISO 18787:2017; Foodstuffs—Determination of Water Activity. International Organizational for Standardization (ISO): Geneva, Switzerland, 2017.
- Association of Official Analytical Chemists (AOAC). AOAC 978.18 Water Activity: Official Methods of Analysis, 16th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 1995. [Google Scholar]
- Cai, Y.Z.; Corke, H. Production and properties of spray-dried Amaranthus betacyanin pigments. J. Food Sci. 2000, 65, 1248–1252. [Google Scholar] [CrossRef]
- Mărghitaş, L.A. Bees and Their Products; Ceres Publishing: Bucharest, Romania, 2008; pp. 28–30. (In Romanian) [Google Scholar]
- SR ISO 24381:2024; Bee Propolis—Specifications. National Standardisation Body—ASRO: Bucharest, Romania, 2024. (In Romanian)
- Cano-Chauca, M.; Stringheta, P.C.; Ramos, A.M.; Cal-Vidal, J. Effect of the carriers on the microstructure of mango powder obtained by spray drying and its functional characterization. Innov. Food Sci. Emerg. Technol. 2005, 6, 420–428. [Google Scholar] [CrossRef]
- Popescu, N.; Meica, S. Bee Products and Their Chemical Analysis (Honey, Wax, Royal Jelly, Pollen, Bee Bread, Propolis, and Venom); Diacon Coresi Publishing: Bucharest, Romania, 1997; pp. 116–117. (In Romanian) [Google Scholar]
- IRAM-INTA 15935-1; Raw Propolis. Argentine Institute of Standardization and Certification: Buenos Aires, Argentina, 2008. (In Spanish)
- Delgado Aceves, M.L.; Andrade Ortega, J.Á.; Ramírez Barragán, C.A. Physical-chemical description of propolis collected in La Primavera forest, Zapopan, Jalisco state. Rev. Mex. Cienc. For. 2015, 6, 74–87. [Google Scholar]
- Bogdanov, S. Harmonised Methods of the International Honey Commission; Swiss Bee Research Centre, FAM: Liebefeld, Switzerland, 2009; p. 63. [Google Scholar]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol. 1999, 299, 10–18. [Google Scholar] [CrossRef]
- Chang, C.C.; Yang, M.H.; Wen, H.M.; Chern, J.C. Estimation of Total Flavonoid Content in Propolis by Two Complementary Colorimetric Methods. J. Food Drug Anal. 2002, 10, 178–182. [Google Scholar] [CrossRef]
- Marghitas, L.A.; Dezmirean, D.; Moise, A.; Mihai, C.; Laslo, L. DPPH method for evaluation of propolis antioxidant activity. Bull. Univ. Agric. Sci. 2009, 66, 253–258. [Google Scholar]
- Popova, M.; Bankova, V.; Butovska, D.; Petkov, V.; Nikolova-Damyanova, B.; Sabatini, A.G.; Marcazzan, G.L.; Bogdanov, S. Validated methods for the quantification of biologically active constituents of poplar type propolis. Phytochem. Anal. 2004, 15, 235–240. [Google Scholar] [CrossRef]
- Finger, D.; Filho, I.K.; Torres, Y.R.; Quináia, S.P. Propolis as an indicator of environmental contamination by metals. Bull. Environ. Contam. Toxicol. 2014, 92, 259–264. [Google Scholar] [CrossRef]
Sample | Sample Place | Pb2+ | Cu2+ | Cd2+ | Zn2+ | As3+ |
---|---|---|---|---|---|---|
1. | Soil 1—North | 91.60 ± 7.32 | 15.66 ± 2.94 * | 3.74 ± 2.04 * | 17.41 ± 1.56 * | 83.60 ± 9.61 * |
2. | Soil 2—South | 21.33 ± 2.18 * | 8.40 ± 1.22 * | 3.10 ± 1.20 * | 15.80 ± 2.71 * | 77.25 ± 8.83 * |
3. | Soil 3—East | 56.04 ± 6.21 | 23.06 ± 5.40 * | 2.84 ± 1.25 * | 5.16 ± 2.34 * | 64.15 ± 6.50 * |
4. | Soil 4—West | 68.75 ± 5.04 | 8.19 ± 1.63 * | 3.34 ± 5.26 * | 12.62 ± 2.49 * | 60.32 ± 7.11 * |
5. | Soil 5—S-E | 34.16 ± 4.91 | 8.01 ± 1.52 * | 2.61 ± 1.97 * | 2.53 ± 1.18 * | 52.50 ± 5.72 * |
6. | Soil 6—S-W | 21.90 ± 3.75 * | 14.61 ± 2.71 * | 3.09 ± 1.74 * | 30.00 ± 2.22 * | 81.72 ± 7.40 * |
7. | Soil 7—N-W | 106.43 ± 5.96 * | 12.53 ± 2.67 * | 3.55 ± 2.53 * | 36.16 ± 4.07 * | 102.17 ± 17.0 * |
8. | Soil 8—N-E | 108.32 ± 4.74 * | 3.67 ± 1.40 * | 3.47 ± 1.05 * | 6.12 ± 1.43 * | 95.08 ± 12.48 * |
9. | Soil 9—Centre | 26.30 ± 3.40 * | 14.68 ± 2.08 * | 3.56 ± 3.68 * | 27.59 ± 3.05 * | 80.46 ± 10.95 * |
Normal Values [20] | 20 | 20 | 1 | 100 | 5 | |
Alert threshold [28] | Sensitive | 50 | 100 | 3 | 300 | 15 |
Less sensitive | 250 | 250 | 5 | 700 | 25 | |
Intervention threshold [28] | Sensitive | 100 | 200 | 5 | 600 | 25 |
Less sensitive | 1000 | 500 | 10 | 1500 | 50 |
Sampling Sites | Month of Sampling | Pb2+ | Cu2+ | Cd2+ | Zn2+ | As3+ | Fe2+ |
---|---|---|---|---|---|---|---|
River 1A—at the source | February | ND | ND | 27.08 ± 4.05 | 48.42 ± 10.03 | ND | 150.44 ± 40.08 |
May | ND | ND | 20.33 ± 0.90 | 65.18 ± 13.19 | ND | 104.03 ± 71.62 | |
August | ND | ND | 55.72 ± 0.61 | 51.04 ± 17.11 | ND | 230.20 ± 98.34 | |
November | ND | ND | 41.16 ± 0.82 | 53.22 ± 9.31 | ND | 167.05 ± 43.06 | |
River 1B—in the middle | February | ND | 374.08 ± 11.10 | 50.89 ± 0.40 | 107.05 ± 25.00 | 117.20 ± 1.30 | 23,790.42 ± 308.26 |
May | 11.00 ± 0.50 | 820.23 ± 27.09 | 20.51 ± 0.22 | 1632.40 ± 62.83 | 134.44 ± 2.74 | 38,901.97 ± 5251.04 | |
August | 11.00 ± 0.40 | 903.47 ± 41.68 | 60.13 ± 0.53 | 1890.27 ± 33.62 | 148.07 ± 1.95 | 44,024.08 ± 911.63 | |
November | ND | 210.30 ± 18.22 | 40.09 ± 0.30 | 1903.08 ± 50.20 | 75.06 ± 4.22 | 29,162.36 ± 523.05 | |
Quality class [29] | I | 5 | 20 | 0.5 | 100 | 10 | 300 |
II | 10 | 30 | 1 | 200 | 20 | 500 | |
III | 25 | 50 | 2 | 500 | 50 | 1000 | |
IV | 50 | 100 | 5 | 1000 | 100 | 2000 | |
V | >50 | >100 | >5 | >1000 | >100 | >2000 |
Sampling Sites | Month of Sampling | pH | SO42−, mg/L | DO, mgO2/L | BOD, mgO2/L | COD, mg O2/L | Identified Microorganisms (Genus) |
---|---|---|---|---|---|---|---|
River 1A—at the source | February | 7.80 ± 0.08 | 48.22 ± 4.11 | 9.05 ± 0.29 | 0.48 ± 0.02 | 25.01 ± 5.14 | It has developed fungi: yeasts and molds (Mucor spp.) |
May | 7.42 ± 0.07 | 21.01 ± 2.00 | 9.47 ± 0.62 | 1.04 ± 0.31 | 17.90 ± 3.02 | ||
August | 6.34 ± 0.08 | 33.16 ± 2.53 | 9.80 ± 0.33 | 0.19 ± 0.01 | 21.22 ± 3.81 | ||
Novembre | 7.05 ± 0.08 | 29.58 ± 1.82 | 9.53 ± 0.49 | 0.57 ± 0.03 | 17.43 ± 2.66 | ||
River 1B—in the middle | February | 3.87 ± 0.05 | 1307.10 ± 60.34 | 9.66 ± 0.66 | 3.12 ± 1.00 | 10.10 ± 1.90 | The deposit in the filter inhibited the growth of microorganisms. |
May | 3.59 ± 0.06 | 1239.47 ± 44.71 | 8.40 ± 0.41 | 2.03 ± 0.52 | 8.20 ± 1.57 | ||
August | 2.80 ± 0.04 | 1197.88 ± 35.40 | 10.50 ± 0.58 | 2.62 ± 0.61 | 12.71 ± 2.23 | ||
Novembre | 3.76 ± 0.05 | 1076.29 ± 20.22 | 9.32 ± 0.97 | 2.67 ± 0.43 | 6.64 ± 1.28 | ||
Quality classes [29] | I | 6.5–8.5 | 60 | 8 | 3 | 5 | - |
II | 120 | 7 | 5 | 10 | |||
III | 250 | 5 | 7 | 20 | |||
IV | 300 | 4 | 20 | 50 | |||
V | >300 | <4 | >20 | >50 |
Time [Month] | CFU/mL | NH4+-N, µg N/L | NO3−-N, µg N/L | NO2−-N, µg N/L | |
---|---|---|---|---|---|
January | 278 | 21.40 ± 1.09 | 144.05 ± 23.20 | 1.92 ± 0.34 | |
February | 224 | 26.01 ± 1.22 | 280.43 ± 19.16 | 2.10 ± 0.42 | |
March | 294 | 35.32 ± 3.16 | 352.29 ± 36.08 | 3.74 ± 0.90 | |
April | 303 | 101.18 ± 2.44 | 761.77 ± 20.35 | 11.03 ± 0.51 | |
May | 422 | 424.29 ± 37.35 | 1040 ± 105.00 | 14.21 ± 0.74 | |
June | 450 | 2050.00 ± 20.91 | 1222.16 ± 77.14 | 13.80 ± 0.93 | |
July | 536 | 1507.17 ± 18.05 | 1303.52 ± 149.04 | 15.32 ± 1.10 | |
August | 640 | 1162.43 ± 15.40 | 781.67 ± 40.36 | 12.93 ± 0.22 | |
September | 505 | 490.20 ± 46.28 | 850 ± 51.27 | 14.60 ± 1.07 | |
October | 492 | 248.15 ± 44.37 | 513.63 ± 24.09 | 10.53 ± 0. 83 | |
Novembre | 312 | 303.46 ± 58.06 | 130.55 ± 11.21 | 2.44 ± 0. 09 | |
Decembre | 256 | 149.33 ± 5.44 | 242.58 ± 48.07 | 1.01 ± 0.05 | |
Waters [30] | Salmonid | - | ≤40 | - | ≤10 |
Cyprinid | - | ≤200 | - | ≤30 | |
Quality classes [29] | I | - | 400 | 1000 | 10 |
II | - | 800 | 3000 | 30 | |
III | - | 1200 | 5600 | 60 | |
IV | - | 3200 | 11,200 | 300 | |
V | - | >3200 | >11,200 | >300 |
Deciduous and coniferous trees | Deciduous Trees: Betula pendula (Silver Birch), Frangula alnus (Alder Buckthorn), Salix cinerea (Grey Willow), Sambucus racemosa (Red Elderberry), Populus tremula (Aspen), Corylus avellana (Hazel), Crataegus monogyna (Common Hawthorn), Tilia cordata (Small-leaved Lime), Sorbus aucuparia (Rowan or Mountain Ash), Prunus spinosa (Blackthorn), Rubus sp. (Brambles), Rosa sp. (Rose), Alnus glutinosa (Black Alder), Fraxinus excelsior (European Ash), Crataegus sp. (Hawthorn), Salix alba (White Willow), Salix caprea (Goat Willow), Lonicera xylosteum (Fly Honeysuckle), Corylus avellana (Hazel), Betula pendula (Silver Birch), Populus sp. (Poplar), Crataegus monogyna (Common Hawthorn), Sorbus aucuparia (Rowan or Mountain Ash) Coniferous Trees: Pinus sylvestris (Scots Pine), Pinus nigra (Black Pine), Abies alba (European Silver Fir), Picea abies (Norway Spruce). |
Shrubbery species | Prunella vulgaris (Selfheal, Heal-all), Rubus sp. (Brambles, Blackberries, Raspberries), Prunus spinosa (Blackthorn, Sloe), Sambucus racemosa (Red Elderberry), Rosa sp. (Rose, Wild Rose), Crataegus monogyna (Hawthorn, Mayflower), Lonicera xylosteum (Tartarian Honeysuckle), Genista sagittalis (Broom, Arrow Broom), Lysimachia vulgaris (Yellow Loosestrife, Garden Loosestrife), Lonicera xylosteum (Tartarian Honeysuckle), Sorbus aucuparia (Rowan, Mountain Ash), Stachys sylvatica (Wood Betony). |
Herbaceous plants and wildflowers | Erigeron acer (Bitter Fleabane), Centaurea indurata (Cornflower, Knapweed), Ballota nigra (Black Horehound), Hieracium pilosella (Mouse-ear Hawkweed), Hieracium bauhinii (Bauhinii Hawkweed), Hieracium murorum (Wall Hawkweed), Chamaenerion angustifolium (Rosebay Willowherb, Fireweed), Cirsium rivulare (River Thistle), Serratula tinctoria (Dyer’s Cudweed), Succisa pratensis (Devil’s-bit Scabious), Parnassia palustris (Grass-of-Parnassus), Vaccinium myrtillus (Bilberry), Vaccinium vitis-idaea (Lingonberry), Lysimachia vulgaris (Yellow Loosestrife, Garden Loosestrife), Solanum dulcamara (Bittersweet, Woody Nightshade), Stachys palustris (Marsh Woundwort), Cirsium arvense (Creeping Thistle), Cirsium erisithales (Plumeless Thistle), Reynoutria japonica (Japanese Knotweed), Impatiens glandulifera (Himalayan Balsam), Telekia speciosa (Showy Yellow Daisy), Geranium palustre (Marsh Crane’s-bill), Chaerophyllum hirsutum (Hairy Chervil), Lythrum salicaria (Purple Loosestrife), Caltha laeta (Large-flowered Marsh-marigold), Menyanthes trifoliata (Bogbean), Comarum palustre (Marsh Cinquefoil), Antennaria dioica (Common Pussytoes), Symphytum cordatum (Heart-leaved Comfrey), Lamium galeobdolon (Yellow Archangel), Galium odoratum (Sweet Woodruff), Cardamine glanduligera (Glandular Bittercress), Daphne mezereum (February Daphne), Dentaria bulbifera (Toothwort), Stellaria holostea (Greater Stitchwort), Lathyrus niger (Black Pea), Lathyrus vernus (Spring Vetchling), Scorzonera rosea (Pink Goat’s-beard), Polygala vulgaris (Common Milkwort), Molinia caerulea (Purple Moor-grass), Serratula tinctoria (Dyer’s Cudweed), Succisa pratensis (Devil’s-bit Scabious), Astrantia major (Masterwort), Dianthus superbus (Large Pink), Gentiana pneumonante (Spring Gentian), Hypochoeris maculata (Spotted Cat’s-ear), Alchemilla vulgaris (Lady’s Mantle), Trollius europaeus (Globeflower), Polygonum bistorta (Bistort), Ferulago campestris (Field Ferulago), Trifolium pratense (Red Clover), Anacamptis pyramidalis (Pyramidal Orchid), Gymnadenia conopsea (Fragrant Orchid), Campanula patula (Spreading Bellflower), Achillea millefolium (Yarrow), Trifolium repens (White Clover), Leucanthemum vulgare (Oxeye Daisy), Mentha longifolia (Long-leaved Mint), Geranium phaeum (Dusky Crane’s-bill), Colchicum autumnale (Autumn Crocus), Crocus banaticus (Banat Crocus), Sanguisorba officinalis (Great Burnet), Geranium pratense (Meadow Crane’s-bill), Centaurea phrygia (Phrygian Knapweed), Sedum album (White Stonecrop), Sedum acre (Biting Stonecrop), Thymus comosus (Hairy Thyme), Silene nutans ssp. dubia (Nodding Catchfly), Acinos arvensis (Field Basil). |
Medicinal plants species | Tussilago farfara (Colt’s foot), Galium aparine (Cleavers), Medicago lupulina (Black medic), Erigeron acer (Fleabane), Prunella vulgaris (Self-heal), Arctium lappa (Burdock), Ballota nigra (Black horehound), Sambucus racemosa (Red elderberry), Gentiana pneumonante (Autumn gentian), Sanguisorba officinalis (Great burnet), Parnassia palustris (Grass-of-Parnassus), Telekia speciosa (Telekia), Filipendula ulmaria (Meadowsweet), Symphytum officinale (Comfrey), Corylus avellana (Hazel), Crataegus monogyna (Hawthorn), Eupatorium cannabinum (Hemp agrimony), Cirsium arvense (Creeping thistle), Angelica sylvestris (Wild angelica), Impatiens glandulifera (Himalayan balsam), Lonicera xylosteum (Fly honeysuckle), Geranium palustre (Marsh geranium), Chaerophyllum hirsutum (Hairy chervil), Lythrum salicaria (Purple loosestrife), Mentha longifolia (Long-leaved mint), Astrantia major (Masterwort), Daphne mezereum (Mezereon), Galium odoratum (Sweet woodruff), Cardamine glanduligera (Glandular bittercress), Stellaria holostea (Greater stitchwort), Lathyrus vernus (Spring vetchling), Pulmonaria officinalis (Lungwort), Scorzonera rosea (Violet salsify), Nardus stricta (Nardus), Polygala vulgaris (Common milkwort), Serratula tinctoria (Saw-wort), Dianthus superbus (Fringed pink), Hypochoeris maculata (Spotted cat’s ear), Alchemilla vulgaris (Lady’s mantle), Achillea millefolium (Yarrow), Trifolium repens (White clover), Genista tinctoria (Dyer’s greenweed), Leucanthemum vulgare (Ox-eye daisy), Mycelis muralis (Wall lettuce), Mentha longifolia (Long-leaved mint), Senecio paludosus (Marsh ragwort), Geranium phaeum (Dusky cranesbill), Crocus banaticus (Banat crocus), Sanguisorba officinalis (Great burnet), Geranium pratense (Meadow geranium), Centaurea phrygia (Knapweed), Sedum album (White stonecrop), Sedum acre (Goldmoss stonecrop), Thymus comosus (Wild thyme), Acinos arvensis (Field basil). |
Cultivated vegetables | Phaseolus vulgaris (Beans), Lactuca sativa (Lettuce), Satureja hortensis L. (Thyme). |
Sample | Sample Name | Pb2+ | Cu2+ | Cd2+ |
---|---|---|---|---|
1 | Mixed vegetables 1—North | 0.30 ± 0.04 | 1.15 ± 0.09 * | 0.02 ± 0.01 * |
2 | Mixed vegetables 2—South | 0.14 ± 0.03 * | 0.73 ± 0.24 | 0.10 ± 0.02 |
3 | Mixed vegetables 3—East | 0.13 ± 0.02 * | 1.15 ± 0.13 * | 0.01 ± 0.00 * |
4 | Mixed vegetables 4—West | 0.25 ± 0.09 | 1.08 ± 0.06 * | 0.01 ± 0.00 * |
5 | Mixed vegetables 5—S-E | 0.56 ± 0.11 | 1.27 ± 0.31 | 0.03 ± 0.01 * |
6 | Mixed vegetables 6—S-W | 0.42 ± 0.04 | 1.32 ± 0.20 * | 0.12 ± 0.04 * |
7 | Mixed vegetables 7—N-W | 0.72 ± 0.07 * | 1.51 ± 0.05 * | 0.15 ± 0.04 |
8 | Mixed vegetables 8—N-E | 0.38 ± 0.06 | 1.48 ± 0.08 * | 0.11 ± 0.02 * |
9 | Mixed vegetables 9—Center | 0.79 ± 0.13 | 0.80 ± 0.17 | 0.17 ± 0.04 |
Maximum levels (mg/kg wet weight) * [33] | 0.20 | - | 0.05 * | |
Maximum permissible limits in vegetables, mg/kg [34,35] | 0.30 | 40.0 | 0.10 |
Sample No. | aw | Moisture, % | Hygroscopicity, g H2O/100 g Propolis | MP, °C | Density, g/cm3 | Dry Matter, % |
---|---|---|---|---|---|---|
S1 | 0.63 ± 0.08 | 5.33 ± 0.25 | 13.3 ± 0.3 | 65.2 ± 0.3 | 1.104 ± 0.003 | 94.67 ± 0.20 |
S2 | 0.62 ± 0.09 | 6.24 ± 0.19 | 13.8 ± 0.7 | 62.7 ± 0.2 | 0.983 ± 0.004 | 93.76 ± 0.23 |
S3 | 0.70 ± 0.04 | 5.18 ± 0.33 | 13.0 ± 0.5 | 63.4 ± 0.3 | 1.097 ± 0.005 | 94.82 ± 0.24 |
S4 | 0.71 ± 0.10 | 5.95 ± 0.28 | 13.5 ± 0.4 | 64.1 ± 0.2 | 1.055 ± 0.008 | 94.05 ± 0.28 |
S5 | 0.66 ± 0.07 | 7.67 ± 0.11 | 13.7 ± 0.8 | 63.6 ± 0.1 | 0.996 ± 0.007 | 92.33 ± 0.22 |
S6 | 0.65 ± 0.03 | 6.93 ± 0.24 | 12.9 ± 0.6 | 64.3 ± 0.2 | 1.159 ± 0.003 | 93.06 ± 0.19 |
S7 | 0.64 ± 0.05 | 5.70 ± 0.12 | 13.1 ± 0.5 | 65.0 ± 0.3 | 0.982 ± 0.004 | 94.30 ± 0.21 |
S8 | 0.66 ± 0.06 | 6.83 ± 0.26 | 13.4 ± 0.8 | 62.9 ± 0.2 | 1.080 ± 0.005 | 93.17 ± 0.25 |
S9 | 0.67 ± 0.09 | 6.12 ± 0.30 | 13.7 ± 0.4 | 63.5 ± 0.2 | 1.034 ± 0.006 | 93.88 ± 0.28 |
Sample No. | Ash, g/100g | Wax, % | Water Solubility, % | VO, % | OI, s | Ethanol-Insoluble Residue, % | Phenols, mg GAE/g | Flavonoids, mg QE/g | IC50, µg/mL |
---|---|---|---|---|---|---|---|---|---|
S1 | 2.50 ± 0.00 | 25.84 ± 0.57 | 11.46 ± 0.79 | 0.4 ± 0.06 | 12.5 ± 1.4 | 16.4 ± 0.8 | 189.4 ± 5.82 | 84.31 ± 0.09 | 0.333 ± 0.002 |
S2 | 2.85 ± 0.08 | 37.18 ± 0.81 | 10.90 ± 0.62 | 0.3 ± 0.04 | 12.3 ± 2.1 | 17.1 ± 0.6 | 180.8 ± 4.54 | 78.26 ± 0.07 | 0.514 ± 0.016 |
S3 | 2.96 ± 0.04 | 40.56 ± 1.06 | 12.55 ± 0.13 | 0.2 ± 0.03 | 11.8 ± 1.1 | 16.8 ± 0.9 | 172.9 ± 3.25 | 78.55 ± 0.08 | 0.725 ± 0.003 |
S4 | 3.15 ± 0.06 | 33.22 ± 0.38 | 11.16 ± 0.45 | 0.3 ± 0.08 | 12.5 ± 1.9 | 16.5 ± 0.2 | 189.5 ± 4.83 | 87.84 ± 0.11 | 0.669 ± 0.010 |
S5 | 3.28 ± 0.09 | 46.33 ± 1.05 | 10.27 ± 0.50 | 0.2 ± 0.01 | 10.9 ± 2.0 | 16.9 ± 0.4 | 193.4 ± 7.22 | 86.06 ± 0.08 | 0.884 ± 0.028 |
S6 | 2.55 ± 0.05 | 37.41 ± 0.58 | 10.82 ± 0.31 | 0.3 ± 0.02 | 11.7 ± 1.3 | 16.7 ± 0.7 | 129.6 ± 3.58 | 68.59 ± 0.09 | 0.964 ± 0.031 |
S7 | 2.73 ± 0.03 | 31.19 ± 0.71 | 11.38 ± 0.24 | 0.4 ± 0.07 | 11.4 ± 1.5 | 17.0 ± 0.8 | 184.3 ± 6.04 | 82.27 ± 0.25 | 0.086 ± 0.001 |
S8 | 2.69 ± 0.04 | 32.52 ± 0.44 | 12.04 ± 0.33 | 0.2 ± 0.03 | 12.6 ± 1.7 | 16.6 ± 0.3 | 152.2 ± 6.80 | 70.10 ± 0.16 | 0.517 ± 0.04 |
S9 | 3.08 ± 0.03 | 28.92 ± 0.67 | 11.61 ± 0.46 | 0.3 ± 0.05 | 13.1 ± 1.8 | 16.2 ± 0.5 | 157.1 ± 5.57 | 74.35 ± 0.36 | 0.615 ± 0.05 |
Metal Cation | Pb2+ | Cu2+ | Cd2+ | Zn2+ | As3+ | Sr2+ | |
---|---|---|---|---|---|---|---|
Sample | |||||||
S1 | 8.26 ± 0.68 | 4.03 ± 0.22 | 0.16 ± 0.04 | 3.12 ± 0.19 | 0.97 ± 0.30 | 7.78 ± 0.86 | |
S2 | 7.04 ± 0.52 | 4.44 ± 0.81 | 0.15 ± 0.08 | 5.71 ± 0.36 | 0.79 ± 0.14 | 9.92 ± 0.54 | |
S3 | 10.14 ± 0.87 | 6.32 ± 0.56 | 0.14 ± 0.04 | 4.04 ± 0.60 | 1.04 ± 0.28 | 12.06 ± 0.92 | |
S4 | 5.60 ± 0.42 | 3.21 ± 0.47 | 0.14 ± 0.08 | 3.45 ± 0.36 | 0.64 ± 0.18 | 5.48 ± 0.42 | |
S5 | 8.42 ± 0.33 | 5.07 ± 0.75 | 0.15 ± 0.04 | 6.09 ± 0.65 | 0.42 ± 0.13 | 7.75 ± 0.75 | |
S6 | 5.01 ± 0.47 | 2.10 ± 0.24 | 0.05 ± 0.09 | 3.36 ± 0.48 | 0.77 ± 0.25 | 7.32 ± 0.64 | |
S7 | 4.65 ± 0.63 | 3.68 ± 0.12 | 0.10 ± 0.06 | 4.50 ± 0.22 | 0.18 ± 0.04 | 8.40 ± 0.87 | |
S8 | 4.19 ± 0.30 | 1.29 ± 0.54 | 0.07 ± 0.05 | 3.91 ± 0.99 | 0.51 ± 0.10 | 4.16 ± 0.25 | |
S9 | 5.72 ± 0.90 | 4.01 ± 0.55 | 1.15 ± 0.18 | 3.28 ± 0.17 | 0.32 ± 0.09 | 5.01 ± 0.35 |
Variable “z” | Equations of Statistical Models |
---|---|
Ammonium (NH4+) | z = −2.2480 + 0.4409∙x + 0.0072·y − 0.0001·x·y − 0.0104·x2 + 2.9010·10−6·y2 |
Nitrates (NO3−) | z = −1.4030 + 0.3636∙x + 0.0064·y − 4.4004·10−4·x·y − 0.0222·x2 − 3.0979·10−6·y2 |
Nitrites (NO2−) | z = −0.0172 + 0.0031∙x + 8.8940·10−5·y − 5.2599·10−7·x·y − 2.7660·10−8·x2 − 7.7968·10−8·y2 |
Related to the Variable “z” | σ2 | σ | R2 | R |
---|---|---|---|---|
Ammonium (NH4+) | 0.166 | 0.407 | 0.617 | 0.785 |
Nitrates (NO3−) | 0.020 | 0.142 | 0.883 | 0.940 |
Nitrites (NO2−) | 0.001 | 0.001 | 0.927 | 0.963 |
Treatments Pair | Tukey p-Value | ||
---|---|---|---|
Pb2+ | Cu2+ | Cd2+ | |
Propolis—soil | 0.001 | 0.899 | 0.658 |
Propolis—water | 0.899 | 0.001 | 0.001 |
Propolis—vegetables | 0.899 | 0.899 | 0.899 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Glevitzky, M.; Bostan, R.; Vică, M.L.; Dumitrel, G.-A.; Corcheş, M.-T.; Popa, M.; Glevitzky, I.; Matei, H.-V. Environmental Contamination and Mining Impact: Physico-Chemical and Biological Characterization of Propolis as an Indicator of Pollution in the Roșia Montană Area, Romania. Plants 2025, 14, 866. https://doi.org/10.3390/plants14060866
Glevitzky M, Bostan R, Vică ML, Dumitrel G-A, Corcheş M-T, Popa M, Glevitzky I, Matei H-V. Environmental Contamination and Mining Impact: Physico-Chemical and Biological Characterization of Propolis as an Indicator of Pollution in the Roșia Montană Area, Romania. Plants. 2025; 14(6):866. https://doi.org/10.3390/plants14060866
Chicago/Turabian StyleGlevitzky, Mirel, Roxana Bostan, Mihaela Laura Vică, Gabriela-Alina Dumitrel, Mihai-Teopent Corcheş, Maria Popa, Ioana Glevitzky, and Horea-Vladi Matei. 2025. "Environmental Contamination and Mining Impact: Physico-Chemical and Biological Characterization of Propolis as an Indicator of Pollution in the Roșia Montană Area, Romania" Plants 14, no. 6: 866. https://doi.org/10.3390/plants14060866
APA StyleGlevitzky, M., Bostan, R., Vică, M. L., Dumitrel, G.-A., Corcheş, M.-T., Popa, M., Glevitzky, I., & Matei, H.-V. (2025). Environmental Contamination and Mining Impact: Physico-Chemical and Biological Characterization of Propolis as an Indicator of Pollution in the Roșia Montană Area, Romania. Plants, 14(6), 866. https://doi.org/10.3390/plants14060866