Higher Nitrogen Uptakes Contribute to Growth Advantage of Invasive Solanum rostratum over Two Co-Occurring Natives Under Different Soil Nitrogen Forms and Concentrations
Abstract
1. Introduction
2. Results
2.1. Aboveground Biomass
2.2. Nitrogen Uptakes
2.3. Nitrogen Form Preference
2.4. Percentage Similarity
2.5. Correlation Between Biomass and N Uptakes and That Between N Preference and Uptake Ratios of Nitrate-N to Ammonium-N
3. Discussion
4. Materials and Methods
4.1. Study Sites and Species
4.2. Plant Cultures and N Treatments
4.3. 15N Labeling, Sampling, and Measurements
4.4. Calculations
4.5. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Paini, D.R.; Sheppard, A.W.; Cook, D.C.; de Barro, P.J.; Worner, S.P.; Thomas, M.B. Global threat to agriculture from invasive species. Proc. Natl. Acad. Sci. USA 2016, 113, 7575–7579. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.-J.; Gao, Y.-M.; Feng, W.W.; Liu, M.-C.; Qu, B.; Zhang, C.; Feng, Y.-L. Stronger ability to absorb nitrate and associated transporters in the invasive plant Xanthium strumarium compared with its native congener. Environ. Exp. Bot. 2022, 198, 104851. [Google Scholar] [CrossRef]
- Sun, J.-K.; Liu, M.-C.; Tang, K.-Q.; Tang, E.-X.; Cong, J.-M.; Lu, X.-R.; Liu, Z.-X.; Feng, Y.-L. Advantages of growth and competitive ability of the invasive plant Solanum rostratum over two co-occurring natives and the effects of nitrogen levels and forms. Front. Plant Sci. 2023, 14, 1169317. [Google Scholar] [CrossRef]
- Crowl, T.A.; Crist, T.O.; Parmenter, R.R.; Belovsky, G.; Lugo, A.E. The spread of invasive species and infectious disease as drivers of ecosystem change. Front. Ecol. Environ. 2008, 6, 238–246. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, Y.R.; Feng, Y.L.; Liu, Z.; Qu, B. Changes in vegetation and soil properties following 6 years of enclosure in riparian corridors. J. Plant Ecol. 2020, 13, 131–138. [Google Scholar] [CrossRef]
- Wu, Y.M.; Leng, Z.R.; Li, J.; Jia, H.; Yan, C.L.; Hong, H.L.; Wang, Q.; Lu, Y.Y.; Du, D.L. Increased fluctuation of sulfur alleviates cadmium toxicity and exacerbates the expansion of Spartina alterniflora in coastal wetlands. Environ. Pollut. 2022, 292, 118399. [Google Scholar] [CrossRef] [PubMed]
- Pyšek, P.; Jarošík, V.; Hulme, P.E.; Pergl, J.; Hejda, M.; Schaffner, U.; Vilà, M. A global assessment of invasive plant impacts on resident species, communities and ecosystems: The interaction of impact measures, invading species’ traits and environment. Global Change Biol. 2012, 18, 1725–1737. [Google Scholar] [CrossRef]
- Iqbal, M.F.; Feng, Y.-L.; Feng, W.-W.; Liu, M.-C.; Lu, X.-R. Ecological impacts of the invasive plant Xanthium strumarium and the impacts of three aboveground herbivores on the invader. Ecol. Indic. 2021, 131, 108140. [Google Scholar] [CrossRef]
- Iqbal, M.F.; Liu, M.-C.; Iram, A.; Feng, Y.-L. Effects of the invasive plant Xanthium strumarium on diversity of native weed species: A competitive analysis approach in North and Northeast China. PLoS ONE 2020, 15, e0228476. [Google Scholar] [CrossRef]
- Zhao, Y.-Z.; Liu, M.-C.; Feng, Y.-L.; Wang, D.; Feng, W.-W.; Clay, K.; Durden, L.A.; Lu, X.R.; Wang, S.; Wei, X.-L.; et al. Release from below- and aboveground natural enemies contributes to invasion success of a temperate invader. Plant Soil 2020, 452, 19–28. [Google Scholar] [CrossRef]
- Le, H.C.; Zhao, C.M.; Xiong, G.M.; Shen, G.Z.; Xu, W.T.; Deng, Y.; Xie, Z.Q. Disentangling the role of environmental filtering and biotic resistance on alien invasions in a reservoir area. Ecol. Appl. 2024, 34, e2835. [Google Scholar] [CrossRef] [PubMed]
- Lau, J.A.; Schultheis, E.H. When two invasion hypotheses are better than one. New Phytol. 2015, 205, 958–960. [Google Scholar] [CrossRef] [PubMed]
- Ehrenfeld, J.G. Effects of exotic plant invasions on soil nutrient cycling processes. Ecosystems 2003, 6, 503–523. [Google Scholar] [CrossRef]
- Sardans, J.; Bartrons, M.; Margalef, O.; Gargallo-Garriga, A.; Janssens, I.A.; Ciais, P.; Peñuelas, J. Plant invasion is associated with higher plant-soil nutrient concentrations in nutrient-poor environments. Global Change Biol. 2017, 23, 1282–1291. [Google Scholar] [CrossRef]
- Li, Q.W.; Zhang, X.Y.; Liang, J.F.; Gao, J.Q.; Xu, X.L.; Yu, F.H. High nitrogen uptake and utilization contribute to the dominance of invasive Spartina alterniflora over native Phragmites australis. Biol. Fert. Soils 2021, 57, 1007–1013. [Google Scholar] [CrossRef]
- Tegeder, M.; Masclaux-Daubresse, C. Source and sink mechanisms of nitrogen transport and use. New Phytol. 2018, 217, 35–53. [Google Scholar] [CrossRef]
- Huang, K.; Kong, D.-L.; Lu, X.-R.; Feng, W.-W.; Liu, M.-C.; Feng, Y.-L. Lesser leaf herbivore damage and structural defenses and greater nutrient concentrations for invasive alien plants: Evidence from 47 pairs of invasive and non-invasive plants. Sci. Total Environ. 2020, 723, 137829. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.-C.; Dong, T.-F.; Feng, W.-W.; Qu, B.; Kong, D.-L.; van Kleunen, M.; Feng, Y.-L. Leaf trait differences between 97 pairs of invasive and native plants across China: Effects of identities of both the invasive and native species. NeoBiota 2022, 71, 1–22. [Google Scholar] [CrossRef]
- Guan, M.; Pan, X.-C.; Sun, J.-K.; Chen, J.-X.; Kong, D.-L.; Feng, Y.L. Nitrogen acquisition strategy and its effects on invasiveness of a subtropical invasive plant. Front. Plant Sci. 2023, 14, 1243849. [Google Scholar] [CrossRef]
- Gao, L.; Cui, X.Y.; Hill, P.W.; Guo, Y.F. Uptake of various nitrogen forms by co-existing plant species in temperate and cold-temperate forests in northeast China. Appl. Soil Ecol. 2020, 147, 103398. [Google Scholar] [CrossRef]
- Sun, S.-M.; Chen, J.-X.; Feng, W.-W.; Zhang, C.; Huang, K.; Guan, M.; Sun, J.-K.; Liu, M.-C.; Feng, Y.-L. Plant strategies for nitrogen acquisition and their effects on exotic plant invasions. Biodivers. Sci. 2021, 29, 72–80. [Google Scholar]
- Zhang, J.B.; Cai, Z.C.; Zhu, T.B.; Yang, W.Y.; Müller, C. Mechanisms for the retention of inorganic N in acidic forest soils of southern China. Sci. Rep 2013, 3, 2342. [Google Scholar] [CrossRef] [PubMed]
- Houlton, B.Z.; Sigman, D.M.; Schuur, E.A.; Hedin, L.O. A climate-driven switch in plant nitrogen acquisition within tropical forest communities. Proc. Natl. Acad. Sci. USA 2007, 104, 8902–8906. [Google Scholar] [CrossRef]
- Russo, S.E.; Kochsiek, A.; Olney, J.; Thompson, L.; Miller, A.E.; Tan, S. Nitrogen uptake strategies of edaphically specialized Bornean tree species. Plant Ecol. 2013, 214, 1405–1416. [Google Scholar] [CrossRef]
- Tang, D.; Liu, M.Y.; Zhang, Q.; Ma, L.; Shi, Y.; Ruan, J. Preferential assimilation of NH4+ over NO3− in tea plant associated with genes involved in nitrogen transportation, utilization and catechins biosynthesis. Plant Sci. 2020, 291, 110369. [Google Scholar] [CrossRef]
- Huangfu, C.H.; Li, H.Y.; Chen, X.W.; Liu, H.M.; Wang, H.; Yang, D.L. Response of an invasive plant, Flaveria bidentis, to nitrogen addition: A test of form-preference uptake. Biol. Invasions 2016, 18, 3365–3380. [Google Scholar] [CrossRef]
- Zhang, Z.L.; Li, N.; Xiao, J.; Zhao, C.Z.; Zou, T.T.; Li, D.D.; Liu, Q.; Yin, H.J. Changes in plant nitrogen acquisition strategies during the restoration of spruce plantations on the eastern Tibetan Plateau, China. Soil Biol. Biochem. 2018, 119, 50–58. [Google Scholar] [CrossRef]
- Shen, X.Y.; Peng, S.L.; Chen, B.M.; Pang, J.X.; Chen, L.Y.; Xu, H.M.; Hou, Y.P. Do higher resource capture ability and utilization efficiency facilitate the successful invasion of native plants? Biol. Invasions 2011, 13, 869–881. [Google Scholar] [CrossRef]
- Parepa, M.; Kahmen, A.; Werner, R.A.; Fischer, M.; Bossdorf, O. Invasive knotweed has greater nitrogen-use efficiency than native plants: Evidence from a 15N pulse-chasing experiment. Oecologia 2019, 191, 389–396. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.-L. Invasive Plants in Northeast China; Science Publication House: Beijing, China, 2020. [Google Scholar]
- Liao, Z.Y.; Zhang, R.; Barclay, G.F.; Feng, Y.L. Differences in competitive ability between plants from nonnative and native populations of a tropical invader relates to adaptive responses in abiotic and biotic environments. PLoS ONE 2013, 8, e71767. [Google Scholar] [CrossRef] [PubMed]
- Qin, R.M.; Zheng, Y.L.; Valiente-Banuet, A.; Callaway, R.M.; Barclay, G.F.; Pereyra, C.S.; Feng, Y.L. The evolution of increased competitive ability, innate competitive advantages, and novel biochemical weapons act in concert for a tropical invader. New Phytol. 2013, 197, 979–988. [Google Scholar] [CrossRef]
- Musso, C.; Fontenele, H.G.; Pinto, G.; Oliveira, R.; Correia, C.; Moutinho-Pereira, J.M.; Soares, A.M.; Loureiro, S. Effects of water and nutrient availability on morphological, physiological, and biochemical traits of one invasive and one native grass of a Neotropical savanna. Environ. Exp. Bot. 2021, 182, 104305. [Google Scholar] [CrossRef]
- Liang, J.F.; Yuan, W.Y.; Gao, J.Q.; Roiloa, S.R.; Song, M.H.; Zhang, X.Y.; Yu, F.H. Soil resource heterogeneity competitively favors an invasive clonal plant over a native one. Oecologia 2020, 193, 155–165. [Google Scholar] [CrossRef] [PubMed]
- Elias, J.D.; Agrawal, A.A. A private channel of nitrogen alleviates interspecific competition for an annual legume. Ecology 2021, 102, e03449. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.L. Biomass allocation, morphology and photosynthesis of invasive and noninvasive exotic species grown at four irradiance levels. Acta Oecol. 2007, 31, 40–47. [Google Scholar] [CrossRef]
- Zheng, Y.L.; Feng, Y.L.; Liu, W.X.; Liao, Z.Y. Growth, biomass allocation, morphology and photosynthesis of invasive Eupatorium adenophorum and its native congeners grown at four irradiances. Plant Ecol. 2009, 203, 263–271. [Google Scholar] [CrossRef]
- Wang, S.; Chen, J.X.; Liu, M.C.; Wang, W.B.; Feng, Y.L. Phenotypic plasticity and exotic plant invasions: Effects of soil nutrients, species nutrient requirements, and types of traits. Physiol. Plant 2022, 174, e13637. [Google Scholar] [CrossRef]
- Li, J.; He, J.Z.; Liu, M.; Yan, Z.Q.; Xu, X.L.; Kuzyakov, Y. Invasive plant competitivity is mediated by nitrogen use strategies and rhizosphere microbiome. Soil Biol. Biochem. 2024, 192, 109361. [Google Scholar] [CrossRef]
- Liu, M.C.; Kong, D.L.; Lu, X.R.; Huang, K.; Wang, S.; Wang, W.B.; Feng, Y.L. Higher photosynthesis, nutrient-and energy-use efficiencies contribute to invasiveness of exotic plants in a nutrient poor habitat in northeast China. Physiol. Plant 2017, 160, 373–382. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Zhang, Y.; Xu, X.; Li, S.S.; Wu, J.H.; Li, B.; Nie, M. Root plasticity benefits a global invasive species in eutrophic coastal wetlands. Funct. Ecol. 2024, 38, 165–178. [Google Scholar] [CrossRef]
- Sun, B.; Zhang, T.L.; Zhao, Q.G. Comprehensive evaluation of soil fertility in the hilly and mountainous region of Southeastern China. Acta Pedol. Sin. 1995, 32, 362–369. [Google Scholar]
- Xu, F.X.; Xiong, H.; Zhang, L.; Zhou, X.B.; Zhu, Y.C.; Liu, M. The effects of postponing nitrogen application on grain yield and the panicle-grain structure in mid-season hybrid rice in southwest China. J. Plant Nutrit. Fertiliz. 2014, 20, 29–36. [Google Scholar]
- Ye, C.; Ma, H.Y.; Huang, X.; Xu, C.M.; Chen, S.; Chu, G.; Wang, D.Y. Effects of increasing panicle-stage N on yield and N use efficiency of indica rice and its relationship with soil fertility. Crop J. 2022, 10, 1784–1797. [Google Scholar] [CrossRef]
- Feng, Y.L.; Lei, Y.B.; Wang, R.F.; Callaway, R.M.; Valiente-Banuet, A.; Inderjit; Li, Y.P.; Zheng, Y.L. Evolutionary tradeoffs for nitrogen allocation to photosynthesis versus cell walls in an invasive plant. Proc. Natl. Acad. Sci. USA 2009, 106, 1853–1856. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.L.; Li, Y.P.; Wang, R.F.; Callaway, R.M.; Valiente-Banuet, A.; Inderjit. A quicker return energy-use strategy by populations of a subtropical invader in the non-native range: A potential mechanism for the evolution of increased competitive ability. J. Ecol. 2011, 99, 1116–1123. [Google Scholar] [CrossRef]
- Kahmen, A.; Renker, C.; Unsicker, S.B.; Buchmann, N. Niche complementarity for nitrogen: An explanation for the biodiversity and ecosystem functioning relationship? Ecology 2006, 87, 1244–1255. [Google Scholar] [CrossRef]
- Lu, X.B.; Chen, X.Y. Analysis of obstacles to sustainable development of ecotourism in nature reserves: A field investigation of three national nature reserves in Liaoning Province. J. Resour. Ecol. 2020, 11, 50–58. [Google Scholar]
- Ping, X.Y.; Jia, B.R.; Yuan, W.P.; Wang, F.Y.; Wang, Y.H.; Zhou, L.; Xu, Z.Z.; Zhou, G.S. Biomass allocation of Leymus chinensis population: A dynamic simulation study. Chin. J. Appl. Ecol. 2007, 18, 2699–2704. [Google Scholar]
- Yu, G.R.; Jia, Y.L.; He, N.P.; Zhu, J.X.; Chen, Z.; Wang, Q.F.; Piao, S.L.; Liu, X.Y.; He, H.L.; Guo, X.B.; et al. Stabilization of atmospheric nitrogen deposition in China over the past decade. Nat. Geosci. 2019, 12, 424–429. [Google Scholar] [CrossRef]
- Zhou, X.L.; Wang, A.; Hobbie, E.A.; Zhu, F.F.; Qu, Y.Y.; Dai, L.M.; Li, D.J.; Liu, X.Y.; Zhu, W.X.; Koba, K.; et al. Mature conifers assimilate nitrate as efficiently as ammonium from soils in four forest plantations. New Phytol. 2021, 229, 3184–3194. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.J.; Zhang, Z.L.; Liu, Q.; Xiao, J.; Yin, H.J. Seasonal variations in plant nitrogen acquisition in an ectomycorrhizal alpine forest on the eastern Tibetan Plateau, China. Plant Soil 2021, 459, 79–91. [Google Scholar] [CrossRef]
- Hu, X.F.; Li, W.T.; Liu, Q.H.; Yin, C.Y. Interactions between species change the uptake of ammonium and nitrate in Abies faxoniana and Picea asperata. Tree Physiol. 2022, 42, 1396–1410. [Google Scholar] [CrossRef]
- Wang, R.X.; Tian, Y.Q.; Ouyang, S.N.; Xu, X.L.; Xu, F.Z.; Zhang, Y. Nitrogen acquisition strategies used by Leymus chinensis and Stipa grandis in temperate steppes. Biol. Fert. Soils 2016, 52, 951–961. [Google Scholar] [CrossRef]
- Hong, J.T.; Qin, X.J.; Ma, X.X.; Xu, X.L.; Wang, X.D. Seasonal shifting in the absorption pattern of alpine species for NO3− and NH4+ on the Tibetan Plateau. Biol. Fert. Soils 2019, 55, 801–811. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, J.-K.; Liu, M.-C.; Chen, J.-X.; Qu, B.; Gao, Y.; Geng, L.; Zheng, L.; Feng, Y.-L. Higher Nitrogen Uptakes Contribute to Growth Advantage of Invasive Solanum rostratum over Two Co-Occurring Natives Under Different Soil Nitrogen Forms and Concentrations. Plants 2025, 14, 640. https://doi.org/10.3390/plants14050640
Sun J-K, Liu M-C, Chen J-X, Qu B, Gao Y, Geng L, Zheng L, Feng Y-L. Higher Nitrogen Uptakes Contribute to Growth Advantage of Invasive Solanum rostratum over Two Co-Occurring Natives Under Different Soil Nitrogen Forms and Concentrations. Plants. 2025; 14(5):640. https://doi.org/10.3390/plants14050640
Chicago/Turabian StyleSun, Jian-Kun, Ming-Chao Liu, Ji-Xin Chen, Bo Qu, Ying Gao, Lin Geng, Li Zheng, and Yu-Long Feng. 2025. "Higher Nitrogen Uptakes Contribute to Growth Advantage of Invasive Solanum rostratum over Two Co-Occurring Natives Under Different Soil Nitrogen Forms and Concentrations" Plants 14, no. 5: 640. https://doi.org/10.3390/plants14050640
APA StyleSun, J.-K., Liu, M.-C., Chen, J.-X., Qu, B., Gao, Y., Geng, L., Zheng, L., & Feng, Y.-L. (2025). Higher Nitrogen Uptakes Contribute to Growth Advantage of Invasive Solanum rostratum over Two Co-Occurring Natives Under Different Soil Nitrogen Forms and Concentrations. Plants, 14(5), 640. https://doi.org/10.3390/plants14050640