Control of Bacterial Canker in Kiwifruit Using Botanical Products from Adesmia balsamica Bertero ex Colla in Kiwifruit cv. Hayward Orchards
Abstract
1. Introduction
2. Results and Discussion
2.1. Extraction Yields and Phytochemical Characterization of Bioactive Compounds in Exudates and Extracts from Wild Plants and In Vitro of Adesmia balsamica
2.2. In Vitro Antibacterial Activity
2.3. Effectiveness of Psa Control Under Field Conditions
2.4. Evaluation of Parameters Based on Kiwifruit Orchard Yield and Quality
2.5. Acute Oral Toxicity of the Active Extract in Rats
3. Materials and Methods
3.1. Plant Material
Description and Growing Conditions of the Orchard
3.2. Preparation of Exudates and Extracts from Wild-Grown and In Vitro-Grown Plants of Adesmia balsamica
3.3. Isolation and Separation of Major Compounds in Botanical Products from Adesmia balsamica
3.4. Measurement of Total Polyphenols and Total Flavonoids in Botanical Products from Adesmia balsamica
3.5. In Vitro Bioactivity Test
3.5.1. Bacterial Strain
3.5.2. In Vitro Antibacterial Activity
3.6. Evaluation of the Effectiveness of Botanical Products Against Disease
3.7. Evaluation of Kiwi Quality and Yield
3.8. Statistical Analysis
3.9. Acute Oral Toxicity of the Active Extract
4. Conclusions
5. Patents
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sanz, V.; López-Hortas, L.; Torres, M.D.; Domínguez, H. Trends in kiwifruit and byproducts valorization. Trends Food Sci. Technol. 2021, 107, 401–414. [Google Scholar] [CrossRef]
- FAOSTAT. Cultivos y Productos Ganaderos. 2024. Available online: https://www.fao.org/faostat/en/#data/QCL/visualize (accessed on 1 May 2020).
- Vanneste, J.L. The Scientific, Economic, and Social Impacts of the New Zealand Outbreak of Bacterial Canker of Kiwifruit (Pseudomonas syringae pv. actinidiae). Annu. Rev. Phytopathol. 2017, 55, 377–399. [Google Scholar] [CrossRef]
- Qin, Z.; Zhang, J.E.; Jiang, J.E.; Wang, R.L.; Wu, R.S. Predicting the potential distribution of Pseudomonas syringae pv. actinidiae in China using ensemble models. Plant Pathol. 2020, 69, 120–131. [Google Scholar] [CrossRef]
- Pereira, C.; Costa, P.; Pinheiro, L.; Balcão, V.M.; Almeida, A. Kiwifruit bacterial canker: An integrative view focused on biocontrol strategies. Planta 2021, 253, 49. [Google Scholar] [CrossRef] [PubMed]
- Comité del Kiwi-Chile. Industria: Cifras Correspondientes a la Temporada. 2024. Available online: https://www.comitedelkiwi.cl/kiwisdechile/ (accessed on 14 May 2020).
- Donati, I.; Cellini, A.; Sangiorgio, D.; Vanneste, J.L.; Scortichini, M.; Balestra, G.M.; Spinelli, F. Pseudomonas syringae pv. actinidiae: Ecology, infection dynamics and disease epidemiology. Microb. Ecol. 2020, 80, 81–102. [Google Scholar] [CrossRef] [PubMed]
- Flay, C.; Symonds, V.V.; Storey, R.; Davy, M.; Datson, P. Mapping QTL associated with resistance to Pseudomonas syringae pv. actinidiae in kiwifruit (Actinidia chinensis var. chinensis). Front. Plant Sci. 2024, 14, 1255506. [Google Scholar] [CrossRef] [PubMed]
- Servicio Agrícola y Ganadero (SAG), Chile. Informativo General Bacteriosis del Kiwi. Comité del Kiwi 2011, 12. Available online: https://www.sag.gob.cl/sites/default/files/informativo_bacteriosis_kiwi.pdf (accessed on 1 October 2020).
- EFSA (European Food Safety Authority); Vogelaar, M.; Schenk, M.; Delbianco, A.; Graziosi, I.; Vos, S. Pest survey card on Pseudomonas syringae pv. actinidiae. EFSA Support. Publ. 2020, 17, 1986E. [Google Scholar] [CrossRef]
- Fiorillo, A.; Frezza, D.; Di Lallo, G.; Visconti, S. A Phage Therapy Model for the Prevention of Pseudomonas syringae pv. Actinidiae Infection of Kiwifruit Plants. Plant Dis. 2023, 107, 267–271. [Google Scholar] [CrossRef]
- da Silva, M.N.; Vasconcelos, M.W.; Pinto, V.; Balestra, G.M.; Mazzaglia, A.; Gomez-Cadenas, A.; Carvalho, S. Role of methyl jasmonate and salicylic acid in kiwifruit plants further subjected to Psa infection: Biochemical and genetic responses. Plant Physiol. Biochem. 2021, 162, 258–266. [Google Scholar] [CrossRef]
- Lee, Y.S.; Kim, G.H.; Song, Y.R.; Oh, C.S.; Jung, J.S. Streptomycin Resistant Isolates of Pseudomonas syringae pv. actinidiae in Korea. Res. Plant Dis. 2020, 26, 44–47. [Google Scholar] [CrossRef]
- Narouei-Khandan, H.A.; Worner, S.P.; Viljanen, S.L.; van Bruggen, A.H.; Balestra, G.M.; Jones, E. The potential global climate suitability of kiwifruit bacterial canker disease (Pseudomonas syringae pv. actinidiae (Psa)) using three modelling approaches: CLIMEX, Maxent and Multimodel Framework. Climate 2022, 10, 14. [Google Scholar] [CrossRef]
- Khursheed, A.; Rather, M.; Jain, V.; Rouf, A.; Rasool, S.; Nazir, R.; Malik, N.; Majid, S. Plant based natural products as potential ecofriendly and safer biopesticides: A comprehensive overview of their advantages over conventional pesticides, limitations and regulatory aspects. Microb. Pathog. 2022, 173, 105854. [Google Scholar] [CrossRef] [PubMed]
- Elbouzidi, A.; Haddou, M.; Baraich, A.; Taibi, M.; El Hachlafi, N.; Pareek, A.; Mesnard, F.; Addi, M. Biochemical Insights into Specialized Plant Metabolites: Advancing Cosmeceutical Applications for Skin Benefits. J. Agric. Food Res. 2025, 19, 101651. [Google Scholar] [CrossRef]
- Vargas, W.; Fortuna-Perez, A.P.; Lewis, G.P.; Piva, T.C.; Vatanparast, M.; Machado, S.R. Ultrastructure and secretion of glandular trichomes in species of subtribe Cajaninae Benth. (Leguminosae, Phaseoleae). Protoplasma 2019, 256, 431–445. [Google Scholar] [CrossRef]
- Herlina, T.; Rizaldi Akili, A.W.; Nishinarizki, V.; Hardianto, A.; Latip, J.B. Review on Antibacterial Flavonoids from Genus Erythrina: Structure-Activity Relationship and Mode of Action. Heliyon 2025, 11, e41395. [Google Scholar] [CrossRef] [PubMed]
- Muñoz, O.; Delporte, C. Chemical constituents of Adesmia boronioides and evaluation of their antioxidant activity. Int. J. Pharm. Sci. Nanotech. 2015, 8, 2919–2923. [Google Scholar] [CrossRef]
- Ulibarri, E.A.; Burkart, A. Sinopsis de las especies de Adesmia (Leguminosae-Papilionoideae) de la Argentina. Darwiniana 2000, 38, 59–126. [Google Scholar]
- Macaya-Berti, J.; Teillier, S. The species of Adesmia (Fabaceae) series Balsamicae, Denticulatae and Loudoniae. Chloris Chil. 2022, 25, 19–69. Available online: https://www.chlorischile.cl/25-2-web/Macaya%20&%20teillier-Adesmia.pdf (accessed on 11 August 2024).
- González, S.B.; Bandoni, A.L.; Van Baren, C.; Di Leo, P.; Cerda, C.M.; Joseph-Nathan, P. Structure, conformation and absolute configuration of novel bisnorsesquiterpenes from the Adesmia boronioides essential oil. Tetrahedron 2002, 58, 3065–3071. [Google Scholar] [CrossRef]
- González, S.B.; Contardi, L.T.; Pasquini, N.M. Reproduction of Adesmia boronoides, a medicinal and aromatic plant currently harvested from natural populations in Patagonia Argentina. Nat. Patagónica 2016, 9, 50–60. [Google Scholar]
- Montenegro, I.; Valenzuela, M.; Zamorano, N.; Santander, R.; Baez, C.; Madrid, A. Activity of Adesmia boronioides resinous exudate against phytopathogenic bacteria. Nat. Prod. Res. 2021, 35, 2072–2075. [Google Scholar] [CrossRef]
- Montenegro, I.; Muñoz, O.; Villena, J.; Werner, E.; Mellado, M.; Ramírez, I.; Caro, N.; Flores, S.; Madrid, A. Structure-Activity Relationship of Dialkoxychalcones to Combat Fish Pathogen Saprolegnia australis. Molecules 2018, 23, 1377. [Google Scholar] [CrossRef]
- Montenegro, I.; Madrid, A. Synthesis of dihydroisorcordoin derivatives and their in vitro anti-oomycete activities. Nat. Prod. Res. 2019, 33, 1214–1217. [Google Scholar] [CrossRef]
- Silva, V.; Muñoz, E.; Ferreira, C.; Russo, A.; Villena, J.; Montenegro, I.; Birchmeier, D.; Madrid, A. In Vitro and In Silico Cytotoxic Activity of Isocordoin from Adesmia balsamica Against Cancer Cells. Int. J. Mol. Sci. 2025, 26, 2238. [Google Scholar] [CrossRef]
- Díaz, K.; Giménez, D.; González, C.; Chávez, M.I.; Ferrante, P.; Scortichini, M.; Braca, A.; De Leo, M.; Madrid, A.; Chamy, R. Control of Bacterial Canker caused by Pseudomonas syringae pv. actinidiae (Psa) in kiwifruit plants by resinous exudates and extracts of Adesmia balsamica. Pest Manag. Sci. 2025, 81, 5484–5498. [Google Scholar] [CrossRef]
- Zhang, P.; Duan, C.B.; Jin, B.; Ali, A.S.; Han, X.; Zhang, H.; Zhang, M.Z.; Zhang, W.H.; Gu, Y.C. Recent advances in the natural products-based lead discovery for new agrochemicals. Adv. Agrochem. 2023, 2, 324–339. [Google Scholar] [CrossRef]
- Radušienė, J.; Karpavičienė, B.; Vilkickytė, G.; Marksa, M.; Raudonė, L. Comparative Analysis of Root Phenolic Profiles and Antioxidant Activity of Five Native and Invasive Solidago L. Species. Plants 2024, 13, 132. [Google Scholar] [CrossRef]
- Ivanauskas, L.; Uminska, K.; Gudžinskas, Z.; Heinrich, M.; Georgiyants, V.; Kozurak, A.; Mykhailenko, O. Phenological Variations in the Content of Polyphenols and Triterpenoids in Epilobium angustifolium Herb Originating from Ukraine. Plants 2024, 13, 120. [Google Scholar] [CrossRef] [PubMed]
- Prasad, P.; Mansoori, A.; Prajapati, N.; Tripathi, J.; Sharma, K.; Kumar, A.; Das, S.N. Phytochemical screening and antimicrobial activities of Guizotia abyssinica L. leaf and flower extracts. J. Nat. Pestic. Res. 2024, 9, 100083. [Google Scholar] [CrossRef]
- Fontana, R.; Sánchez-Hernández, E.; Martín-Ramos, P.; Martín-Gil, J.; Marconi, P. Smilax aspera L. Leaf and Fruit Extracts as Antibacterial Agents for Crop Protection. Agronomy 2024, 14, 383. [Google Scholar] [CrossRef]
- Muawiya, M.A.; Schiavi, D.; Rongai, D.; Giovagnoli, S.; Camaioni, E.; Balestra, G.M. Pomegranate peel extract as a sustainable plant protection agent against Xanthomonas campestris pv. campestris: Mechanisms and applications. J. Plant Pathol. 2025. [Google Scholar] [CrossRef]
- Avila, H.P.; Smânia, E.d.F.A.; Monache, F.D.; Smânia, A., Jr. Structure-activity relationship of antibacterial chalcones. Bioorganic Med. Chem. 2008, 16, 9790–9794. [Google Scholar] [CrossRef]
- Dan, W.; Dai, J. Recent developments of chalcones as potential antibacterial agents in medicinal chemistry. Eur. J. Med. Chem. 2020, 187, 111980. [Google Scholar] [CrossRef]
- Holetz, F.; Pessini, G.; Sanches, N.; Cortez, D.; Nakamura, C.; Filho, B. Screening of some plants used in the Brazilian folk medicine for the treatment of infectious diseases. Mem. Inst. Oswaldo Cruz 2002, 97, 1027–1031. [Google Scholar] [CrossRef]
- Vaou, N.; Stavropoulou, E.; Voidarou, C.; Tsakris, Z.; Rozos, G.; Tsigalou, C.; Bezirtzoglou, E. Interactions between Medical Plant-Derived Bioactive Compounds: Focus on Antimicrobial Combination Effects. Antibiotics 2022, 11, 1014. [Google Scholar] [CrossRef]
- Aguilar-Veloz, L.M.; Calderón-Santoyo, M.; Vazquez Gonzalez, Y.; Ragazzo-Sánchez, J.A. Application of essential oils and polyphenols as natural antimicrobial agents in postharvest treatments: Advances and challenges. Food Sci. Nutr. 2020, 8, 2555–2568. [Google Scholar] [CrossRef]
- Lobiuc, A.; Pavăl, N.-E.; Mangalagiu, I.I.; Gheorghiță, R.; Teliban, G.-C.; Amăriucăi-Mantu, D.; Stoleru, V. Future Antimicrobials: Natural and Functionalized Phenolics. Molecules 2023, 28, 1114. [Google Scholar] [CrossRef]
- Lamb, D.T.; Naidu, R.; Ming, H.; Megharaj, M. Copper phytotoxicity in native and agronomical plant species. Ecotoxicol. Environ. Saf. 2012, 85, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Colombi, E.; Straub, C.; Künzel, S.; Templeton, M.D.; McCann, H.C.; Rainey, P.B. Evolution of copper resistance in the kiwifruit pathogen Pseudomonas syringae pv. actinidiae through acquisition of integrative conjugative elements and plasmids. Environ. Microbiol. 2017, 19, 819–832. [Google Scholar] [CrossRef] [PubMed]
- Álvarez-Martínez, F.J.; Barrajón-Catalán, E.; Herranz-López, M.; Micol, V. Antibacterial plant compounds, extracts and essential oils: An updated review on their effects and putative mechanisms of action. Phytomedicine 2021, 90, 153626. [Google Scholar] [CrossRef] [PubMed]
- Ayilara, M.S.; Adeleke, B.S.; Akinola, S.A.; Fayose, C.A.; Adeyemi, U.T.; Gbadegesin, L.A.; Babalola, O.O. Biopesticides as a promising alternative to synthetic pesticides: A case for microbial pesticides, phytopesticides, and nanobiopesticides. Front. Microbiol. 2023, 14, 1040901. [Google Scholar] [CrossRef] [PubMed]
- Cellini, A.; Fiorentini, L.; Buriani, G.; Yu, J.; Donati, I.; Cornish, D.A.; Spinelli, F. Elicitors of the salicylic acid pathway reduce incidence of bacterial canker of kiwifruit caused by Pseudomonas syringae pv. actinidiae. Ann. Appl. Biol. 2014, 165, 441–453. [Google Scholar] [CrossRef]
- Wurms, K.V.; Gould, E.; Chee, A.A.; Taylor, J.; Curran, B.; Reglinski, T. Elicitor induction of defense genes and reduction of bacterial canker in kiwifruit. N. Z. Plant Prot. 2017, 70, 272–284. [Google Scholar] [CrossRef][Green Version]
- Wicaksono, W.A.; Jones, E.E.; Casonato, S.; Monk, J.; Ridgway, H.J. Biological control of Pseudomonas syringae pv. actinidiae (Psa), the causal agent of bacterial canker of kiwifruit, using endophytic bacteria recovered from a medicinal plant. Biol. Control 2018, 116, 103–112. [Google Scholar] [CrossRef]
- Scortichini, M. Field efficacy of chitosan to control Pseudomonas syringae pv. actinidiae, the causal agent of kiwifruit bacterial canker. Eur. J. Plant Pathol. 2014, 140, 887–892. [Google Scholar] [CrossRef]
- Song, Y.R.; Choi, M.S.; Choi, G.W.; Park, I.K.; Oh, C.S. Antibacterial activity of cinnamaldehyde and estragole extracted from plant essential oils against Pseudomonas syringae pv. actinidiae causing bacterial canker disease in kiwifruit. Plant Pathol. J. 2016, 32, 363–370. [Google Scholar] [CrossRef]
- Nicoletta, P.; Laura, O.; Vanessa, M.; Valentina, L.; Angela, B.; Massimo, P.; Stefania, L. Essential Oils with Inhibitory Capacities on Pseudomonas syringae pv. actinidiae, the Causal Agent of Kiwifruit Bacterial Canker. Asian J. Plant Pathol. 2018, 12, 16–26. [Google Scholar] [CrossRef]
- Lovato, A.; Pignatti, A.; Vitulo, N.; Vandelle, E.; Polverari, A. Inhibition of Virulence-Related Traits in Pseudomonas syringae pv. actinidiae by Gunpowder Green Tea Extracts. Front. Microbiol. 2019, 10, 2362. [Google Scholar] [CrossRef]
- Simonetti, G.; Pucci, N.; Brasili, E.; Valletta, A.; Sammarco, I.; Carnevale, E.; Loreti, S. In vitro antimicrobial activity of plant extracts against Pseudomonas syringae pv. actinidiae causal agent of bacterial canker in kiwifruit. Plant Biosyst. Int. J. Deal. All Asp. Plant Biol. 2019, 154, 100–106. [Google Scholar] [CrossRef]
- Pratyusha, S. Phenolic Compounds in the Plant Development and Defense. In Plant Stress Physiology—Perspectives in Agriculture; Intech: London, UK, 2022; Volume 125. [Google Scholar]
- Ecevit, K.; Barros, A.A.; Silva, J.M.; Reis, R.L. Preventing Microbial Infections with Natural Phenolic Compounds. Future Pharmacol. 2022, 2, 460–498. [Google Scholar]
- Danzi, D.; Thomas, M.; Cremonesi, S. Essential oil-based emulsions reduce bacterial canker on kiwifruit plants acting as antimicrobial and antivirulence agents against Pseudomonas syringae pv. actinidiae. Chem. Biol. Technol. Agric. 2025, 12, 23. [Google Scholar] [CrossRef]
- Kabir, M.S.; Parry, B.E.; Tyson, J.L.; Beresford, R.M. Understanding flower-bud rot development caused by Pseudomonas syringae pv. actinidiae in green-fleshed kiwifruit. N. Z. Plant Prot. 2019, 26, 72–83. [Google Scholar] [CrossRef][Green Version]
- Augustien, N.; Pribadi, D.U.; Djoko, A.P. Disinfecting technology of Camellia sinensis L inoculants through in vitro culture. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2020; Volume 456, p. 012032. [Google Scholar][Green Version]
- Dias, M.I.; Barros, L.; Oliveira, M.B.P.P.; Santos-Buelga, C.; Ferreira, I.C.F.R. Phenolic profile and antioxidant properties of commercial and wild Fragaria vesca L. roots: A comparison between hydromethanolic and aqueous extracts. Ind. Crops Product 2015, 63, 125–132. [Google Scholar] [CrossRef]
- Gai, Q.Y.; Jiao, J.; Wang, X.; Fu, Y.J.; Lu, Y.; Liu, J.; Wang, Z.Y.; Xu, X.J. Simultaneous quantification of eleven bioactive phenolic compounds in pigeon pea natural resources and in vitro cultures by ultra-high performance liquid chromatography coupled with triple quadrupole mass spectrometry (UPLC-QqQ-MS/MS). Food Chem. 2021, 335, 127602. [Google Scholar] [CrossRef] [PubMed]
- Motolinia, E.; Franco, A.; Nieto, A.; Arreguín, R.; Rodríguez, M.; Cruz, F.; Román, A. Phenolic Compounds from Wild Plant and In Vitro Cultures of Ageratina pichichensis and Evaluation of Their Antioxidant Activity. Plants 2023, 12, 1107. [Google Scholar] [CrossRef] [PubMed]
- Guerra-Ramírez, D.; Galicia Lucas, M.; Salgado-Escobar, I.; Cruz-Castillo, J.G. Características físico-químicas y funcionales de la fruta kiwi en una zona tropical de altura en México. Rev. Fitotec. Mex. 2021, 44, 103–106. [Google Scholar] [CrossRef]
- Afonso, A.M.; Guerra, R.; Cruz, S.; Antunes, M.D. Sensory Evaluation and Spectra Evolution of Two Kiwifruit Cultivars during Cold Storage. Horticulturae 2023, 9, 772. [Google Scholar] [CrossRef]
- Shan, T.; Wei, J.; Wang, Y.; Zhao, X.; Zhao, Y.; Ge, Q.; Yuan, Y.; Yue, T. Effects of different pesticides treatments on the nutritional quality of kiwifruit. Food Sci. 2021, 86, 2346–2357. [Google Scholar] [CrossRef]
- Zulfiqar, F.; Casadesús, A.; Brockman, H.; Munné-Bosch, S. An Overview of Plant-Based Natural Biostimulants for Sustainable Horticulture with a Particular Focus on Moringa Leaf Extracts. Plant Sci. 2019, 295, 110194. [Google Scholar]
- Khan, A.S.; Ahmad, B.; Jaskani, M.J.; Ahmad, R.; Malik, A.U. Foliar application of mixture of amino acids and seaweed (Ascophylum nodosum) extract improve growth and physical-chemical properties of grapes. Int. J. Agric. Biol. 2012, 14, 383–388. [Google Scholar]
- Rana, V.S.; Sharma, V.; Sharma, S.; Rana, N.; Kumar, V.; Sharma, U.; Almutairi, K.F.; Avila-Quezada, G.D.; Abd_Allah, E.F.; Gudeta, K. Seaweed Extract as a Biostimulant Agent to Enhance the Fruit Growth, Yield, and Quality of Kiwifruit. Horticulturae 2023, 9, 432. [Google Scholar] [CrossRef]
- Comité del Kiwi. Parámetros Mínimos de Madurez Para Inicio de Cosecha de Kiwi 2024–2025. Programa de Aseguramiento de Madurez (PAM) del Kiwi Chileno. Código: PAM02, Revisión: 19. 2025. Available online: https://www.comitedelkiwi.cl/wp-content/uploads/2025/01/PAM02-2025-.pdf (accessed on 1 October 2024).
- Henry, M.; Rosin, C.; Edwards, S. Governing taste: Data, temporality and everyday kiwifruit dry matter performances. Agric. Hum. Values 2023, 40, 519–531. [Google Scholar] [CrossRef]
- Patiyal, V.; Rana, V.; Rana, N.; Hashem, A.; Abd_Allah, E.; Sharma, S. Appraisal of extended cane length and fruit thinning strategies on the performance of growth yield and quality of kiwifruit. Heliyon 2024, 10, e29546. [Google Scholar] [CrossRef]
- EPA. Minimum Risk Pesticides. 2011. Available online: https://www.epa.gov/minimum-risk-pesticides (accessed on 1 October 2024).
- Shalaby, S.E.M.; El-Din, M.M.; Abo-Donia, S.A.; Mettwally, M.; Attia, Z.A. Toxicological effects of essential oils from Eucalyptus Eucalyptus globules and clove Eugenia caryophyllus on albino rats. Pol. J. Environ. Stud. 2011, 20, 429–434. [Google Scholar]
- WHO. Summary of Evaluations Performed by the Joint FAO/WHO Expert Committee on Food Additives, Eugenol No. 1529, WHO Food Additives Series 17. 2005. Available online: http://www.inchem.org/documents/jecfa/jecmono/v17je10.htm (accessed on 1 October 2024).
- Wu, D.; Wu, J.; Cheng, X.; Qian, J.; Du, R.; Tang, S.; Qiao, Y. Safety assessment of marigold flavonoids from marigold inflorescence residue. J. Ethnopharmacol. 2022, 297, 115520. [Google Scholar] [CrossRef]
- Murashige, T.; Skoog, F. A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Gamboa-Carvajal, L.; Jara-Gutiérrez, C.; Villena, J.; Taborga, L.; Martínez, J.R.; Espinoza, L.; Stashenko, E.E. Evaluation of antioxidant and cytotoxic activity of hydro-ethanolic extracts obtained from Steiractinia aspera Cuatrec. Molecules 2022, 27, 4186. [Google Scholar] [CrossRef] [PubMed]
- Sus, N.; Schlienz, J.; Calvo-Castro, L.A.; Burkard, M.; Venturelli, S.; Busch, C.; Frank, J. Validation of a rapid and sensitive reversed-phase liquid chromatographic method for the quantification of prenylated chalcones and flavanones in plasma and urine. NFS J. 2018, 10, 1–9. [Google Scholar] [CrossRef]
- Servicio Agrícola y Ganadero (SAG). 2024. Available online: https://www.sag.gob.cl/ambitos-de-accion/bacteriosis-del-kiwi-psa (accessed on 14 June 2024).
- Sepúlveda, P.; Soto, S. Avances en el control de Bacteriosis del kiwi causada por Pseudomonas syringae pv. actinidiae (Psa). Rev. Frutícola 2014, 36, 14–20. [Google Scholar]
- Pinto, C.; Tudela, V.; Mesa, K.; Olguín, J.; Riveros-Burgos, C.; Zúñiga, M.; Pérez, S.; Biondi, E. Fruticultura Protegida. In Directrices Tecnológicas Para Uso de Coberturas Fotoselectivas en Kiwi; agosto 2022 Serie ICA3 N°1; Instituto de Ciencias Agroalimentarias, Animales y Ambientales—ICA3: San Fernando, Chile, 2022; 124p, ISBN 978-956-6031-06-2. [Google Scholar]
- Toxicity–Up, A.O. OECD Guideline for Testing of Chemicals; Organisation for Economic Co-operation and Development: Paris, France, 2001; pp. 1–14. [Google Scholar]

| Botanical Products | % Extraction Yield, on a Dry Basis | % Total Polyphenols a | % Total Flavonoids b | MIC (µg/mL) | Bacterial Inhibition (%) |
|---|---|---|---|---|---|
| EEAB | 22 | 25 ± 0.25 | 38 ± 0.30 | 200 | 90 |
| HIV | 78 | 6.1 ± 0.10 | 5.0 ± 0.08 | 100 | 95 |
| HAB | 14 | 6.3 ± 0.08 | 13.9 ± 0.10 | 200 | 40 |
| 70AB | 3 | -- | -- | 800 | 80 |
| C (+) | - | - | - | 640 | 28 |
| Treatment | Incidence * | Severity of the Disease * |
|---|---|---|
| T0 | 0.89 ab | 0.49 bc |
| T1 | 0.88 ab | 0.48 bc |
| T2 | 0.89 ab | 0.56 a |
| T3 | 0.81 c | 0.43 cd |
| T4 | 0.86 b | 0.41 d |
| T5 | 0.90 a | 0.50 d |
| T6 | 0.89 ab | 0.49 bc |
| T7 | 0.87 ab | 0.52 ab |
| T8 | 0.71 d | 0.24 e |
| p-valor | <0.0001 | <0.0001 |
| Treatment | Incidence of Late Blight on Flower Buds (*) |
|---|---|
| T0 | 0.35 a |
| T1 | 0.24 b |
| T2 | 0.40 a |
| T3 | 0.30 a |
| T4 | 0.22 b |
| T5 | 0.23 ab |
| T6 | 0.18 b |
| T7 | 0.23 b |
| T8 | 0.26 b |
| p-valor | <0.0001 |
| Treatment | Number of Fruits (Unit) | Fruit Volume (cm3) | Fruit Fresh Weight (g) | °BRIX | Fruit Slice Dry Weight (3 mm) (g) | Tons/ha |
|---|---|---|---|---|---|---|
| T0 | 192 ± 49.10 ab | 89.9 ± 14.42 b | 99 ± 8.03 bc | 12.2 ± 0.40 a | 1.42 ± 0.22 c | 120,320 ± 32,938 abc |
| T1 | 113 ± 73.72 b | 78.9 ± 12.08 c | 103.1 ± 13.03 abc | 11.6 ± 0.92 bc | 1.47 ± 0.15 c | 74,128 ± 49,496 c |
| T2 | 137 ± 41.01 b | 94.3 ± 1.8 ab | 107.3 ± 1.69 abc | 11.7 ± 0.73 abc | 1.58 ± 0.20 bc | 93,087 ± 28,693 bc |
| T3 | 174 ± 91.01 ab | 92.7 ± 9.03 b | 99.0 ± 14.27 bc | 11.2 ± 0.43 cd | 1.54 ± 0.26 bc | 114,306 ± 73,976 abc |
| T4 | 236 ± 82.46 a | 94.9 ± 13.85 ab | 107.6 ± 13.10 ab | 10.9 ± 0.60 d | 1.63 ± 0.10 bc | 156,656 ± 42,567 a |
| T5 | 132 ± 73.35 b | 96 ± 8.5 ab | 109.5 ± 10.22 ab | 12.1 ± 0.59 ab | 1.89 ± 0.12 a | 94,457 ± 55,919 bc |
| T6 | 195 ± 90.56 ab | 103 ± 26.15 a | 111.1 ± 18.66 a | 12.1 ± 0.78 ab | 1.88 ± 0.15 ab | 132,913 ± 50,476 ab |
| T7 | 147 ± 78.02 b | 86.9 ± 16.96 bc | 98.5 ± 18.64 bc | 12.4 ± 0.91 a | 1.75 ± 0.10 ab | 86,5,97 ± 41,634 abc |
| T8 | 152 ± 34.71 ab | 86.4 ± 2.36 bc | 98.3 ± 2.34 c | 11.3 ± 1.10 cd | 1.60 ± 0.15 bc | 94,777 ± 23,000 bc |
| Dose Level (mg/kg) | Females (Dead/Total) | Time of Death |
|---|---|---|
| 2000 (1) | 0/3 | - |
| 2000 (2) | 0/3 | - |
| Control | 0/3 | - |
| Treatment | Type of Plant | Type of Formulation | Concentration, in g/L |
|---|---|---|---|
| T0 | - | Negative Control (only water) | 0 |
| T1 | Wild | EEAB: Ethanolic Exudate | 0.7 |
| T2 | Wild | EEAB: Ethanolic Exudate | 1.4 |
| T3 | In vitro | HIV: Hydroalcoholic Extract (25:75 = ethanol–water) | 0.7 |
| T4 | In vitro | HIV: Hydroalcoholic Extract (25:75 = ethanol–water) | 1.4 |
| T5 | Wild | HAB: Hydroalcoholic Extract (50:50 = ethanol–water) | 0.7 |
| T6 | Wild | HAB: Hydroalcoholic Extract (50:50 = ethanol–water) | 1.4 |
| T7 | Wild | 70AB: Aqueous exudate | 1.4 |
| T8 | - | Positive Control (Copper sulfate pentahydrate) | 0.6 |
| N° Animal | Sex | Weight on Day 0 (g) | mg of Compound | mL of Compound |
|---|---|---|---|---|
| 1 (group 1) | Female | 204 | 408 | 0.41 |
| 2 (group 1) | Female | 248 | 496 | 0.50 |
| 3 (group 1) | Female | 200 | 400 | 0.41 |
| 1 (group 2) | Female | 229 | 458 | 0.47 |
| 2 (group 2) | Female | 223 | 446 | 0.45 |
| 3 (group 2) | Female | 251 | 502 | 0.51 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chávez, M.I.; Balladares, M.; Ahumada, J.; Coloma, J.; Molina, P.; Madrid, A.; Chamy, R.; Díaz, K. Control of Bacterial Canker in Kiwifruit Using Botanical Products from Adesmia balsamica Bertero ex Colla in Kiwifruit cv. Hayward Orchards. Plants 2025, 14, 3726. https://doi.org/10.3390/plants14243726
Chávez MI, Balladares M, Ahumada J, Coloma J, Molina P, Madrid A, Chamy R, Díaz K. Control of Bacterial Canker in Kiwifruit Using Botanical Products from Adesmia balsamica Bertero ex Colla in Kiwifruit cv. Hayward Orchards. Plants. 2025; 14(24):3726. https://doi.org/10.3390/plants14243726
Chicago/Turabian StyleChávez, María Isabel, Martín Balladares, Jessica Ahumada, Jael Coloma, Paula Molina, Alejandro Madrid, Rolando Chamy, and Katy Díaz. 2025. "Control of Bacterial Canker in Kiwifruit Using Botanical Products from Adesmia balsamica Bertero ex Colla in Kiwifruit cv. Hayward Orchards" Plants 14, no. 24: 3726. https://doi.org/10.3390/plants14243726
APA StyleChávez, M. I., Balladares, M., Ahumada, J., Coloma, J., Molina, P., Madrid, A., Chamy, R., & Díaz, K. (2025). Control of Bacterial Canker in Kiwifruit Using Botanical Products from Adesmia balsamica Bertero ex Colla in Kiwifruit cv. Hayward Orchards. Plants, 14(24), 3726. https://doi.org/10.3390/plants14243726

