Peas in Rouge: Tyrosine Supplementation Enhances RUBY Reporter Visibility in Pisum sativum
Abstract
1. Introduction
2. Results
2.1. The Applicability of RUBY in the Transformation of Pisum sativum
2.2. Optimization of Cultivation Conditions for RUBY Visualization in Pisum sativum Explants
2.3. Testing of Tyrosine Effect on Callus Phenotype
2.4. Agrobacterial Co-Cultivation Duration Effect on Transgenic Callus Staining
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Bacterial Strains and Plasmids
4.3. Plant Transformation
4.3.1. Explant Preparation
4.3.2. Agrobacterium Preparation
4.3.3. Agrobacterial Transformation and Further Cultivation
4.4. Statistical Analysis and Software Used in the Study
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| GFP | Green Fluorescent Protein |
| RFP | Red Fluorescent Protein |
| YFP | Yellow Fluorescent Protein |
| DsRED | Discosoma striata red fluorescent protein |
| GUS | β-glucuronidase |
| CRISPR | Clustered Regularly Interspaced Short Palindromic Repeats |
| BAP | 6-Benzylaminopurine |
| 2.4-D | 2.4-Dichlorophenoxyacetic acid |
| GA3 | Gibberellic Acid 3 |
| DOPA | Dihydroxyphenylalanine |
| AS | Acetosyringone |
| TAIL-PCR | Thermal Asymmetric Interlaced Polymerase Chain Reaction |
| ddPCR | Droplet Digital Polymerase Chain Reaction |
References
- Jian, B.; Hou, W.; Wu, C.; Liu, B.; Liu, W.; Song, S.; Bi, Y.; Han, T. Agrobacterium Rhizogenes-Mediated Transformation of Superroot-Derived Lotus Corniculatus Plants: A Valuable Tool for Functional Genomics. BMC Plant Biol. 2009, 9, 78. [Google Scholar] [CrossRef]
- Berg, R.H.; Beachy, R.N. Fluorescent Protein Applications in Plants. In Methods in Cell Biology; Elsevier: Amsterdam, The Netherlands, 2008; Volume 85, pp. 153–177. ISBN 978-0-12-372558-5. [Google Scholar]
- Jefferson, R.A.; Kavanagh, T.A.; Bevan, M.W. GUS Fusions: Beta-Glucuronidase as a Sensitive and Versatile Gene Fusion Marker in Higher Plants. EMBO J. 1987, 6, 3901–3907. [Google Scholar] [CrossRef]
- Contag, C.H.; Bachmann, M.H. Advances in In Vivo Bioluminescence Imaging of Gene Expression. Annu. Rev. Biomed. Eng. 2002, 4, 235–260. [Google Scholar] [CrossRef]
- Timoneda, A.; Feng, T.; Sheehan, H.; Walker-Hale, N.; Pucker, B.; Lopez-Nieves, S.; Guo, R.; Brockington, S. The Evolution of Betalain Biosynthesis in Caryophyllales. New Phytol. 2019, 224, 71–85. [Google Scholar] [CrossRef]
- Polturak, G.; Breitel, D.; Grossman, N.; Sarrion-Perdigones, A.; Weithorn, E.; Pliner, M.; Orzaez, D.; Granell, A.; Rogachev, I.; Aharoni, A. Elucidation of the First Committed Step in Betalain Biosynthesis Enables the Heterologous Engineering of Betalain Pigments in Plants. New Phytol. 2016, 210, 269–283. [Google Scholar] [CrossRef] [PubMed]
- Polturak, G.; Grossman, N.; Vela-Corcia, D.; Dong, Y.; Nudel, A.; Pliner, M.; Levy, M.; Rogachev, I.; Aharoni, A. Engineered Gray Mold Resistance, Antioxidant Capacity, and Pigmentation in Betalain-Producing Crops and Ornamentals. Proc. Natl. Acad. Sci. USA 2017, 114, 9062–9067. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Zhang, T.; Sun, H.; Zhan, H.; Zhao, Y. A Reporter for Noninvasively Monitoring Gene Expression and Plant Transformation. Hortic. Res. 2020, 7, 152. [Google Scholar] [CrossRef]
- Yu, J.; Deng, S.; Huang, H.; Mo, J.; Xu, Z.-F.; Wang, Y. Exploring the Potential Applications of the Noninvasive Reporter Gene RUBY in Plant Genetic Transformation. Forests 2023, 14, 637. [Google Scholar] [CrossRef]
- Prusty, M.R.; Shatil-Cohen, A.; Kumar, R.; Sharma, D.; Minz-Dub, A.; Ezrati, S.; Hihinashvili, A.; Sharon, A. Pigments to Precision: RUBY Aiding Genetic Transformation and Genome Editing in Wheat and Barley. Physiol. Mol. Biol. Plants 2025, 31, 545–554. [Google Scholar] [CrossRef]
- Kumar, S.; Prakash, S.; Kumari, P.; Sanan-Mishra, N. A Robust In-Vitro and Ex-Vitro Agrobacterium Rhizogenes-Mediated Hairy Root Transformation System in Mungbean for Efficient Visual Screening of Transformants Using the RUBY Reporter. BMC Plant Biol. 2025, 25, 724. [Google Scholar] [CrossRef]
- Zhou, L.; Yang, Y.; Sharma, A.; Singh, V.P.; Tripathi, D.K.; Ding, W.; Rao, M.J.; Zheng, B.; Wang, X. A Rapid Method for Obtaining the Transgenic Roots of Crassulaceae Plants. Plants 2024, 13, 3024. [Google Scholar] [CrossRef] [PubMed]
- Jeong, J.; Jeon, E.; Hwang, M.K.; Song, Y.J.; Kim, J.-Y. Development of Super-Infective Ternary Vector Systems for Enhancing the Agrobacterium-Mediated Plant Transformation and Genome Editing Efficiency. Hortic. Res. 2024, 11, uhae187. [Google Scholar] [CrossRef] [PubMed]
- Yi, X.; Wang, C.; Yuan, X.; Zhang, M.; Zhang, C.; Qin, T.; Wang, H.; Xu, L.; Liu, L.; Wang, Y. Exploring an Economic and Highly Efficient Genetic Transformation and Genome-editing System for Radish through Developmental Regulators and Visible Reporter. Plant J. 2024, 120, 1682–1692. [Google Scholar] [CrossRef]
- Chen, L.; Cai, Y.; Liu, X.; Yao, W.; Wu, S.; Hou, W. The RUBY Reporter for Visual Selection in Soybean Genome Editing. aBIOTECH 2024, 5, 209–213. [Google Scholar] [CrossRef] [PubMed]
- Ge, X.; Wang, P.; Wang, Y.; Wei, X.; Chen, Y.; Li, F. Development of an Eco-Friendly Pink Cotton Germplasm by Engineering Betalain Biosynthesis Pathway. Plant Biotechnol. J. 2023, 21, 674–676. [Google Scholar] [CrossRef]
- Tabara, M.; Matsumoto, A.; Kibayashi, Y.; Takeda, A.; Motomura, K. Straightforward and Affordable Agroinfiltration with RUBY Accelerates RNA Silencing Research. Plant Mol. Biol. 2024, 114, 61. [Google Scholar] [CrossRef]
- Wang, D.; Zhong, Y.; Feng, B.; Qi, X.; Yan, T.; Liu, J.; Guo, S.; Wang, Y.; Liu, Z.; Cheng, D.; et al. The RUBY Reporter Enables Efficient Haploid Identification in Maize and Tomato. Plant Biotechnol. J. 2023, 21, 1707–1715. [Google Scholar] [CrossRef]
- Sun, H.; Wang, S.; Yang, K.; Zhu, C.; Liu, Y.; Gao, Z. Development of Dual-visible Reporter Assays to Determine the DNA—Protein Interaction. Plant J. 2023, 113, 1095–1101. [Google Scholar] [CrossRef]
- Chen, J.; Luo, M.; Hands, P.; Rolland, V.; Zhang, J.; Li, Z.; Outram, M.; Dodds, P.; Ayliffe, M. A Split GAL4 RUBY Assay for Visual in Planta Detection of Protein–Protein Interactions. Plant J. 2023, 114, 1209–1226. [Google Scholar] [CrossRef]
- Yuan, G.; Lu, H.; De, K.; Hassan, M.M.; Liu, Y.; Islam, M.T.; Muchero, W.; Tuskan, G.A.; Yang, X. Split Selectable Marker Systems Utilizing Inteins Facilitate Gene Stacking in Plants. Commun. Biol. 2023, 6, 567. [Google Scholar] [CrossRef]
- Adhikari, S.; Mudalige, A.; Phillips, L.; Lee, H.; Bernal-Galeano, V.; Gruszewski, H.; Westwood, J.H.; Park, S. Agrobacterium-mediated Cuscuta Campestris Transformation as a Tool for Understanding Plant–Plant Interactions. New Phytol. 2025, 245, 1774–1786. [Google Scholar] [CrossRef]
- Jogam, P.; Anumula, V.; Sandhya, D.; Manokari, M.; Venkatapuram, A.K.; Achary, V.M.M.; Shekhawat, M.S.; Peddaboina, V.; Allini, V.R. Monitoring Genetic Transformation with RUBY Visible Reporter in Nicotiana tabaccum L. Plant Cell Tissue Organ Cult. PCTOC 2024, 157, 23. [Google Scholar] [CrossRef]
- Lee, K.; Kang, M.; Ji, Q.; Grosic, S.; Wang, K. New T-DNA Binary Vectors with NptII Selection and RUBY Reporter for Efficient Maize Transformation and Targeted Mutagenesis. Plant Physiol. 2023, 192, 2598–2603. [Google Scholar] [CrossRef]
- Zhuravlev, I.Y.; Юрьевич, Ж.И.; Subkhanov, L.R.; Рустамoвич, С.Л.; Sulima, A.S.; Сергеевич, С.А.; Zhernakov, A.I.; Игoревич, Ж.А.; Tikhonovich, I.A.; Анатoльевич, Т.И.; et al. Genome Editing of Pea (Pisum sativum L.) Using CRISPR/Cas9 Technology: Review. Ecol. Genet. 2025, 23, 81–98. [Google Scholar] [CrossRef]
- Richter, A.; Jacobsen, H.-J.; de Kathen, A.; de Lorenzo, G.; Briviba, K.; Hain, R.; Ramsay, G.; Kiesecker, H. Transgenic Peas (Pisum sativum) Expressing Polygalacturonase Inhibiting Protein from Raspberry (Rubus idaeus) and Stilbene Synthase from Grape (Vitis vinifera). Plant Cell Rep. 2006, 25, 1166–1173. [Google Scholar] [CrossRef] [PubMed]
- Grant, J.; Cooper, P. Peas (Pisum sativum L.). In Methods in Molecular Biology; Humana Press: Totowa, NJ, USA, 2006; Volume 343, pp. 337–345. [Google Scholar] [CrossRef]
- Kaur, R.; Donoso, T.; Scheske, C.; Lefsrud, M.; Singh, J. Highly Efficient and Reproducible Genetic Transformation in Pea for Targeted Trait Improvement. ACS Agric. Sci. Technol. 2022, 2, 780–787. [Google Scholar] [CrossRef] [PubMed]
- Soulard, C.; Monfort, M.; Pillot, J.-P.; Gery, C.; Chauvin, L.; Morlière, S.; Lesné, A.; Sugio, A.; Pilet-Nayel, M.-L.; Rameau, C.; et al. Efficient and Heritable Gene Editing through CRISPR-Cas9 in Pisum Sativum. Plant Biotechnol. J. 2025, 23, 3398–3400. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.-Y.; Liu, K.-H.; Wang, Y.-C.; Wu, J.-F.; Chiu, W.-L.; Chen, C.-Y.; Wu, S.-H.; Sheen, J.; Lai, E.-M. AGROBEST: An Efficient Agrobacterium-Mediated Transient Expression Method for Versatile Gene Function Analyses in Arabidopsis Seedlings. Plant Methods 2014, 10, 19. [Google Scholar] [CrossRef]
- Griga, M. Morphology and Anatomy of Pisum Sativum Somatic Embryos. Biol. Plant. 2002, 45, 173–182. [Google Scholar] [CrossRef]
- Kysely, W.; Jacobsen, H.-J. Somatic Embryogenesis from Pea Embryos and Shoot Apices. Plant Cell Tissue Organ Cult. 1990, 20, 7–14. [Google Scholar] [CrossRef]
- Sun, H.; Wang, S.; Zhu, C.; Yang, K.; Liu, Y.; Gao, Z. A New Biotechnology for In-Planta Gene Editing and Its Application in Promoting Flavonoid Biosynthesis in Bamboo Leaves. Plant Methods 2023, 19, 20. [Google Scholar] [CrossRef] [PubMed]
- Tyurin, A.A.; Suhorukova, A.V.; Kabardaeva, K.V.; Goldenkova-Pavlova, I.V. Transient Gene Expression Is an Effective Experimental Tool for the Research into the Fine Mechanisms of Plant Gene Function: Advantages, Limitations, and Solutions. Plants 2020, 9, 1187. [Google Scholar] [CrossRef]
- Chen, F.; Wang, L.; Huang, Q.; Jiang, R.; Li, W.; Hou, X.; Tan, Z.; Lei, Z.; Li, Q.; Zeng, Y. Establishment of Agrobacterium-Mediated Transient Transformation System in Sunflower. Plants 2025, 14, 2412. [Google Scholar] [CrossRef]
- Kim, M.J.; Baek, K.; Park, C.-M. Optimization of Conditions for Transient Agrobacterium-Mediated Gene Expression Assays in Arabidopsis. Plant Cell Rep. 2009, 28, 1159–1167. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Cong, Y.; Liu, Y.; Wang, T.; Shuai, Q.; Chen, N.; Gai, J.; Li, Y. Optimization of Agrobacterium-Mediated Transformation in Soybean. Front. Plant Sci. 2017, 8, 246. [Google Scholar] [CrossRef] [PubMed]
- Lv, Q.; Chen, C.; Xu, Y.; Hu, S.; Wang, L.; Sun, K.; Chen, X.; Li, X. Optimization of Agrobacterium Tumefaciens-Mediated Transformation Systems in Tea Plant (Camellia sinensis). Hortic. Plant J. 2017, 3, 105–109. [Google Scholar] [CrossRef]
- Krejčí, P.; Matušková, P.; Hanáček, P.; Reinöhl, V.; Procházka, S. The Transformation of Pea (Pisum sativum L.): Applicable Methods of Agrobacterium Tumefaciens-Mediated Gene Transfer. Acta Physiol. Plant. 2007, 29, 157–163. [Google Scholar] [CrossRef]
- Butel, N.; Yu, A.; Le Masson, I.; Borges, F.; Elmayan, T.; Taochy, C.; Gursanscky, N.R.; Cao, J.; Bi, S.; Sawyer, A.; et al. Contrasting Epigenetic Control of Transgenes and Endogenous Genes Promotes Post-Transcriptional Transgene Silencing in Arabidopsis. Nat. Commun. 2021, 12, 2787. [Google Scholar] [CrossRef]
- Gelvin, S.B. Agrobacterium-Mediated Plant Transformation: The Biology behind the “Gene-Jockeying” Tool. Microbiol. Mol. Biol. Rev. 2003, 67, 16–37. [Google Scholar] [CrossRef]
- Rajeevkumar, S.; Anunanthini, P.; Sathishkumar, R. Epigenetic Silencing in Transgenic Plants. Front. Plant Sci. 2015, 6, 693. [Google Scholar] [CrossRef]
- Polturak, G.; Aharoni, A. Advances and Future Directions in Betalain Metabolic Engineering. New Phytol. 2019, 224, 1472–1478. [Google Scholar] [CrossRef]
- Zheng, X.; Liu, S.; Cheng, C.; Guo, R.; Chen, Y.; Xie, L.; Mao, Y.; Lin, Y.; Zhang, Z.; Lai, Z. Cloning and Expression Analysis of Betalain Biosynthesis Genes in Amaranthus Tricolor. Biotechnol. Lett. 2016, 38, 723–729. [Google Scholar] [CrossRef] [PubMed]
- Trijatmiko, K.R.; Arines, F.M.; Oliva, N.; Slamet-Loedin, I.H.; Kohli, A. Molecular Analyses of Transgenic Plants. In Recombinant Proteins from Plants: Methods and Protocols; MacDonald, J., Kolotilin, I., Menassa, R., Eds.; Springer: New York, NY, USA, 2016; pp. 201–222. ISBN 978-1-4939-3289-4. [Google Scholar]
- Singer, T.; Burke, E. High-Throughput TAIL-PCR as a Tool to Identify DNA Flanking Insertions. In Methods in Molecular Biology; Humana Press: Totowa, NJ, USA, 2003; Volume 236, pp. 241–272. [Google Scholar] [CrossRef]
- Wang, L.; Jia, M.; Li, Z.; Liu, X.; Sun, T.; Pei, J.; Wei, C.; Lin, Z.; Li, H. Wristwatch PCR: A Versatile and Efficient Genome Walking Strategy. Front. Bioeng. Biotechnol. 2022, 10, 792848. [Google Scholar] [CrossRef]
- Liu, P.; Liu, S.; Lei, J.; Chen, J.; Yang, J. Measurement of Transgenes Copy Number in Wheat Plants Using Droplet Digital PCR. Bio Protoc. 2022, 12, e4567. [Google Scholar] [CrossRef]
- Nagaya, S.; Kawamura, K.; Shinmyo, A.; Kato, K. The HSP Terminator of Arabidopsis Thaliana Increases Gene Expression in Plant Cells. Plant Cell Physiol. 2010, 51, 328–332. [Google Scholar] [CrossRef]
- Jyothishwaran, G.; Kotresha, D.; Selvaraj, T.; Srideshikan, S.H.; Rajvanshi, P.K.; Jayabaskaran, C. A Modified Freeze–Thaw Method for Efficient Transformation of Agrobacterium Tumefaciens. Curr. Sci. 2007, 93, 770–772. [Google Scholar]
- Simonova, V.; Potsenkovskaia, E.; Vanina, A.; Kiseleva, A.; Matveenko, A.; Pavlova, D.; Smirnov, K.; Efremova, E.; Brynchikova, A.; Tvorogova, V. Evaluation of Selective Agent Requirements for Pea Callus Culture Expressing Foreign DNA. Ecol. Genet.
- Murashige, T.; Skoog, F. A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Gamborg, O.L.; Miller, R.A.; Ojima, K. Nutrient Requirements of Suspension Cultures of Soybean Root Cells. Exp. Cell Res. 1968, 50, 151–158. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023. [Google Scholar]
- RStudio Team. RStudio: Integrated Development Environment for R; RStudio Team: Boston, MA, USA, 2020. [Google Scholar]
- Wickham, H. Ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016; ISBN 978-3-319-24277-4. [Google Scholar]
- Finnegan, J.; Sherratt, D. Plasmid ColE1 Conjugal Mobility: The Nature of Bom, a Region Required in Cis for Transfer. Mol. Gen. Genet. MGG 1982, 185, 344–351. [Google Scholar] [CrossRef]
- Kay, R.; Chan, A.; Daly, M.; McPherson, J. Duplication of CaMV 35S Promoter Sequences Creates a Strong Enhancer for Plant Genes. Science 1987, 236, 1299–1302. [Google Scholar] [CrossRef]
- Gritz, L.; Davies, J. Plasmid-Encoded Hygromycin B Resistance: The Sequence of Hygromycin B Phosphotransferase Gene and Its Expression in Escherichia Coli and Saccharomyces Cerevisiae. Gene 1983, 25, 179–188. [Google Scholar] [CrossRef]
- Shaw, C.H.; Carter, G.H.; Watson, M.D.; Shaw, C.H. A Functional Map of the Nopaline Synthase Promoter. Nucleic Acids Res. 1984, 12, 7831–7846. [Google Scholar] [CrossRef] [PubMed]
- Jahn, M.; Vorpahl, C.; Hübschmann, T.; Harms, H.; Müller, S. Copy Number Variability of Expression Plasmids Determined by Cell Sorting and Droplet Digital PCR. Microb. Cell Factories 2016, 15, 211. [Google Scholar] [CrossRef] [PubMed]
- Heeb, S.; Itoh, Y.; Nishijyo, T.; Schnider, U.; Keel, C.; Wade, J.; Walsh, U.; O’Gara, F.; Haas, D. Small, Stable Shuttle Vectors Based on the Minimal pVS1 Replicon for Use in Gram-Negative, Plant-Associated Bacteria. Mol. Plant-Microbe Interact. MPMI 2000, 13, 232–237. [Google Scholar] [CrossRef]
- Murphy, E. Nucleotide Sequence of a Spectinomycin Adenyltransferase AAD(9) Determinant from Staphylococcus Aureus and Its Relationship to AAD(3”) (9). Mol. Gen. Genet. MGG 1985, 200, 33–39. [Google Scholar] [CrossRef] [PubMed]





Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simonova, V.; Potsenkovskaia, E.; Kozlov, N.; Vanina, A.; Efremova, E.; Smirnov, K.; Artemiuk, A.; Kiseleva, A.; Brynchikova, A.; Konstantinov, Z.; et al. Peas in Rouge: Tyrosine Supplementation Enhances RUBY Reporter Visibility in Pisum sativum. Plants 2025, 14, 3719. https://doi.org/10.3390/plants14243719
Simonova V, Potsenkovskaia E, Kozlov N, Vanina A, Efremova E, Smirnov K, Artemiuk A, Kiseleva A, Brynchikova A, Konstantinov Z, et al. Peas in Rouge: Tyrosine Supplementation Enhances RUBY Reporter Visibility in Pisum sativum. Plants. 2025; 14(24):3719. https://doi.org/10.3390/plants14243719
Chicago/Turabian StyleSimonova, Veronika, Elina Potsenkovskaia, Nikolai Kozlov, Alexandra Vanina, Elena Efremova, Kirill Smirnov, Anastasia Artemiuk, Anna Kiseleva, Anna Brynchikova, Zakhar Konstantinov, and et al. 2025. "Peas in Rouge: Tyrosine Supplementation Enhances RUBY Reporter Visibility in Pisum sativum" Plants 14, no. 24: 3719. https://doi.org/10.3390/plants14243719
APA StyleSimonova, V., Potsenkovskaia, E., Kozlov, N., Vanina, A., Efremova, E., Smirnov, K., Artemiuk, A., Kiseleva, A., Brynchikova, A., Konstantinov, Z., & Tvorogova, V. (2025). Peas in Rouge: Tyrosine Supplementation Enhances RUBY Reporter Visibility in Pisum sativum. Plants, 14(24), 3719. https://doi.org/10.3390/plants14243719

