Impact of Water Management on Growth and Pigment Composition of Cauliflower and Broccoli
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Growth Conditions and Drought Stress Application
2.2. Plant Growth Parameters, Carotenoids, and Chlorophyll Measurements
2.3. Data Analysis
3. Results
3.1. Effect of Drought Stress on Growth Parameters
3.2. Effect of Drought Stress on Carotenoids and Chlorophylls
4. Discussion
4.1. Drought Stress Effects on Physiological Parameters
4.2. Drought Stress Effects on Photosynthetic Pigments
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dore, M.H.I. Climate Change and Changes in Global Precipitation Patterns: What Do We Know? Environ. Int. 2005, 31, 1167–1181. [Google Scholar] [CrossRef]
- Sheffield, J.; Wood, E.F. Projected Changes in Drought Occurrence under Future Global Warming from Multi-Model, Multi-Scenario, IPCC AR4 Simulations. Clim. Dyn. 2008, 31, 79–105. [Google Scholar] [CrossRef]
- Rosegrant, M.W.; Ringler, C.; Zhu, T. Water for Agriculture: Maintaining Food Security under Growing Scarcity. Annu. Rev. Environ. Resour. 2009, 34, 205–222. [Google Scholar] [CrossRef]
- Hanjra, M.A.; Qureshi, M.E. Global Water Crisis and Future Food Security in an Era of Climate Change. Food Policy 2010, 35, 365–377. [Google Scholar] [CrossRef]
- Li, M.; Zhou, S.; Shen, S.; Wang, J.; Yang, Y.; Wu, Y.; Chen, F.; Lei, Y. Climate-Smart Irrigation Strategy Can Mitigate Agricultural Water Consumption While Ensuring Food Security under a Changing Climate. Agric. Water Manag. 2024, 292, 108663. [Google Scholar] [CrossRef]
- Hamdy, A.; Ragab, R.; Scarascia-Mugnozza, E. Coping with Water Scarcity: Water Saving and Increasing Water Productivity. Irrig. Drain. J. Int. Comm. Irrig. Drain. 2003, 52, 3–20. [Google Scholar] [CrossRef]
- Ringler, C.; Bhaduri, A.; Lawford, R. The Nexus across Water, Energy, Land and Food (WELF): Potential for Improved Resource Use Efficiency. Curr. Opin. Environ. Sustain. 2013, 5, 617–624. [Google Scholar] [CrossRef]
- Kim, Y.N.; Khan, M.A.; Kang, S.M.; Hamayun, M.; Lee, I.J. Enhancement of Drought-Stress Tolerance of Brassica Oleracea Var. Italica L YNA59. J. Microbiol. Biotechnol. 2020, 30, 1500–1509. [Google Scholar] [CrossRef]
- Boutraa, T. Improvement of Water Use Efficiency in Irrigated Agriculture: A Review. J. Agron. 2010, 9, 1–8. [Google Scholar] [CrossRef]
- Levidow, L.; Zaccaria, D.; Maia, R.; Vivas, E.; Todorovic, M.; Scardigno, A. Improving Water-Efficient Irrigation: Prospects and Difficulties of Innovative Practices. Agric. Water Manag. 2014, 146, 84–94. [Google Scholar] [CrossRef]
- Gupta, A.; Rico-Medina, A.; Caño-Delgado, A.I. The Physiology of Plant Responses to Drought. Science 2020, 368, 266–269. [Google Scholar] [CrossRef]
- FAO. Statistical Yearbook 2024 Reveals Critical Insights on the Sustainability of Global Agriculture, Food Security, and the Importance of Agrifood Systems in Employment. Available online: https://www.fao.org/newsroom/detail/fao-statistical-yearbook-2024-reveals-critical-insights-on-the-sustainability-of-agriculture-food-security-and-the-importance-of-agrifood-in-employment/ (accessed on 2 February 2025).
- FAOSTAT. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 2 February 2025).
- Sotelo, T.; Soengas, P.; Velasco, P.; Rodríguez, V.M.; Cartea, M.E. Identification of Metabolic QTLs and Candidate Genes for Glucosinolate Synthesis in Brassica oleracea Leaves, Seeds and Flower Buds. PLoS ONE 2014, 9, 91428. [Google Scholar] [CrossRef] [PubMed]
- Jabeen, N. Agricultural, Economic and Societal Importance of Brassicaceae Plants. In The Plant Family Brassicaceae: Biology and Physiological Responses to Environmental Stresses; Hasanuzzaman, M., Ed.; Springer: Singapore, 2020; pp. 45–128. ISBN 978-981-15-6345-4. [Google Scholar]
- Šamec, D.; Salopek-Sondi, B. Chapter 3.11—Cruciferous (Brassicaceae) Vegetables. In Nonvitamin and Nonmineral Nutritional Supplements; Nabavi, S.M., Silva, A.S., Eds.; Academic Press: London, UK, 2019; pp. 195–202. ISBN 978-0-12-812491-8. [Google Scholar]
- Ravikumar, C. Therapeutic Potential of Brassica oleracea (Broccoli)–A Review. Int. J. Drug Dev. Res. 2015, 7, 9–10. [Google Scholar]
- Francisco, M.; Tortosa, M.; Martínez-Ballesta, M.D.C.; Velasco, P.; García-Viguera, C.; Moreno, D.A. Nutritional and Phytochemical Value of Brassica Crops from the Agri-food Perspective. Ann. Appl. Biol. 2017, 170, 273–285. [Google Scholar] [CrossRef]
- Manchali, S.; Murthy, K.N.C.; Patil, B.S. Crucial Facts about Health Benefits of Popular Cruciferous Vegetables. J. Funct. Foods 2012, 4, 94–106. [Google Scholar] [CrossRef]
- Kulczyński, B.; Gramza-Michałowska, A.; Kobus-Cisowska, J.; Kmiecik, D. The Role of Carotenoids in the Prevention and Treatment of Cardiovascular Disease–Current State of Knowledge. J. Funct. Foods 2017, 38, 45–65. [Google Scholar] [CrossRef]
- Swapnil, P.; Meena, M.; Singh, S.K.; Dhuldhaj, U.P.; Marwal, A. Vital Roles of Carotenoids in Plants and Humans to Deteriorate Stress with Its Structure, Biosynthesis, Metabolic Engineering and Functional Aspects. Curr. Plant Biol. 2021, 26, 100203. [Google Scholar] [CrossRef]
- Yu, H.M.; Li, Z.Z.; Gong, Y.S.; Mack, U.; Feger, K.H.; Stahr, K. Water Drainage and Nitrate Leaching under Traditional and Improved Management of Vegetable-cropping Systems in the North China Plain. J. Plant Nutr. Soil Sci. 2006, 169, 47–51. [Google Scholar] [CrossRef]
- Figas, A.; Jagosz, B.; Rolbiecki, S.; Rolbiecki, R.; Ptach, W. Effect of the Predicted Climate Changes on the Water Needs of Cauliflower Cultivated in the Central Poland. In Proceedings of the 18th International Scientific Conference “Eng. Rural Dev.”, Jelgava, Latvia, 9–11 April 2019; pp. 22–24. [Google Scholar]
- Miyashita, K.; Tanakamaru, S.; Maitani, T.; Kimura, K. Recovery Responses of Photosynthesis, Transpiration, and Stomatal Conductance in Kidney Bean Following Drought Stress. Environ. Exp. Bot. 2005, 53, 205–214. [Google Scholar] [CrossRef]
- Galmés, J.; Medrano, H.; Flexas, J. Photosynthetic Limitations in Response to Water Stress and Recovery in Mediterranean Plants with Different Growth Forms. New Phytol. 2007, 175, 81–93. [Google Scholar] [CrossRef]
- Ramakrishna, A.; Ravishankar, G.A. Influence of Abiotic Stress Signals on Secondary Metabolites in Plants. Plant Signal. Behav. 2011, 6, 1720–1731. [Google Scholar] [CrossRef]
- Anjum, S.A.; Xie, X.Y.; Wang, L.C.; Saleem, M.F.; Man, C.; Lei, W. Morphological, Physiological and Biochemical Responses of Plants to Drought Stress. Afr. J. Agric. Res. 2011, 6, 2026–2032. [Google Scholar]
- Aires, A.; Fernandes, C.; Carvalho, R.; Bennett, R.N.; Saavedra, M.J.; Rosa, E.A. Seasonal Effects on Bioactive Compounds and Antioxidant Capacity of Six Economically Important Brassica Vegetables. Molecules 2011, 16, 6816–6832. [Google Scholar] [CrossRef] [PubMed]
- Majidi, M.M.; Rashidi, F.; Sharafi, Y. Physiological Traits Related to Drought Tolerance in Brassica. Int. J. Plant Prod. 2015, 9, 541–560. [Google Scholar] [CrossRef]
- Khalid, M.F.; Huda, S.; Yong, M.; Li, L.; Li, L.; Chen, Z.H.; Ahmed, T. Alleviation of Drought and Salt Stress in Vegetables: Crop Responses and Mitigation Strategies. Plant Growth Regul. 2022, 99, 177–194. [Google Scholar] [CrossRef]
- Sardar, H.; Shafiq, M.; Naz, S.; Ali, S.; Ahmad, R.; Ejaz, S. Enhancing Drought Tolerance in Broccoli (Brassica oleracea L.) through Melatonin Application: Physiological and Biochemical Insights into Growth, Photosynthesis, and Antioxidant Defense Mechanisms. Biocatal. Agric. Biotechnol. 2024, 59, 103256. [Google Scholar] [CrossRef]
- Montesinos, C.; Benito, P.; Porcel, R.; Bellón, J.; González-Guzmán, M.; Arbona, V.; Yenush, L.; Mulet, J.M. Field Evaluation and Characterization of a Novel Biostimulant for Broccoli (Brassica oleracea Var. Italica) Cultivation under Drought and Salt Stress Which Increases Antioxidant, Glucosinolate and Phytohormone Content. Sci. Hortic. 2024, 338, 113584. [Google Scholar] [CrossRef]
- Potop, V.; Možný, M.; Soukup, J. Drought Evolution at Various Time Scales in the Lowland Regions and Their Impact on Vegetable Crops in the Czech Republic. Agric. For. Meteorol. 2012, 156, 121–133. [Google Scholar] [CrossRef]
- Kirkham, M.B. 8—Field Capacity, Wilting Point, Available Water, and the Non-Limiting Water Range. In Principles of Soil and Plant Water Relations; Kirkham, M.B., Ed.; Academic Press: Burlington, VT, USA, 2005; pp. 101–115. ISBN 978-0-12-409751-3. [Google Scholar]
- Allen, G.R.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements; FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998. [Google Scholar]
- Frede, K.; Baldermann, S. Accumulation of Carotenoids in Brassica Rapa Ssp. Chinensis by a High Proportion of Blue in the Light Spectrum. Photochem. Photobiol. Sci. 2022, 21, 1947–1959. [Google Scholar] [CrossRef]
- Britton, G.; Liaaen-Jensen, S.; Pfander, H. Carotenoids—Handbook, 1st ed.; Birkhäuser: Basel, Switzerland, 2004; ISBN 978-3-7643-6180-8. [Google Scholar]
- Boretti, A.; Rosa, L. Reassessing the Projections of the World Water Development Report. NPJ Clean Water 2019, 2, 15. [Google Scholar] [CrossRef]
- Alexandratos, N.; Bruinsma, J. World Agriculture towards 2030/2050: The 2012 Revision; FAO: Rome, Italy, 2012. [Google Scholar]
- Dinar, A.; Tieu, A.; Huynh, H. Water Scarcity Impacts on Global Food Production. Glob. Food Secur. 2019, 23, 212–226. [Google Scholar] [CrossRef]
- Ali, M.H.; Talukder, M.S.U. Increasing Water Productivity in Crop Production—A Synthesis. Agric. Water Manag. 2008, 95, 1201–1213. [Google Scholar] [CrossRef]
- Chaudhary, S.K.; Srivastava, P.K. Future Challenges in Agricultural Water Management. In Agricultural Water Management; Academic Press: London, UK, 2021; pp. 445–456. [Google Scholar]
- Zhang, X.; Lu, G.; Long, W.; Zou, X.; Li, F.; Nishio, T. Recent Progress in Drought and Salt Tolerance Studies in Brassica Crops. Breed. Sci. 2014, 64, 60–73. [Google Scholar] [CrossRef]
- Shafiq, S.; Akram, N.A.; Ashraf, M.; Arshad, A. Synergistic Effects of Drought and Ascorbic Acid on Growth, Mineral Nutrients and Oxidative Defense System in Canola (Brassica napus L.) Plants. Acta Physiol. Plant. 2014, 36, 1539–1553. [Google Scholar] [CrossRef]
- Latif, M.; Akram, N.A.; Ashraf, M. Regulation of Some Biochemical Attributes in Drought-Stressed Cauliflower (Brassica oleracea L.) by Seed Pre-Treatment with Ascorbic Acid. J. Hortic. Sci. Biotechnol. 2016, 91, 129–137. [Google Scholar] [CrossRef]
- Shafiq, S.; Akram, N.A.; Ashraf, M. Assessment of Physio-Biochemical Indicators for Drought Tolerance in Different Cultivars of Maize (Zea mays L.). Pak. J. Bot. 2019, 51, 1241–1247. [Google Scholar] [CrossRef]
- Alsamadany, H. Physiological, Biochemical and Molecular Evaluation of Mungbean Genotypes for Agronomical Yield under Drought and Salinity Stresses in the Presence of Humic Acid. Saudi J. Biol. Sci. 2022, 29, 103385. [Google Scholar] [CrossRef]
- Farooq, M.; Wahid, A.; Kobayashi, N.S.M.A.; Fujita, D.B.S.M.A.; Basra, S.M.A. Plant Drought Stress: Effects, Mechanisms and Management. In Sustainable Agriculture; Springer: Dordrecht, The Netherlands, 2009; pp. 153–188. [Google Scholar]
- Feng, W.; Lindner, H.; Robbins, N.E., II; Dinneny, J.R. Growing Out of Stress: The Role of Cell- and Organ-Scale Growth Control in Plant Water-Stress Responses. Plant Cell 2016, 28, 1769–1782. [Google Scholar] [CrossRef]
- Magazzù, A.; Marcuello, C. Investigation of Soft Matter Nanomechanics by Atomic Force Microscopy and Optical Tweezers: A Comprehensive Review. Nanomaterials 2023, 13, 963. [Google Scholar] [CrossRef] [PubMed]
- Kartika, K.; Fadilah, L.N.; Lakitan, B. Growth Responses and Yield of Cauliflower (Brassica oleracea Var. Botrytis L.) to the Delayed Transplanting and Drought Stress. In Proceedings of the E3S Web of Conferences, EDP Sciences, Bogor City (virtual), Indonesia, 6–7 July 2021; Volume 306, p. 01007. [Google Scholar]
- Cazzonelli, C.I. Carotenoids in Nature: Insights from Plants and Beyond. Funct. Plant Biol. 2011, 38, 833–847. [Google Scholar] [CrossRef]
- Ahanger, M.A.; Siddique, K.H.; Ahmad, P. Understanding Drought Tolerance in Plants. Physiol. Plant. 2021, 172, 286–288. [Google Scholar] [CrossRef]
- Munné-Bosch, S.; Peñuelas, J. Drought-Induced Oxidative Stress in Strawberry Tree (Arbutus unedo L.) Growing in Mediterranean Field Conditions. Plant Sci. 2004, 166, 1105–1110. [Google Scholar] [CrossRef]
- Mohammadkhani, N.; Heidari, R. Effects of Drought Stress on Protective Enzyme Activities and Lipid Peroxidation in Two Maize Cultivars. Pak. J. Biol. Sci. 2007, 10, 3835–3840. [Google Scholar] [CrossRef] [PubMed]
- Hanson, P.; Yang, R.Y.; Chang, L.C.; Ledesma, L.; Ledesma, D. Carotenoids, Ascorbic Acid, Minerals, and Total Glucosinolates in Choysum (Brassica rapa Cvg. Parachinensis) and Kailaan (B. oleraceae Alboglabra Group) as Affected by Variety and Wet and Dry Season Production. J. Food Compos. Anal. 2011, 24, 950–962. [Google Scholar] [CrossRef]
- Mutava, R.N.; Prince, S.J.K.; Syed, N.H.; Song, L.; Valliyodan, B.; Chen, W.; Nguyen, H.T. Understanding Abiotic Stress Tolerance Mechanisms in Soybean: A Comparative Evaluation of Soybean Response to Drought and Flooding Stress. Plant Physiol. Biochem. 2015, 86, 109–120. [Google Scholar] [CrossRef]
- Khodabin, G.; Tahmasebi-Sarvestani, Z.; Rad, A.H.S.; Modarres-Sanavy, S.A.M. Effect of Drought Stress on Certain Morphological and Physiological Characteristics of a Resistant and a Sensitive Canola Cultivar. Chem. Biodivers. 2020, 17, 1900399. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, M.H.P.J.C.; Harris, P.J. Photosynthesis under Stressful Environments: An Overview. Photosynthetica 2013, 51, 163–190. [Google Scholar] [CrossRef]
- Lauriano, J.A.; Ramalho, J.C.; Lidon, F.C.; Do Céu matos, M. Mechanisms of Energy Dissipation in Peanut under Water Stress. Photosynthetica 2006, 44, 404–410. [Google Scholar] [CrossRef]
- Krzesiński, W.; Spiżewski, T.; Kałużewicz, A.; Frąszczak, B.; Zaworska, A.; Lisiecka, J. Cauliflower’s Response to Drought Stress. Nauka Przyr. Technol. 2016, 10, 44. [Google Scholar] [CrossRef]
- Xu, C.; Leskovar, D.I. Growth, Physiology and Yield Responses of Cabbage to Deficit Irrigation. Hortic. Sci. 2014, 41, 138–146. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Izadpanah, F.; Abbasi, N.; Soltani, F.; Baldermann, S. Impact of Water Management on Growth and Pigment Composition of Cauliflower and Broccoli. Plants 2025, 14, 725. https://doi.org/10.3390/plants14050725
Izadpanah F, Abbasi N, Soltani F, Baldermann S. Impact of Water Management on Growth and Pigment Composition of Cauliflower and Broccoli. Plants. 2025; 14(5):725. https://doi.org/10.3390/plants14050725
Chicago/Turabian StyleIzadpanah, Fatemeh, Navid Abbasi, Forouzande Soltani, and Susanne Baldermann. 2025. "Impact of Water Management on Growth and Pigment Composition of Cauliflower and Broccoli" Plants 14, no. 5: 725. https://doi.org/10.3390/plants14050725
APA StyleIzadpanah, F., Abbasi, N., Soltani, F., & Baldermann, S. (2025). Impact of Water Management on Growth and Pigment Composition of Cauliflower and Broccoli. Plants, 14(5), 725. https://doi.org/10.3390/plants14050725