Responses and Controlling Factors of the Litter Decay Rate to Nitrogen Addition Across Global Forests: A Meta-Analysis
Abstract
1. Introduction
2. Results
2.1. N Addition Overall Effect on Litter Decay Rate
2.2. Amount, Form, and Duration of N Addition Effect on Decay Rate
2.3. Decay Time, Mesh Size, and Litter Type Influence N Effects on Litter Decay
2.4. Humidity Index and Litter Quality Influence N Effects on Litter Decay
3. Discussion
3.1. N Influencing Litter Decay Rate in Common Litter Trait
3.2. Influence of N on Litter Decay Rate in Common Situ and Situ Traits
3.3. Limitation and Future Studies
4. Materials and Methods
4.1. Collection of Data
4.2. Meta-Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Parton, W.; Silver, W.L.; Burke, I.C.; Grassens, L.; Harmon, M.E.; Currie, W.S.; King, J.Y.; Adair, E.C.; Brandt, L.A.; Hart, S.C.; et al. Global-scale similarities in nitrogen release patterns during long-term decomposition. Science 2007, 315, 361–364. [Google Scholar] [CrossRef]
- Spohn, M.; Berg, B. Import and release of nutrients during the first five years of plant litter decomposition. Soil Biol. Biochem. 2023, 176, 108878. [Google Scholar] [CrossRef]
- Veen, G.F.C.; Freschet, G.T.; Ordonez, A.; Wardle, D.A. Litter quality and environmental controls of home-field advantage effects on litter decomposition. Oikos 2015, 124, 187–195. [Google Scholar] [CrossRef]
- Bradford, M.A.; Berg, B.; Maynard, D.S.; Wieder, W.R.; Wood, S.A.; Cornwell, W. Understanding the dominant controls on litter decomposition. J. Ecol. 2016, 104, 229–238. [Google Scholar] [CrossRef]
- Zhao, Y.D.; Lu, N.; Shi, H.; Huang, J.B.; Fu, B.J. Patterns and driving factors of litter decomposition rates in global dryland ecosystems. Glob. Change Biol. 2025, 31, e70025. [Google Scholar] [CrossRef]
- You, C.M.; Wu, F.Z.; Yang, W.Q.; Xu, Z.F.; Tan, B.; Zhang, L.; Yue, K.; Ni, X.Y.; Li, H.; Chang, C.H.; et al. Does foliar nutrient resorption regulate the coupled relationship between nitrogen and phosphorus in plant leaves in response to nitrogen deposition? Sci. Total Environ. 2018, 645, 733–742. [Google Scholar] [CrossRef]
- Jian, S.Y.; Li, J.W.; Chen, J.; Wang, G.S.; Mayes, M.A.; Dzantor, K.E.; Hui, D.F.; Luo, Y.Q. Soil extracellular enzyme activities, soil carbon and nitrogen storage under nitrogen fertilization: A meta-analysis. Soil Biol. Biochem. 2016, 101, 32–43. [Google Scholar] [CrossRef]
- Li, T.; Cui, L.Z.; Liu, L.L.; Wang, H.; Dong, J.F.; Wang, F.; Song, X.F.; Che, R.X.; Li, C.J.; Tang, L.; et al. Characteristics of nitrogen deposition research within grassland ecosystems globally and its insight from grassland microbial community changes in China. Front. Plant Sci. 2022, 13, 977279. [Google Scholar] [CrossRef]
- Shi, J.B.; Khashi URahman, M.; Ma, R.N.; Li, Q.; Huang, Y.X.; Li, G.D. Effects of nitrogen enrichment upon soil enzyme activities in grassland ecosystems in China: A multilevel meta-analysis. Pedosphere 2025, 35, 84–96. [Google Scholar] [CrossRef]
- Hu, J.X.; Zhou, S.X.; Tie, L.H.; Liu, X.; Liu, X.; Zhao, A.J.; Lai, J.M.; Xiao, L.; You, C.M.; Huang, C.D. Effects of nitrogen addition on soil faunal abundance: A global meta-analysis. Glob. Ecol. Biogeogr. 2022, 31, 1655–1666. [Google Scholar] [CrossRef]
- Wang, X.D.; Feng, J.G.; Ao, G.K.L.; Qin, W.K.; Han, M.G.; Shen, Y.W.; Liu, M.L.; Chen, Y.; Zhu, B. Globally nitrogen addition alters soil microbial community structure, but has minor effects on soil microbial diversity and richness. Soil Biol. Biochem. 2023, 179, 108982. [Google Scholar] [CrossRef]
- Zhou, Z.H.; Wang, C.K.; Zheng, M.H.; Jiang, L.F.; Luo, Y.Q. Patterns and mechanisms of responses by soil microbial communities to nitrogen addition. Soil Biol. Biochem. 2017, 115, 433–441. [Google Scholar] [CrossRef]
- Wu, J.J.; Zhang, H.; Cheng, X.L.; Liu, G.H. Nitrogen addition stimulates litter decomposition rate: From the perspective of the combined effect of soil environment and litter quality. Soil Biol. Biochem. 2023, 179, 108992. [Google Scholar] [CrossRef]
- Zhu, J.X.; Jia, Y.L.; Yu, G.R.; Wang, Q.F.; He, N.P.; Chen, Z.; He, H.L.; Zhu, X.J.; Li, P.; Zhang, F.S.; et al. Changing patterns of global nitrogen deposition driven by socio-economic development. Nat. Commun. 2025, 16, 46. [Google Scholar] [CrossRef]
- Zhou, S.X.; Huang, C.D.; Han, B.H.; Xiao, Y.X.; Tang, J.D.; Xiang, Y.B.; Luo, C. Simulated nitrogen deposition significantly suppresses the decomposition of forest litter in a natural evergreen broad-leaved forest in the Rainy Area of Western China. Plant Soil 2017, 420, 135–145. [Google Scholar] [CrossRef]
- Fang, H.; Mo, J.M.; Peng, S.L.; Li, Z.A.; Wang, H. Cumulative effects of nitrogen additions on litter decomposition in three tropical forests in southern China. Plant Soil 2007, 297, 233–242. [Google Scholar] [CrossRef]
- Zhang, W.D.; Chao, L.; Yang, Q.P.; Wang, Q.K.; Fang, Y.T.; Wang, S.L. Litter quality mediated nitrogen effect on plant litter decomposition regardless of soil fauna presence. Ecology 2016, 97, 2834–2843. [Google Scholar] [CrossRef]
- van Diepen, L.T.A.; Frey, S.D.; Sthultz, C.M.; Morrison, E.W.; Minocha, R.; Pringle, A. Changes in litter quality caused by simulated nitrogen deposition reinforce the N-induced suppression of litter decay. Ecosphere 2015, 6, 205. [Google Scholar] [CrossRef]
- Zhang, J.H.; Li, H.; Zhang, H.F.; Zhang, H.; Tang, Z.Y. Responses of Litter Decomposition and Nutrient Dynamics to Nitrogen Addition in Temperate Shrublands of North China. Front. Plant Sci. 2021, 11, 618675. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, M.H.; Geng, Q.H.; Jin, C.S.; Zhu, J.Q.; Ruan, H.H.; Xu, X. The roles of initial litter traits in regulating litter decomposition: A “common plot” experiment in a subtropical evergreen broadleaf forest. Plant Soil 2020, 452, 207–216. [Google Scholar] [CrossRef]
- Zhang, D.Q.; Hui, D.F.; Luo, Y.Q.; Zhou, G.Y. Rates of litter decomposition in terrestrial ecosystems: Global patterns and controlling factors. J. Plant Ecol. 2008, 1, 85–93. [Google Scholar] [CrossRef]
- Zhao, X.X.; Tian, Q.X.; Michelsen, A.; Ren, B.S.; Feng, Z.Y.; Chen, L.; Jiang, Q.H.; Zhao, R.D.; Liu, F. Global pattern in terrestrial leaf litter decomposition: The effects of climate, litter chemistry, life form, growth form and mycorrhizal association. Agric. For. Meteorol. 2025, 362, 110368. [Google Scholar] [CrossRef]
- Zhang, T.A.; Luo, Y.Q.; Chen, H.Y.H.; Ruan, H.H. Responses of litter decomposition and nutrient release to N addition: A meta-analysis of terrestrial ecosystems. Appl. Soil Ecol. 2018, 128, 35–42. [Google Scholar] [CrossRef]
- Su, Y.; Ma, X.F.; Gong, Y.M.; Li, K.H.; Han, W.X.; Liu, X.J. Contrasting effects of nitrogen addition on litter decomposition in forests and grasslands in China. J. Arid Land 2021, 13, 717–729. [Google Scholar] [CrossRef]
- Liu, Y.L.; Zhang, A.L.; Li, X.Y.; Kuang, W.N.; Islam, W. Litter decomposition rate response to multiple global change factors: A meta-analysis. Soil Biol. Biochem. 2024, 195, 109474. [Google Scholar] [CrossRef]
- Carreiro, M.M.; Sinsabaugh, R.L.; Repert, D.A.; Parkhurst, D.F.P. Microbial enzyme shifts explain litter decay responses to simulated nitrogen deposition. Ecology 2000, 81, 2359–2365. [Google Scholar] [CrossRef]
- Osburn, E.D.; Hoch, P.J.; Lucas, J.M.; McBride, S.G.; Strickland, M.S. Evaluating the roles of microbial functional breadth and home-field advantage in leaf litter decomposition. Funct. Ecol. 2022, 36, 1258–1267. [Google Scholar] [CrossRef]
- Mudrák, O.; Angst, Š.; Angst, G.; Veselá, H.; Schnablová, R.; Herben TFrouz, J. Ecological significance of standing dead phytomass: Marcescence as a puzzle piece to the nutrient cycle in temperate ecosystems. J. Ecol. 2023, 111, 2245–2256. [Google Scholar] [CrossRef]
- Liu, P.; Huang, J.H.; Sun, O.J.; Han, X.G. Litter decomposition and nutrient release as affected by soil nitrogen availability and litter quality in a semiarid grassland ecosystem. Oecologia 2010, 162, 771–780. [Google Scholar] [CrossRef]
- Xi, J.Z.; Wang, J.Y.; Zhu, Y.F.; Xu, M.P. Nitrogen deposition reduces the rate of leaf litter decomposition: A global study. Forests 2024, 15, 1492. [Google Scholar] [CrossRef]
- Pan, Y.D.; Birdsey, R.A.; Phillips, O.L.; Houghton, R.A.; Fang, J.Y.; Kauppi, P.E.; Keith, H.; Kurz, W.A.; Ito, A.; Lewis, S.L.; et al. The enduring world forest carbon sink. Nature 2024, 631, 563–569. [Google Scholar] [CrossRef]
- Janssens, I.A.; Dieleman, W.; Luyssaert, S.; Subke, J.A.; Reichstein, M.; Ceulemans, R.; Ciais, P.; Dolman, A.J.; Grace, J.; Matteucci, G.; et al. Reduction of forest soil respiration in response to nitrogen deposition. Nat. Geosci. 2010, 3, 315–322. [Google Scholar] [CrossRef]
- Treseder, K.K. Nitrogen additions and microbial biomass: A meta-analysis of ecosystem studies. Ecol. Lett. 2008, 11, 1111–1120. [Google Scholar] [CrossRef]
- Yang, Y.H.; Li, P.; He, H.L.; Zhao, X.; Datta, A.; Ma, W.H.; Zhang, Y.; Liu, X.J.; Han, W.X.; Wilson, M.C.; et al. Long-term changes in soil pH across major forest ecosystems in China. Geophys. Res. Lett. 2015, 42, 933–940. [Google Scholar] [CrossRef]
- Tian, D.S.; Niu, S.L. A global analysis of soil acidification caused by nitrogen addition. Environ. Res. Lett. 2015, 10, 024019. [Google Scholar] [CrossRef]
- Nannipieri, P.; Trasar-Cepeda, C.; Dick, R.P. Soil enzyme activity: A brief history and biochemistry as a basis for appropriate interpretations and meta-analysis. Biol. Fertil. Soils 2018, 54, 11–19. [Google Scholar] [CrossRef]
- Dong, L.L.; Sun, T.; Berg, B.; Zhang, L.L.; Zhang, Q.Q.; Wang, Z.W. Effects of different forms of N deposition on leaf litter decomposition and extracellular enzyme activities in a temperate grassland. Soil Biol. Biochem. 2019, 134, 78–80. [Google Scholar] [CrossRef]
- Knorr, M.; Frey, S.D.; Curtis, P.S. Nitrogen additions and litter decomposition: A meta-analysis. Ecology 2005, 86, 3252–3257. [Google Scholar] [CrossRef]
- Xia, M.X.; Talhelm, A.F.; Pregitzer, K.S. Long-term simulated atmospheric nitrogen deposition alters leaf and fine root decomposition. Ecosystems 2018, 21, 1–14. [Google Scholar] [CrossRef]
- Craine, J.M.; Morrow, C.; Fierer, N. Microbial nitrogen limitation increases decomposition. Ecology 2007, 88, 2105–2113. [Google Scholar] [CrossRef]
- Berg, B. Decomposition patterns for foliar litter–A theory for influencing factors. Soil Biol. Biochem. 2014, 78, 222–232. [Google Scholar] [CrossRef]
- Guo, L.L.; Deng, M.F.; Yang, S.; Liu, W.X.; Wang, X.; Wang, J.; Liu, L.L. The coordination between leaf and fine root litter decomposition and the difference in their controlling factors. Glob. Ecol. Biogeogr. 2021, 30, 2286–2296. [Google Scholar] [CrossRef]
- Vivanco, L.; Austin, A.T. The importance of macro- and micro-nutrients over climate for leaf litter decomposition and nutrient release in Patagonian temperate forests. For. Ecol. Manag. 2019, 441, 144–154. [Google Scholar] [CrossRef]
- Keiluweit, M.; Nico, P.; Harmon, M.E.; Mao, J.; Pett-Ridge, J.; Kleber, M. Long-term litter decomposition controlled by manganese redox cycling. Proc. Natl. Acad. Sci. USA 2015, 112, 5253–5260. [Google Scholar] [CrossRef] [PubMed]
- Jing, H.; Wang, G.L. Temporal dynamics of Pinus tabulaeformis litter decomposition under nitrogen addition on the Loess Plateau of China. For. Ecol. Manag. 2020, 476, 118465. [Google Scholar] [CrossRef]
- Liu, J.X.; Fang, X.; Deng, Q.; Han, T.F.; Huang, W.J.; Li, Y.Y. CO2 enrichment and N addition increase nutrient loss from decomposing leaf litter in subtropical model forest ecosystems. Sci. Rep. 2015, 5, 7952. [Google Scholar] [CrossRef]
- Wang, Q.; Kwak, J.H.; Choi, W.J.; Chang, S.X. Long-term N and S addition and changed litter chemistry do not affect trembling aspen leaf litter decomposition, elemental composition and enzyme activity in a boreal forest. Environ. Pollut. 2019, 250, 143–154. [Google Scholar] [CrossRef]
- Wang, M.; Liu, G.C.; Xing, Y.J.; Yan, G.Y.; Wang, Q.K. Long-Term Nitrogen Addition Accelerates Litter Decomposition in a Larix gmelinii Forest. Forests 2024, 15, 372. [Google Scholar] [CrossRef]
- Zeng, X.Y.; Gao, H.L.; Wang, R.X.; Majcher, B.M.; Woon, J.S.; Wenda, C.; Eggleton, P.; Griffiths, H.M.; Ashton, L.A. Global contribution of invertebrates to forest litter decomposition. Ecol. Lett. 2024, 27, e14423. [Google Scholar] [CrossRef]
- Wei, B.; Zhang, D.Y.; Kou, D.; Yang, G.B.; Liu, F.T.; Peng, Y.F.; Yang, Y.H. Decreased ultraviolet radiation and decomposer biodiversity inhibit litter decomposition under continuous nitrogen inputs. Funct. Ecol. 2022, 36, 998–1009. [Google Scholar] [CrossRef]
- Wang, X.; Xu, Z.W.; Lü, X.T.; Wang, R.Z.; Cai, J.P.; Yang, S.; Li, M.H.; Jiang, Y. Responses of litter decomposition and nutrient release rate to water and nitrogen addition differed among three plant species dominated in a semi-arid grassland. Plant Soil 2017, 418, 241–253. [Google Scholar] [CrossRef]
- Sun, T.; Hobbie, S.E.; Berg, B.; Zhang, H.G.; Wang, Q.K.; Wang, Z.W.; Hättenschwiler, S. Contrasting dynamics and trait controls in first-order root compared with leaf litter decomposition. Proc. Natl. Acad. Sci. USA 2018, 115, 10392–10397. [Google Scholar] [CrossRef] [PubMed]
- Sun, T.; Dong, L.L.; Zhang, Y.Y.; Hättenschwiler, S.; Schlesinger, W.H.; Zhu, J.J.; Berg, B.; Adair, E.C.; Fang, Y.T.; Hobbie, S.E. General reversal of N-decomposition relationship during long-term decomposition in boreal and temperate forests. Proc. Natl. Acad. Sci. USA 2024, 121, e2401398121. [Google Scholar] [PubMed]
- Freschet, G.T.; Cornwell, W.K.; Wardle, D.A.; Elumeeva, T.G.; Liu, W.D.; Jackson, B.G.; Onipchenko, V.G.; Soudzilovskaia, N.A.; Tao, J.P.; Cornelissen, J.H.C. Linking litter decomposition of above- and below-ground organs to plant-soil feedbacks worldwide. J. Ecol. 2013, 101, 943–952. [Google Scholar]
- Tian, D.S.; Reich, P.B.; Chen, H.Y.H.; Xiang, Y.Z.; Luo, Y.Q.; Shen, Y.; Meng, C.; Han, W.X.; Niu, S.L. Global changes alter plant multi-element stoichiometric coupling. New Phytol. 2019, 221, 807–817. [Google Scholar] [CrossRef] [PubMed]
- Mao, J.H.; Mao, Q.G.; Zheng, M.H.; Mo, J.M. Responses of foliar nutrient status and stoichiometry to nitrogen addition in different ecosystems: A meta-analysis. J. Geophys. Res. Biogeosciences 2020, 125, e2019JG005347. [Google Scholar] [CrossRef]
- Su, Y.; Dong, K.H.; Wang, C.H.; Liu, X.J. A meta-analysis of the impacts of nitrogen addition on plant multiple-element contents in natural ecosystems. Plant Ecol. 2024, 226, 111–121. [Google Scholar] [CrossRef]
- Olson, J.S. Energy storage and the balance of producers and decomposers in ecological systems. Ecology 1963, 44, 322–331. [Google Scholar] [CrossRef]
- Hedges, L.V.; Gurevitch, J.; Curtis, P.S. The meta-analysis of response ratios in experimental ecology. Ecology 1999, 80, 1150–1156. [Google Scholar] [CrossRef]
- Meng, C.; Tian, D.S.; Zeng, H.; Li, Z.L.; Chen, H.Y.H.; Niu, S.L. Global meta-analysis on the responses of soil extracellular enzyme activities to warming. Sci. Total Environ. 2020, 705, 135992. [Google Scholar] [PubMed]
- Xu, X.; Sun, Y.; Sun, J.J.; Cao, P.H.; Wang, Y.C.; Chen, H.Y.H.; Wang, W.F.; Ruan, H.H. Cellulose dominantly affects soil fauna in the decomposition of forest litter: A meta-analysis. Geoderma 2020, 378, 114620. [Google Scholar] [CrossRef]
- Bai, E.; Li, S.L.; Xu, W.H.; Li, W.; Dai, W.W.; Jiang, P. A meta-analysis of experimental warming effects on terrestrial nitrogen pools and dynamics. New Phytol. 2013, 199, 441–451. [Google Scholar]
- Rosenberg, M.S.; Adams, D.C.; Gurevitch, J. MetaWin: Statistical Software for Meta-Analysis, Version 3.0; Sinauer Associates, Inc.: Sunderland, MA, USA, 2000. [Google Scholar]
- He, M.; Zhou, G.Y.; Yuan, T.F.; Groenigen, K.J.; Shao, J.J.; Zhou, X.H. Grazing intensity significantly changes the C: N: P stoichiometry in grassland ecosystems. Glob. Ecol. Biogeogr. 2019, 29, 355–369. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, L.; Wang, W.; Liu, X.; Su, Y. Responses and Controlling Factors of the Litter Decay Rate to Nitrogen Addition Across Global Forests: A Meta-Analysis. Plants 2025, 14, 3221. https://doi.org/10.3390/plants14203221
Fan L, Wang W, Liu X, Su Y. Responses and Controlling Factors of the Litter Decay Rate to Nitrogen Addition Across Global Forests: A Meta-Analysis. Plants. 2025; 14(20):3221. https://doi.org/10.3390/plants14203221
Chicago/Turabian StyleFan, Lijun, Weiwei Wang, Xuejun Liu, and Yuan Su. 2025. "Responses and Controlling Factors of the Litter Decay Rate to Nitrogen Addition Across Global Forests: A Meta-Analysis" Plants 14, no. 20: 3221. https://doi.org/10.3390/plants14203221
APA StyleFan, L., Wang, W., Liu, X., & Su, Y. (2025). Responses and Controlling Factors of the Litter Decay Rate to Nitrogen Addition Across Global Forests: A Meta-Analysis. Plants, 14(20), 3221. https://doi.org/10.3390/plants14203221