Recovery of Bioactive Compounds from Juçara Palm (Euterpe edulis Mart.) Fruit Residues Using Deep Eutectic and Conventional Solvents
Abstract
1. Introduction
2. Results and Discussion
2.1. Bioactive Compounds in Juçara Palm Fruit Residue Extracts
2.2. Phenolic Profile by MS/MS Evaluation
2.2.1. Acid Solvents
2.2.2. Alcohol-Based, Aqueous, and Alternative Polar Solvents
2.2.3. Complementary Chemical Analysis
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Raw Material
3.3. Preparation of Deep Eutectic Solvents
3.4. Ultrasound-Assisted Extraction (UAE) of Bioactive Compounds
3.5. Determination of Total Phenolic Content
3.6. Determination of Monomeric Anthocyanins
- A: (ABS 520 nm-ABS 700 nm) pH 1.0-(ABS 520 nm-ABS 700 nm) pH 4.5;
- MW: 449.2 g mol−1 (cyanidin-3-glucoside molar weight);
- Df: dilution factor;
- 103: conversion factor from g to mg;
- ε: 26,900 L mol−1 cm−1 (cyanidin-3-glucoside molar extinction coefficient);
- λ: 1 cm (cuvette path length).
3.7. In Vitro Antioxidant Activity
3.8. Characterization by Mass Spectrometry Using Electrospray (ESI-MS/MS)
3.9. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barroso, M.E.S.; Oliveira, B.G.; Pimentel, E.F.; Pereira, P.M.; Ruas, F.G.; Andrade, T.U.; Lenz, D.; Scherer, R.; Fronza, M.; Ventura, J.A.; et al. Phytochemical Profile of Genotypes of Euterpe edulis Martius—Juçara Palm Fruits. Food Res. Int. 2019, 116, 985–993. [Google Scholar] [CrossRef]
- Garcia, J.A.A.; Corrêa, R.C.G.; Barros, L.; Pereira, C.; Abreu, R.M.V.; Alves, M.J.; Calhelha, R.C.; Bracht, A.; Peralta, R.M.; Ferreira, I.C.F.R. Chemical Composition and Biological Activities of Juçara (Euterpe edulis Martius) Fruit by-Products, a Promising Underexploited Source of High-Added Value Compounds. J. Funct. Foods 2019, 55, 325–332. [Google Scholar] [CrossRef]
- Soares, B.P.; Ferreira, A.M.; Justi, M.; Rodrigues, L.G.G.; Oliveira, J.V.; Pinho, S.P.; Coutinho, J.A.P. Juçara Fruit (Euterpe edulis Martius) Valorization Combining Emergent Extraction Technologies and Aqueous Solutions of Alkanediols. Molecules 2023, 28, 1607. [Google Scholar] [CrossRef]
- Braga, A.R.C.; Murador, D.C.; De Souza Mesquita, L.M.; De Rosso, V.V. Bioavailability of Anthocyanins: Gaps in Knowledge, Challenges and Future Research. J. Food Compos. Anal. 2018, 68, 31–40. [Google Scholar] [CrossRef]
- Ferreira, C.; Sarraguça, M. A Comprehensive Review on Deep Eutectic Solvents and Its Use to Extract Bioactive Compounds of Pharmaceutical Interest. Pharmaceuticals 2024, 17, 124. [Google Scholar] [CrossRef] [PubMed]
- Ristivojević, P.; Krstić Ristivojević, M.; Stanković, D.; Cvijetić, I. Advances in Extracting Bioactive Compounds from Food and Agricultural Waste and By-Products Using Natural Deep Eutectic Solvents: A Circular Economy Perspective. Molecules 2024, 29, 4717. [Google Scholar] [CrossRef]
- Avalos, B.I.; Acevedo, B.A.; Melana Colavita, J.P.; Curbelo, R.; Dellacassa, E.; Vallejos, M.M. Optimization of Ultrasound-Assisted Extraction of Antioxidant Compounds from Mucuna pruriens Pods Using Response Surface Methodology: A Waste-to-Value Approach. Sustain. Food Technol. 2025, 3, 2239–2252. [Google Scholar] [CrossRef]
- Cameselle, C.; Maietta, I.; Torres, M.D.; Simón-Vázquez, R.; Domínguez, H. Optimization of Ultrasound-Assisted Extraction of Bioactive Compounds and Biopolymers from Ulva Spp. Using Response Surface Methodology. J. Appl. Phycol. 2025, 37, 2031–2050. [Google Scholar] [CrossRef]
- Dai, Y.; Witkamp, G.-J.; Verpoorte, R.; Choi, Y.H. Natural Deep Eutectic Solvents as a New Extraction Media for Phenolic Metabolites in Carthamus tinctorius L. Anal. Chem. 2013, 85, 6272–6278. [Google Scholar] [CrossRef]
- Dai, Y.; van Spronsen, J.; Witkamp, G.-J.; Verpoorte, R.; Choi, Y.H. Natural Deep Eutectic Solvents as New Potential Media for Green Technology. Anal. Chim. Acta 2013, 766, 61–68. [Google Scholar] [CrossRef]
- Vieira, V.; Prieto, M.A.; Barros, L.; Coutinho, J.A.P.; Ferreira, I.C.F.R.; Ferreira, O. Enhanced Extraction of Phenolic Compounds Using Choline Chloride Based Deep Eutectic Solvents from Juglans regia L. Ind. Crops Prod. 2018, 115, 261–271. [Google Scholar] [CrossRef]
- Dai, Y.; Rozema, E.; Verpoorte, R.; Choi, Y.H. Application of Natural Deep Eutectic Solvents to the Extraction of Anthocyanins from Catharanthus roseus with High Extractability and Stability Replacing Conventional Organic Solvents. J. Chromatogr. A 2016, 1434, 50–56. [Google Scholar] [CrossRef] [PubMed]
- Marcus, Y. Applications of Deep Eutectic Solvents. In Deep Eutectic Solvents; Marcus, Y., Ed.; Springer International Publishing: Cham, Switzerland, 2019; pp. 111–151. [Google Scholar] [CrossRef]
- Kim, S.H.; Park, S.; Yu, H.; Kim, J.H.; Kim, H.J.; Yang, Y.-H.; Kim, Y.H.; Kim, K.J.; Kan, E.; Lee, S.H. Effect of Deep Eutectic Solvent Mixtures on Lipase Activity and Stability. J. Mol. Catal. B Enzym. 2016, 128, 65–72. [Google Scholar] [CrossRef]
- Florindo, C.; Oliveira, F.S.; Rebelo, L.P.N.; Fernandes, A.M.; Marrucho, I.M. Insights into the Synthesis and Properties of Deep Eutectic Solvents Based on Cholinium Chloride and Carboxylic Acids. ACS Sustain. Chem. Eng. 2014, 2, 2416–2425. [Google Scholar] [CrossRef]
- Yao, X.-H.; Zhang, D.-Y.; Duan, M.-H.; Cui, Q.; Xu, W.-J.; Luo, M.; Li, C.-Y.; Zu, Y.-G.; Fu, Y.-J. Preparação e Determinação de Compostos Fenólicos de Pyrola incarnata Fisch. Com Um Solvente Eutético Profundo à Base de Polióis Verdes. Sep. Purif. Technol. 2015, 149, 116–123. [Google Scholar] [CrossRef]
- Liigand, P.; Kaupmees, K.; Haav, K.; Liigand, J.; Leito, I.; Girod, M.; Antoine, R.; Kruve, A. Think Negative: Finding the Best Electrospray Ionization/MS Mode for Your Analyte. Anal. Chem. 2017, 89, 5665–5668. [Google Scholar] [CrossRef]
- Bicudo, M.O.P.; Ribani, R.H.; Beta, T. Anthocyanins, Phenolic Acids and Antioxidant Properties of Juçara Fruits (Euterpe edulis M.) Along the On-Tree Ripening Process. Plant Foods Hum. Nutr. 2014, 69, 142–147. [Google Scholar] [CrossRef]
- Lee, J.-E.; Jayakody, J.; Kim, J.-I.; Jeong, J.-W.; Choi, K.-M.; Kim, T.-S.; Seo, C.; Azimi, I.; Hyun, J.; Ryu, B. The Influence of Solvent Choice on the Extraction of Bioactive Compounds from Asteraceae: A Comparative Review. Foods 2024, 13, 3151. [Google Scholar] [CrossRef]
- Aktaş, H.; Kurek, M.A. Deep Eutectic Solvents for the Extraction of Polyphenols from Food Plants. Food Chem. 2024, 444, 138629. [Google Scholar] [CrossRef]
- Tzanova, M.T.; Yaneva, Z.; Ivanova, D.; Toneva, M.; Grozeva, N.; Memdueva, N. Green Solvents for Extraction of Natural Food Colorants from Plants: Selectivity and Stability Issues. Foods 2024, 13, 605. [Google Scholar] [CrossRef]
- Paini, M.; Casazza, A.A.; Aliakbarian, B.; Perego, P.; Binello, A.; Cravotto, G. Influence of Ethanol/Water Ratio in Ultrasound and High-pressure/High-temperature Phenolic Compound Extraction from Agri-food Waste. Int. J. Food Sci. Tech. 2016, 51, 349–358. [Google Scholar] [CrossRef]
- Kaur, S.; Ubeyitogullari, A. Extraction of Phenolic Compounds from Rice Husk via Ethanol-Water-Modified Supercritical Carbon Dioxide. Heliyon 2023, 9, e14196. [Google Scholar] [CrossRef] [PubMed]
- Xue, H.; Zhao, J.; Wang, Y.; Shi, Z.; Xie, K.; Liao, X.; Tan, J. Factors Affecting the Stability of Anthocyanins and Strategies for Improving Their Stability: A Review. Food Chem. X 2024, 24, 101883. [Google Scholar] [CrossRef] [PubMed]
- Enaru, B.; Drețcanu, G.; Pop, T.D.; Stǎnilǎ, A.; Diaconeasa, Z. Anthocyanins: Factors Affecting Their Stability and Degradation. Antioxidants 2021, 10, 1967. [Google Scholar] [CrossRef] [PubMed]
- Malien-Aubert, C.; Dangles, O.; Amiot, M.J. Color Stability of Commercial Anthocyanin-Based Extracts in Relation to the Phenolic Composition. Protective Effects by Intra- and Intermolecular Copigmentation. J. Agric. Food Chem. 2001, 49, 170–176. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, Y.; Cao, Y.; Wang, F.; Li, F. Review: Enhancing the Bioavailability and Stability of Anthocyanins for the Prevention and Treatment of Central Nervous System-Related Diseases. Foods 2025, 14, 2420. [Google Scholar] [CrossRef]
- Goswami, D.; Bala, M.; Mridula, D.; Vishwakarma, R.K.; Guru, P.N. Green Solvent Extraction of Health Boosting Phenolics from Pigeon Pea Husk. Sci. Rep. 2025, 15, 30002. [Google Scholar] [CrossRef]
- Palos-Hernández, A.; González-Paramás, A.M.; Santos-Buelga, C. Latest Advances in Green Extraction of Polyphenols from Plants, Foods and Food By-Products. Molecules 2024, 30, 55. [Google Scholar] [CrossRef]
- Schulz, M.; Tischer Seraglio, S.K.; Gonzaga, L.V.; Costa, A.C.O.; Fett, R. Phenolic Compounds in Euterpe Fruits: Composition, Digestibility, and Stability—A Review. Food Rev. Int. 2023, 39, 369–396. [Google Scholar] [CrossRef]
- Silva, A.P.S.; De Camargo, A.C.; Lazarini, J.G.; Franchin, M.; Sardi, J.D.C.O.; Rosalen, P.L.; De Alencar, S.M. Phenolic Profile and the Antioxidant, Anti-Inflammatory, and Antimicrobial Properties of Açaí (Euterpe oleracea) Meal: A Prospective Study. Foods 2022, 12, 86. [Google Scholar] [CrossRef]
- Li, W.; Zeng, Q.; Liu, Y.; Zhao, X.; Chen, X.; Yang, W. Enhancing Anthocyanin Stability via Co-Assembled Nanoencapsulation with Tripeptides by Intermolecular Interaction. Food Chem. X 2025, 29, 102803. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Moreno, N.; Volpe, F.; Moler, J.A.; Esparza, I.; Ancín-Azpilicueta, C. Impact of Extraction Conditions on the Phenolic Composition and Antioxidant Capacity of Grape Stem Extracts. Antioxidants 2019, 8, 597. [Google Scholar] [CrossRef] [PubMed]
- Lohvina, H.; Sándor, M.; Wink, M. Effect of Ethanol Solvents on Total Phenolic Content and Antioxidant Properties of Seed Extracts of Fenugreek (Trigonella foenum-graecum L.) Varieties and Determination of Phenolic Composition by HPLC-ESI-MS. Diversity 2021, 14, 7. [Google Scholar] [CrossRef]
- Ghareaghajlou, N.; Hallaj-Nezhadi, S.; Ghasempour, Z. Red Cabbage Anthocyanins: Stability, Extraction, Biological Activities and Applications in Food Systems. Food Chem. 2021, 365, 130482. [Google Scholar] [CrossRef]
- Kopp, G.; Lauritano, C. Greener Extraction Solutions for Microalgal Compounds. Mar. Drugs 2025, 23, 269. [Google Scholar] [CrossRef]
- Mansur, A.R.; Song, N.E.; Jang, H.W.; Lim, T.G.; Yoo, M.; Nam, T.G. Optimizing the Ultrasound-Assisted Deep Eutectic Solvent Extraction of Flavonoids in Common Buckwheat Sprouts. Food Chem. 2019, 293, 438–445. [Google Scholar] [CrossRef]
- Tang, W.; Row, K.H. Design and Evaluation of Polarity Controlled and Recyclable Deep Eutectic Solvent Based Biphasic System for the Polarity Driven Extraction and Separation of Compounds. J. Clean. Prod. 2020, 268, 122306. [Google Scholar] [CrossRef]
- Wan Mahmood, W.M.A.; Lorwirachsutee, A.; Theodoropoulos, C.; Gonzalez-Miquel, M. Polyol-Based Deep Eutectic Solvents for Extraction of Natural Polyphenolic Antioxidants from Chlorella vulgaris. ACS Sustain. Chem. Eng. 2019, 7, 5018–5026. [Google Scholar] [CrossRef]
- Singleton, V.; Rossi, J. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Lee, J.; Durst, R.W.; Wrolstad, R.E.; Eisele, T.; Giusti, M.M.; Hach, J.; Hofsommer, H.; Koswig, S.; Krueger, D.A.; Kupina, S.; et al. Determination of Total Monomeric Anthocyanin Pigment Content of Fruit Juices, Beverages, Natural Colorants, and Wines by the pH Differential Method: Collaborative Study. J. AOAC Int. 2005, 88, 1269–1278. [Google Scholar] [CrossRef] [PubMed]
- Thaipong, K.; Boonprakob, U.; Crosby, K.; Cisneros-Zevallos, L.; Hawkins Byrne, D. Comparison of ABTS, DPPH, FRAP, and ORAC Assays for Estimating Antioxidant Activity from Guava Fruit Extracts. J. Food Compos. Anal. 2006, 19, 669–675. [Google Scholar] [CrossRef]
- Rufino, M.S.M.; Fernandes, F.A.N.; Alves, R.E.; de Brito, E.S. Free Radical-Scavenging Behaviour of Some North-East Brazilian Fruits in a DPPH System. Food Chem. 2009, 114, 693–695. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Santos, G.J.; Defendi, R.O.; Düsman, E.; Biffi, M.T.; Berton, G.H.; Tonin, A.P.P.; Meurer, E.C.; Suzuki, R.M.; Sípoli, C.C.; Tonin, L.T.D. Valorization of Wastes from the Juice Passion Fruit Production Industry: Extraction of Bioactive Compounds from Seeds, Antioxidant, Photoprotective and Antiproliferative Activities. Waste Biomass Valor. 2023, 14, 1233–1250. [Google Scholar] [CrossRef]
| SAMPLE | TPC | TMA | DPPH | FRAP | ABTS |
|---|---|---|---|---|---|
| ChCl:GL | 5372.99 a ± 610.58 | 174.00 a ± 3.53 | 75.25 b,c ± 0.60 | 17.90 a ± 0.04 | 22.68 a ± 1.44 |
| ChCl: AA | 5189.33 a ± 515.33 | 145.01 b ± 6.09 | 84.03 a ± 0.15 | 17.63 a ± 0.06 | 20.35 a ± 1.29 |
| ChCl:LA | 3394.32 b ± 290.97 | 121.67 c ± 5.12 | 44.79 e ± 3.04 | 13.62 d ± 0.43 | 22.66 a ± 1.12 |
| ChCl:MA | 5140.73 a ± 784.95 | 103.30 d ± 6.53 | 39.77 e,f ± 2.30 | 15.54 c ± 0.62 | 12.55 b ± 2.24 |
| ChCl:CA | 4315.86 a,b ± 956.94 | 53.09 e ± 7.46 | 38.65 e,f ± 5.10 | 13.80 d ± 0.27 | 5.03 c ± 0.59 |
| ChCl:TA | 4427.65 a,b ± 140.27 | 28.39 f ± 3.05 | 31.52 f ± 4.98 | 14.31 d ± 0.54 | 6.26 c ± 0.55 |
| ChCl:GE | 5690.52 a ± 557.97 | 127.17 b,c ± 3.96 | 72.64 c,d ± 4.69 | 16.54 b ± 0.15 | 1.13 d ± 0.20 |
| Water | 1718.85 c ± 53.31 | 49.32 e ± 3.05 | 83.17 ab ± 0.52 | 17.77 a ± 0.04 | 12.85 b ± 1.4 |
| Ethanol | 760.28 c ± 8.33 | 13.42 f ± 1.17 | 43.93 e ± 1.10 | 16.12 b,c ± 0.17 | 1.18 d ± 0.66 |
| Ethanol/Water | 1762.82 c ± 16.64 | 87.35 d ± 2.34 | 66.04 d ± 1.09 | 18.04 a ± 0.03 | 12.67 b ± 0.70 |
| CV (%) | 13.47 | 5.14 | 5.19 | 1.96 | 9.93 |
| p-value | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
| Compounds | [M−H]− (m/z) | Fragment (m/z) | 1 | 2 | 3 | 4 | 5 |
| trans-Cinnamic acid | 147 | 103 | 47.54 ± 7.81 | ND | ND | ND | 72.26 ± 4.52 |
| p-Hydroxybenzoic acid | 137 | 93 | 33.24 ± 4.25 | ND | 22.36 ± 3.81 | 15.79 ± 2.96 | 30.17 ± 5.73 |
| Catechin | 289 | 245 | 42.89 ± 8.03 | ND | ND | 18.35 ± 2.91 | ND |
| Cyanidin-3-O-arabinoside | 418 | 287 | 64.31 ± 11.82 | 59.27 ± 8.90 | ND | ND | ND |
| Hesperetin-O-rutinoside | 609 | 301 | 82.07 ± 9.44 | 76.14 ± 10.81 | 60.17 ± 8.53 | 69.12 ± 7.46 | 88.23 ± 10.38 |
| Hesperetin | 301 | 151 | 78.14 ± 10.65 | 72.20 ± 9.54 | 55.28 ± 7.18 | 66.09 ± 8.01 | 84.31 ± 11.77 |
| p-Coumaric acid | 163 | 119 | ND | 23.47 ± 4.16 | 19.87 ± 3.91 | ND | ND |
| Luteolin-7-O-glucuronide | 461 | 285 | ND | 34.19 ± 6.72 | 29.41 ± 5.39 | ND | 26.28 ± 4.12 |
| Naringenin | 271 | 151 | ND | ND | 17.64 ± 3.55 | ND | ND |
| Kaempferol-3-O-malonylhexoside | 533 | 285 | ND | ND | ND | 21.48 ± 3.17 | ND |
| Kaempferol | 285 | 151 | ND | ND | ND | ND | 19.73 ± 2.88 |
| Compounds | [M−H]− (m/z) | Fragment (m/z) | 6 | 7 | 8 | 9 | 10 |
| trans-Cinnamic acid | 147 | 103 | 85.61 ± 13.61 | 33.04 ± 3.91 | 40.75 ± 8.12 | 21.90 ± 4.72 | 56.38 ± 9.43 |
| p-Hydroxybenzoic acid | 137 | 93 | 27.08 ± 4.17 | ND | ND | 28.11 ± 4.65 | 39.07 ± 7.91 |
| Catechin | 289 | 245 | ND | ND | ND | ND | 31.24 ± 5.08 |
| Cyanidin-3-O-arabinoside | 418 | 287 | ND | ND | ND | ND | ND |
| Hesperetin-O-rutinoside | 609 | 301 | 65.12 ± 8.89 | 47.90 ± 7.91 | 90.18 ± 28.16 | 126.20 ± 11.07 | 95.14 ± 12.83 |
| Hesperetin | 301 | 151 | 61.07 ± 9.42 | 44.19 ± 7.33 | 89.07 ± 13.36 | 141.64 ± 5.31 | 92.70 ± 10.42 |
| p-Coumaric acid | 163 | 119 | ND | ND | ND | ND | ND |
| Luteolin-7-O-glucuronide | 461 | 285 | ND | ND | ND | ND | ND |
| Naringenin | 271 | 151 | ND | ND | ND | ND | ND |
| Kaempferol-3-O-malonylhexoside | 533 | 285 | ND | ND | ND | ND | ND |
| Kaempferol | 285 | 151 | ND | ND | ND | ND | ND |
| Vanillic acid | 167 | 108 | 37.15 ± 8.36 | ND | ND | ND | ND |
| Caffeic acid | 179 | 135 | ND | 28.39 ± 4.92 | ND | ND | 33.08 ± 6.10 |
| Chlorogenic acid | 353 | 191 | ND | 24.91 ± 3.80 | ND | ND | ND |
| Quercetin | 301 | 151 | ND | ND | ND | ND | 29.71 ± 4.21 |
| Gallic acid | 169 | 125 | ND | ND | ND | ND | 22.44 ± 3.66 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stafussa, A.P.; de Oliveira, J.H.; Meurer, E.C.; Scapim, M.R.d.S.; Madrona, G.S. Recovery of Bioactive Compounds from Juçara Palm (Euterpe edulis Mart.) Fruit Residues Using Deep Eutectic and Conventional Solvents. Plants 2025, 14, 3693. https://doi.org/10.3390/plants14233693
Stafussa AP, de Oliveira JH, Meurer EC, Scapim MRdS, Madrona GS. Recovery of Bioactive Compounds from Juçara Palm (Euterpe edulis Mart.) Fruit Residues Using Deep Eutectic and Conventional Solvents. Plants. 2025; 14(23):3693. https://doi.org/10.3390/plants14233693
Chicago/Turabian StyleStafussa, Ana Paula, Jean Halison de Oliveira, Eduardo Cesar Meurer, Monica Regina da Silva Scapim, and Grasiele Scaramal Madrona. 2025. "Recovery of Bioactive Compounds from Juçara Palm (Euterpe edulis Mart.) Fruit Residues Using Deep Eutectic and Conventional Solvents" Plants 14, no. 23: 3693. https://doi.org/10.3390/plants14233693
APA StyleStafussa, A. P., de Oliveira, J. H., Meurer, E. C., Scapim, M. R. d. S., & Madrona, G. S. (2025). Recovery of Bioactive Compounds from Juçara Palm (Euterpe edulis Mart.) Fruit Residues Using Deep Eutectic and Conventional Solvents. Plants, 14(23), 3693. https://doi.org/10.3390/plants14233693

