Modifications in Carbon and Nitrogen Metabolites of Vigna unguiculata L. Seed Organs Induced by Different Priming Treatments
Abstract
1. Introduction
2. Results
2.1. Electrolytes Leakage of Seeds
2.2. Study of Water Content and Metabolites at the Embryonic Level
2.2.1. Water Content of the Embryos
2.2.2. Quantitative Analyses of Metabolites
- Total soluble proteins contents
- Total free amino acids contents
- Total amino acids: total proteins ratio
- Free proline contents
- Free proline: total amino acids ratio
- Starch contents
- Total soluble sugars contents
- Soluble sugars: starch ratio
2.2.3. Qualitative Analyses of Metabolites
- Amino acids composition
- Composition of soluble sugars
3. Discussion
3.1. Effect of Priming on Electrolytes Release
3.2. Effect of Priming on Water Absorption
3.3. Effect of Priming on the Reserve Hydrolysis
3.4. Effect of Priming on Free Proline Accumulation
3.5. Effects of Priming on Amino Acids Composition
3.6. Effects of Priming on Soluble Sugars Composition
4. Materials and Methods
4.1. Seed Priming
4.1.1. Osmopriming
4.1.2. Hydropriming
4.1.3. Double Hydropriming
4.2. Electrolytes Leakage from Seeds
4.3. Sampling of Embryos
4.4. Quantitative Analyses
4.4.1. Water Content of the Embryos
4.4.2. Determination of Soluble Proteins
4.4.3. Determination of Total Amino Acids
4.4.4. Determination of Free Proline
4.4.5. Determination of Total Soluble Sugars
4.4.6. Determination of Starch
4.5. Quantitative Analyses
4.5.1. Identification of Amino Acids by TLC
4.5.2. Identification of Soluble Sugars via TLC
4.6. Statistical Test
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Turner, N.C.; Kramer, P.J. (Eds.) Adaptation of Plants to Water and High Temperature Stress; Wiley-Interscience: New York, NY, USA, 2013; pp. 437–439. [Google Scholar] [CrossRef]
- Boucelha, L.; Djebbar, R. Influence de différents traitements de prégermination des graines de Vigna unguiculata (L.) Walp. sur les performances germinatives et la tolérance au stress hydrique. Biotechnol. Agron. Soc. Environ. 2015, 19, 132–144. [Google Scholar]
- Boucelha, L.; Djebbar, R.; Benlahrach, S. The ambiguous role of silicon in the pregermination treatment of Vigna unguiculata seeds. J. Plant Growth Regul. 2025. [Google Scholar] [CrossRef]
- Bradford, K.J. Manipulation of seed water relations via osmotic priming to improve germination under stress conditions. Hort. Sci. 1986, 21, 1105–1112. [Google Scholar] [CrossRef]
- Taylor, A.G.; Harman, G.E. Concepts and technologies of selected seed treatments. Annu. Rev. Phytopathol. 1990, 28, 321–339. [Google Scholar] [CrossRef]
- Mazliak, P. Croissance et développement. Physiologie végétale II, Hermann éd., Paris, Collection Méthodes, 1982, 465p. Available online: https://www.editions-hermann.fr/livre/physiologie-vegetale-paul-mazliak (accessed on 28 June 2025).
- Black, M.; Bewley, J.D. (Eds.) Seed Technology and Its Biological Basis; Sheffield Academic Press Ltd.: Sheffield, UK, 2000; pp. 287–325. Available online: https://www.scirp.org/reference/referencespapers?referenceid=35350 (accessed on 28 February 2025).
- Heydecker, W.; Higgins, J.; Gulliver, R.L. Accelerated germination by osmotic seed treatment. Nature 1973, 246, 42–44. [Google Scholar] [CrossRef]
- Basra, S.M.A.; Afzal, I.; Anwar, S.; Anwar-ul-haq, M.; Shafq, M.; Majeed, K. Alleviation of salinity stress by seed invigoration techniques in wheat (Triticum aestivum L.). Seed Technol. 2006, 28, 36–46. [Google Scholar]
- Lamichaney, A.; Kumar, V.; Katiyar, P.K. Effect of seed priming-induced metabolic changes on germination and field emergence of chickpea. J. Environ. Biol. 2018, 39, 522–528. [Google Scholar] [CrossRef]
- Melzi Ou Mezzi, C.; Boucelha, L.; Abrous-Belbachir, O.; Djebbar, R. Effects of hydropriming and chemical pretreatments of Trigonella foenum-graecum (L.) seeds on germination, antioxidant activities and growth. An. Univ. din Oradea Fasc. Biol. 2021, 28, 165–175. [Google Scholar]
- Gueridi, S.; Boucelha, L.; Abrous-Belbachir, O.; Djebbar, R. Effects of hormopriming and pretreatment with gibberellic acid on fenugreek (Trigonella foenum graecum L.) seed germination. Acta Bot. Croat. 2024, 83, 135–144. [Google Scholar] [CrossRef]
- Singh, K.M.; Baksi, S.; Rani, S.; Jha, A.B.; Dubey, R.S.; Sharma, P. NanoBoost: Maximizing crop resilience and yield via nanopriming under salt stress. Environ. Exp. Bot. 2024, 226, 105937. [Google Scholar] [CrossRef]
- Hameed, A.; Hussain, S.; Nisar, F.; Rasheed, A.; Shah, S.Z. Seed priming as an effective technique for enhancing salinity tolerance in plants: Mechanistic insights and prospects for saline agriculture with a special emphasis on halophytes. Seeds 2025, 4, 14. [Google Scholar] [CrossRef]
- MacDonald, M.T.; Mohan, V.R. Chemical seed priming: Molecules and mechanisms for enhancing plant germination, growth, and stress tolerance. Curr. Issues Mol. Biol. 2025, 47, 177. [Google Scholar] [CrossRef]
- Mahra, S.; Tripathi, S.; Tiwari, K.; Sharma, S.; Mathew, S.; Kumar, V.; Shivesh Sharma, S. Harnessing nanotechnology for sustainable agriculture: From seed priming to encapsulation. Plant Nano Biol. 2025, 11, 100124. [Google Scholar] [CrossRef]
- Yari, L.; Aghaalikani, M.; Khazaei, F. Effect of seed priming duration and temperature on seed germination behavior of bread wheat (Triticum aestivum L.). J. Agric. Biol. Sci. 2010, 5, 1–6. [Google Scholar]
- Taylor, A.G.; Allen, P.S.; Bennett, M.A.; Bradford, K.J.; Burris, J.S.; Misra, M.K. Seed enhancements. Seed Sci. Res. 1998, 8, 245–256. [Google Scholar] [CrossRef]
- Busquère, A.; Lefebvre, D.; Galaup, P.; Tricoulet, L.; Musset, C.; Lacroux, E.; Merah, O. Osmopriming Increases Seed Germination of Amaranthus cruentus (L.). Seeds 2025, 4, 37. [Google Scholar] [CrossRef]
- Dell’Aquila, A.; Bewley, J.D. Protein synthesis in the axes of polyethylene glycol treated pea seeds and during subsequent germination. J. Exp. Bot. 1989, 40, 1001–1007. [Google Scholar] [CrossRef]
- De Castro, R.D.; van Lammeren, A.A.M.; Groot, S.P.C.; Bino, R.J.; Hilhorst, H.W. Cell division and subsequent radicle protrusion in tomato seeds are inhibited by osmotic stress but DNA synthesis and formation of microtubular cytoskeleton are not. Plant Physiol. 2000, 122, 327–335. [Google Scholar] [CrossRef]
- Varier, A.; Vari, A.K.; Dadlani, M. The subcellular basis of seed priming. Curr. Sci. 2010, 99, 450–456. [Google Scholar]
- Hussain, S.; Khan, F.; Hussain, H.A.; Nie, L. Physiological and biochemical mechanisms of seed priming-induced chilling tolerance in rice cultivars. Front. Plant Sci. 2016, 7, 116. [Google Scholar] [CrossRef] [PubMed]
- Boucelha, L.; Djebbar, R.; Abrous-Belbachir, O. Vigna unguiculata seed priming is related to redox status of plumule, radicle and cotyledons. Funct. Plant Biol. 2019, 46, 584–594. [Google Scholar] [CrossRef]
- Chen, K.; Arora, R. Priming memory invokes seed stress-tolerance. Environ. Exp. Bot. 2013, 94, 33–45. [Google Scholar] [CrossRef]
- Bruce, T.J.A.; Matthes, M.C.; Napier, J.A.; Pickett, J.A. Stressful “memories” of plants: Evidence and possible mechanisms. Plant Sci. 2007, 173, 603–608. [Google Scholar] [CrossRef]
- Tanou, G.; Fotopoulos, V.; Molassiotis, A. Priming against environmental challenges and proteomics in plants: Update and agricultural perspectives. Front. Plant Sci. 2012, 3, 216. [Google Scholar] [CrossRef]
- Stanton, W.R. Grain legumes in Africa; Food and Agriculture Organization of the United Nations: Rome, Italy, 1966; 183p, Available online: https://books.google.fr/books/about/Grain_Legumes_in_Afr%20ica.html?id=kTFJAAAAMAAJ&redir_esc=y (accessed on 12 December 2024).
- Nkouannessi, M. The Genetic, Morphological, and Physiological Evaluation of African Cowpea Genotypes. Doctoral Thesis, University of the Free State, Bloemfontein, South Africa, 2005; 131p. Available online: http://hdl.handle.net/11660/763 (accessed on 9 October 2024).
- Muchero, W.; Ehlers, J.D.; Close, T.J.; Roberts, P.A. Mapping QTL for drought stress-induced premature senescence and maturity in cowpea [Vigna unguiculata (L.) Walp.]. Theor. Appl. Genet. 2009, 118, 849–863. [Google Scholar] [CrossRef] [PubMed]
- Pasquet, R.S. A new subspecies of Vigna unguiculata (Leguminosae-Papilionoideae). Kew Bull. 1997, 52, 840. [Google Scholar] [CrossRef]
- Boucelha, L.; Djebbar, R.; Abrous-Belbachir, O. Is protein carbonylation a biomarker of seed priming and ageing? Funct. Plant Biol. 2021, 48, 611–623. [Google Scholar] [CrossRef] [PubMed]
- Hoy, D.J.; Gamble, E.E. The effect of seed size and seed density on germination and vigour in soybean (Glycine max (L.) Merr). Can. J. Plant Sci. 1985, 65, 1–8. [Google Scholar] [CrossRef]
- Leigh, R.; Wyn Jones, R. A hypothesis relating critical potassium concentrations for growth to the distribution and functions of this ion in the plant cell. New Phytol. 1984, 97, 1–13. [Google Scholar] [CrossRef]
- Bewley, D.; Black, M. Seeds development and maturation. In Physiology of Development and Germination; Bewley, D.J., Black, M., Eds.; Plenum Press: New York, NY, USA, 1994; pp. 35–117. [Google Scholar] [CrossRef]
- Bangham, A.D. Models of cell membranes. Hosp. Pract. 1973, 8, 79–88. [Google Scholar] [CrossRef]
- Wattanakulpakin, P.; Photchanachai, S.; Ratanakhanokchai, K.; Kyu, K.L.; Ritthichai, P.; Miyagawa, S. Hydropriming effects on carbohydrate metabolism, antioxidant enzyme activity, and seed vigor of maize (Zea mays L.). Afr. J. Biotechnol. 2012, 11, 3537–3547. [Google Scholar] [CrossRef]
- Boucelha, L. Compréhension des mécanismes régissant l’endurcissement des graines de Vigna unguiculata (L) Walp. Doctoral Thesis, USTHB University, Algiers, Algeria, 2015; 196p. Available online: https://www.ccdz.cerist.dz/admin/notice.php?id=00000000000000700720000104 (accessed on 23 November 2024).
- Gelormini, G. Optimisation des Propriétés Germinatives des Graines de Colza par Initialisation: Aspects Méthodologiques et Fondamentaux. Doctoral Thesis, University of Rennes, Rennes, France, 1995; 171p. Available online: https://theses.fr/1995REN10101 (accessed on 5 January 2025).
- Fu, J.R.; Lu, X.H.; Chen, R.Z.; Zhang, B.Z.; Liu, Z.S.; Cai, D.Y. Osmoconditioning of peanut (Arachis hypogaea L.) seeds with PEG to improve vigour and some biochemical activities. Seed Sci. Technol. 1988, 16, 197–212. [Google Scholar]
- Sung, F.J.; Chang, Y.H. Biochemical activities associated with priming of sweet corn seeds to improve vigour. Seed Sci. Technol. 1993, 21, 97–105. [Google Scholar]
- Szopińska, D.; Politycka, B. The effects of hydro- and osmopriming on the germination, vigour, and hydrolytic enzymes activity of common zinnia (Zinnia elegans Jacq.) seeds. Folia Hortic. 2016, 28, 3–11. [Google Scholar] [CrossRef]
- Tounekti, T.; Mahdhi, M.; Zarraq, A.F.; Khemira, H. Priming improves germination and seed reserve utilization, growth, antioxidant responses, and membrane stability at early seedling stage of Saudi sorghum varieties under drought stress. Not. Bot. Horti Agrobot. Cluj-Napoca 2020, 48, 938–953. [Google Scholar] [CrossRef]
- Nie, L.; Song, S.; Yin, Q.; Zhao, T.; Liu, H.; He, A.; Wang, W. Enhancement in seed priming-induced starch degradation of rice seed under chilling stress via GA-mediated α-amylase expression. Rice. 2022, 15, 19. [Google Scholar] [CrossRef]
- Hanson, A.D. The effects of imbibition drying treatments on wheat seeds. New Phytol. 1973, 72, 1063–1073. [Google Scholar] [CrossRef]
- Kirmizi, S.; Güleryüz, G. Protein mobilization and proteolytic enzyme activities during seed germination of broad bean (Vicia faba L.). Z. Naturforsch C J. Biosci. 2006, 61, 222–226. [Google Scholar] [CrossRef] [PubMed]
- Gallardo, K.; Job, C.; Groot, S.P.C.; Puype, M.; Demol, H.; Vandekerckhove, J.; Job, D. Proteomic analysis of Arabidopsis seed germination and priming. Plant Physiol. 2001, 126, 835–848. [Google Scholar] [CrossRef] [PubMed]
- Good, A.G.; Zaplachinski, S.T. The effects of drought stress on free amino acids accumulation and protein synthesis in Brassica napus. Physiol. Plant. 1994, 90, 9–14. [Google Scholar] [CrossRef]
- Dai, L.Y.; Zhu, H.D.; Yin, K.D.; Du, J.D.; Zhang, Y.X. Seed priming mitigates the effects of saline-alkali stress in soybean seedlings. Chilean J. Agric. Res. 2017, 77, 118–125. [Google Scholar] [CrossRef]
- Kubala, S.; Wojtyla, L.; Quinet, M.; Lechowska, K.; Lutts, S.; Garnczarska, M. Enhanced expression of the proline synthesis gene P5CSA in relation to seed osmopriming improvement of Brassica napus germination under salinity stress. J. Plant Physiol. 2015, 183, 1–12. [Google Scholar] [CrossRef]
- Coruzzi, G.M.; Last, R.L. Amino acids. In Biochemistry and Molecular Biology of Plants; Buchanan, R.B., Gruissem, W., Jones, R., Eds.; American Society of Plant Physiology Press: Rockville, MD, USA, 2000; pp. 358–410. Available online: https://www.scirp.org/reference/referencespapers?referenceid=2044502 (accessed on 28 June 2025).
- Kang, J.H.; Wang, L.; Giri, A.; Baldwin, I.T. Silencing threonine deaminase and JAR4 in Nicotiana attenuata impairs jasmonic acid-isoleucine-mediated defenses against Manduca sexta. Plant Cell. 2006, 18, 3303–3320. [Google Scholar] [CrossRef]
- Wallsgrove, R.M.; Lea, P.J.; Miflin, B.J. Intracellular localization of aspartate kinase and the enzymes of threonine and methionine biosynthesis in green leaves. Plant Physiol. 1983, 71, 780–784. [Google Scholar] [CrossRef] [PubMed]
- Mikkelsen, M.D.; Halkier, B.A. Metabolic engineering of valine and isoleucine-derived glucosinolates in Arabidopsis expressing CYP79D2 from Cassava. Plant Physiol. 2003, 131, 773–779. [Google Scholar] [CrossRef] [PubMed]
- Hare, P.D.; Cress, W.A.; Van Staden, J. Dissecting the roles of osmolytes accumulation during stress. Plant Cell Environ. 1998, 21, 535–553. [Google Scholar] [CrossRef]
- Kalamaki, M.S.; Alexandrou, D.; Lazari, D.; Merkouropoulos, G.; Fotopoulos, V.; Pateraki, I.; Aggelis, A.; Carrillo-Lopez, A.; Rubio-Cabetas, M.J.; Kanellis, A.K. Overexpression of a tomato N-acetyl-L-glutamate synthase gene (SINAGS1) in Arabidopsis thaliana results in high ornithine levels and increased tolerance in salt and drought stresses. J. Exp. Bot. 2009, 60, 1859–1871. [Google Scholar] [CrossRef]
- Sakamoto, A.; Murata, N. The role of glycine betaine in the protection of plants from stress: Clues from transgenic plants. Plant Cell Environ. 2002, 25, 163–171. [Google Scholar] [CrossRef]
- Giri, J. Glycine betaine and abiotic stress tolerance in plants. Plant Signal Behav. 2011, 6, 1746–1751. [Google Scholar] [CrossRef]
- Creelman, R.A.; Mullet, J.E. Biosynthesis and action of jasmonates in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1997, 48, 355–381. [Google Scholar] [CrossRef]
- Wasternack, C.; Hause, B. Jasmonates and octadecanoids: Signals in plant stress responses and development. Prog. Nucleic Acid. Res. Mol. Biol. 2002, 72, 165–221. [Google Scholar] [CrossRef]
- Leustek, T.; Saito, K. Sulfate transport and assimilation in plants. Plant Physiol. 1999, 120, 637–644. [Google Scholar] [CrossRef]
- Wirtz, M.; Droux, M. Synthesis of the sulfur amino acids: Cysteine and methionine. Photosynth. Res. 2005, 86, 345–362. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, C.; Calo, L.; Romero, L.C.; Garcia, I.; Gotor, C. An O-acetylserine(thiol)lyase homolog with L- cysteine desulfhydrase activity regulates cysteine homeostasis in Arabidopsis. Plant Physiol. 2010, 152, 656–669. [Google Scholar] [CrossRef] [PubMed]
- Droux, M. Sulfur assimilation and the role of sulfur in plant metabolism: A survey. Photosynth. Res. 2004, 79, 331–348. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, C.; Lozano-Juste, J.; Romero, L.C.; Garcia, I.; Gotor, C.; Leon, J. Inhibition of Arabidopsis O acetylserine (thiol) lyase A1 by tyrosine nitration. J. Biol. Chem. 2011, 286, 578–586. [Google Scholar] [CrossRef]
- Ros, R.; Cascales-Minana, B.; Segura, J.; Anoman, A.D.; Toujani, W.; Flores-Tornero, M.; Rosa-Tellez, S.; Muñoz-Bertomeu, J. Serine biosynthesis by photorespiratory and non-photorespiratory pathways: An interesting interplay with unknown regulatory networks. Plant Biol. 2012, 15, 707–712. [Google Scholar] [CrossRef]
- Ros, R.; Muñoz-Bertomeu, J.; Krueger, S. Serine in plants: Biosynthesis, metabolism, and functions. Trends Plant Sci. 2014, 19, 564–569. [Google Scholar] [CrossRef]
- Dharmasiri, N.; Dharmasiri, S.; Estelle, M. The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature 2005, 435, 441–445. [Google Scholar] [CrossRef]
- Mano, Y.; Nemoto, K. The pathway of auxin biosynthesis in plants. J. Exp. Bot. 2012, 63, 2853–2872. [Google Scholar] [CrossRef]
- Zhao, J.; Williams, C.C.; Last, R.L. Induction of Arabidopsis tryptophan pathway enzymes and camalexin by amino acids starvation, oxidative stress, and an abiotic elicitor. Plant Cell. 1998, 10, 359–370. [Google Scholar] [CrossRef]
- Michel, T. Nouvelles Méthodologies D’extraction, de Fractionnement et D’identification: Application aux Molécules Bioactives de L’argousier (Hippophaë rhamnoides). Doctoral Thesis, University of Orléans, Orléans, France, 2011; 288p. Available online: https://theses.hal.science/tel-00677211v1 (accessed on 17 December 2024).
- Sheen, J. Master regulators in plant glucose signaling networks. J. Plant Biol. 2014, 57, 67–79. [Google Scholar] [CrossRef]
- Roman, G. The genetics of Drosophila transgenics. Bioessays 2004, 26, 1243–1253. [Google Scholar] [CrossRef] [PubMed]
- McNeil, M.; Darvill, A.G.; Fry, S.C.; Albersheim, P. Structure and function of the primary cell walls of plants. Annu. Rev. Biochem. 1984, 53, 625–663. [Google Scholar] [CrossRef]
- Bogdanovic, J.; Mojovic, M.; Milosavic, N.; Mitrovic, A.; Vucinic, Z.; Spasojevic, I. Role of fructose in the adaptation of plants to cold-induced oxidative stress. Eur. Biophys. J. 2008, 7, 1241–1246. [Google Scholar] [CrossRef] [PubMed]
- Winter, H.; Huber, S.C. Regulation of sucrose metabolism in higher plants: Localization and regulation of activity of key enzymes. Crit. Rev. Plant Sci. 2000, 19, 31–67. [Google Scholar] [CrossRef]
- Chiou, T.Z.; Bush, D.R. Molecular cloning, immunochemical localization to the vacuole, and expression in transgenic yeast and tobacco of a putative sugar transporter from sugar beet. Plant Physiol. 1996, 110, 511–520. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, O.; Bethencourt, L.; Quero, A.; Sangwan, R.S.; Clement, C. Trehalose and plant stress responses: Friend or foe? Trends Plant Sci. 2010, 15, 409–417. [Google Scholar] [CrossRef]
- Burke, E.R. D-Ribose: What You Need to Know; Avery’s Nutrition Discovery Series; Avery Publishing Group: New York, NY, USA, 2000; 48p, Available online: https://books.google.dz/books/about/D_Ribose.html?id=BrWsPAAACAAJ&redir_esc=y (accessed on 11 December 2024).
- Corbineau, F.; Ozbingol, N.; Vineland, D.; Come, D. Improvement of tomato seed germination by osmopriming as related to energy metabolism. In Seed Biology: Advances and Applications. Proceedings of the Sixth International Workshop on Seeds, Merida, Mexico, 1999; Black, M., Bradford, K.J., Vasquez-Ramos, J., Eds.; CABI: New York, NY, USA, 2000; pp. 467–474. [Google Scholar] [CrossRef]
- Gimeno-Gilles, C. Étude Cellulaire et Moléculaire de la Germination Chez Medicago truncatula. Doctoral Thesis, University of Angers, Angers, France, 2009; 174p. Available online: https://theses.hal.science/tel-00460435/ (accessed on 22 March 2025).
- Kotake, T.; Yamanashi, Y.; Imaizumi, C.; Tsumuraya, Y. Metabolism of L-arabinose in plants. J. Plant Res. 2016, 129, 781–792. [Google Scholar] [CrossRef]
- Bahat-Samet, E.; Castro-Sowinski, S.; Okon, Y. Arabinose content of extracellular polysaccharide plays a role in cell aggregation of Azospirillum brasilense. FEMS Microbiol. Lett. 2004, 237, 195–203. [Google Scholar] [CrossRef]
- Dionisio-Sese, M.L.; Tobita, S. Antioxidant responses of rice seedlings to salinity stress. Plant Sci. 1998, 135, 1–9. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Yemm, E.W.; Cocking, E.C. The determination of amino acids with ninhydrin. Analyst 1955, 80, 209–213. [Google Scholar] [CrossRef]
- Rosen, H. A modified ninhydrin colorimetric analysis for amino acids. Arch. Biochem. Biophys. 1957, 67, 10–15. [Google Scholar] [CrossRef] [PubMed]
- Bates, S. Rapid determination of free proline for water stress studies. Plant Soil. 1973, 39, 205–207. [Google Scholar] [CrossRef]
- Magné, C.; Larher, F. High sugar content of extracts interferes with colorimetric determination of amino acids and free proline. Anal. Biochem. 1992, 200, 115–118. [Google Scholar] [CrossRef]
- McCready, R.M.; Guggolz, J.; Silviera, V.; Owes, H.S. Determination of starch and amylase in vegetables: Application to peas. Ann. Chem. 1950, 22, 156–158. [Google Scholar] [CrossRef]
Parameters | Organ | 6 h Imbib | PEG 30% | 3 h Hydro | 6 h Hydro | 3 h Double Hydro |
---|---|---|---|---|---|---|
Water content | Cotyledons | +22.42% | +27% | +12.81% | +17.84% | +26% |
Radicle | +12.42% | +17.17% | +8.51% | +10.25% | +17.73% | |
Plumule | +8.51% | +15.71% | +16.72% | +18.91% | +24.6% | |
Proteins content | Cotyledons | −8.12% | −13.17% | −15.88% | −27.7% | −34.85% |
Radicle | −7.73% | −9.93% | −13.83% | −21.54% | −31.75% | |
Plumule | −4.47% | −15.74% | −18.22% | −33.32% | −45.75% | |
Amino acids content | Cotyledons | +6.96% | +96.72% | +59.89% | +110.49% | +200% |
Radicle | +14.8% | +80.95% | +27.94% | +48.53% | +144.83% | |
Plumule | +9.19% | +71.1% | +53.39% | +85.84% | +176.55% | |
Amino acid/proteins ratio | Cotyledons | +14.45% | +122.75% | +86.87% | +183.9% | +352.04% |
Radicle | +24.51% | +101.06% | +48.65% | +89.46% | +259% | |
Plumule | +13.91% | +102.36% | +86.92% | +177.73% | +408% | |
Free proline content | Cotyledons | −61% | +57.58% | +21.88% | +51.09% | +63.72% |
Radicle | −78.97% | +83.33% | +10.22% | +72.22% | +105.44% | |
Plumule | −16.7% | +702% | +228.10% | +306.25% | +490% | |
Free proline/ total amino acids ratio | Cotyledons | −63.74% | −19.75% | −24.07% | −27.78% | −45.24% |
Radicle | −81.96% | −0.18% | −8.62% | −10.34% | −17.24% | |
Plumule | −25% | +306.92% | +110.32% | +100% | +60% | |
Starch content | Cotyledons | −22.5% | −35.71% | −32.5% | −36.67% | −40% |
Radicle | −12.34% | −32.74% | −25.62% | −37.55% | −46.61% | |
Plumule | −9.11% | −15.85% | −12.23% | −27.14% | −40.35% | |
Soluble sugars content | Cotyledons | +27.13% | +57.84% | +44.05% | +60.86% | +91.4% |
Radicle | +9.74% | +32.02% | +28% | +34.41% | +42.22% | |
Plumule | +3.8% | +12.51% | +5.92% | +21.22% | +60.2% | |
Soluble sugars/starch ratio | Cotyledons | +66.27% | +148.86% | +116.30% | +157.15% | +223.33% |
Radicle | +24.89% | +96.29% | +72.08% | +115.24% | +166.39% | |
Plumule | +14.24% | +33.75% | +20.72% | +66.43% | +168.64% |
Amino Acids | Organ | Control | 6 h Imbib | PEG 30% | 3 h Hydro | 6 h Hydro | 3 h Double Hydro |
---|---|---|---|---|---|---|---|
Alanine | Radicle | + | + | + | + | + | ++ |
Arginine | Plumule | + | + | + | + | + | ++ |
Aspartate | Radicle | + | + | + | + | + | + |
Cysteine | Cotyledons | + | + | + | + | + | + |
Radicle | - | - | - | - | - | + | |
Plumule | - | - | - | - | - | + | |
Glycine | Cotyledons | + | + | + | + | + | ++ |
Histidine | Radicle | + | + | + | + | + | + |
Isoleucine | Radicle | - | - | + | + | + | ++ |
Methionine | Radicle | + | + | + | + | + | ++ |
Ornithine | Cotyledons | + | + | + | + | + | ++ |
Proline | Cotyledons | + | + | +++ | + | + | ++ |
Radicle | + | + | ++ | + | + | +++ | |
Plumule | + | + | +++ | + | + | ++ | |
Serine | Plumule | - | - | - | - | - | + |
Threonine | Cotyledons | - | - | - | - | + | ++ |
Radicle | + | + | + | + | + | ++ | |
Plumule | + | + | + | + | + | ++ | |
Tryptophane | Radicle | + | + | + | + | + | ++ |
Plumule | - | - | - | - | - | + | |
Valine | Cotyledons | - | - | - | - | - | + |
Radicle | + | + | + | + | + | ++ | |
Plumule | + | + | + | + | + | ++ |
Soluble Sugars | Organ | Control | 6 h Imbib | PEG 30% | 3 h Hydro | 6 h Hydro | 3 h Double Hydro |
---|---|---|---|---|---|---|---|
Gluconic Acid | Cotyledons | ++ | ++ | + | + | + | + |
Radicle | ++ | ++ | ++ | ++ | + | + | |
Plumule | - | + | ++ | ++ | ++ | +++ | |
Arabinose | Plumule | - | - | - | - | - | + |
Fructose | Cotyledons | - | - | - | - | - | + |
Radicle | + | + | + | + | + | + | |
Galactose | Cotyledons | ++ | ++ | + | ++ | ++ | + |
Radicle | + | + | + | + | + | ++ | |
Glucose | Radicle | - | - | - | - | - | + |
Plumule | + | + | + | + | + | ++ | |
Maltose | Cotyledons | + | + | - | + | + | - |
Radicle | + | + | + | + | + | + | |
Plumule | - | + | ++ | ++ | ++ | +++ | |
Sucrose | Cotyledons | - | - | - | - | + | ++ |
Rhamnose | Plumule | - | - | - | - | - | + |
Ribose | Cotyledons | - | - | - | - | - | + |
Trehalose | Plumule | - | - | - | - | + | ++ |
Xylose | Radicle | - | - | - | - | - | + |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boucelha, L.; Djebbar, R.; Gueridi, S.; Merah, O. Modifications in Carbon and Nitrogen Metabolites of Vigna unguiculata L. Seed Organs Induced by Different Priming Treatments. Plants 2025, 14, 3218. https://doi.org/10.3390/plants14203218
Boucelha L, Djebbar R, Gueridi S, Merah O. Modifications in Carbon and Nitrogen Metabolites of Vigna unguiculata L. Seed Organs Induced by Different Priming Treatments. Plants. 2025; 14(20):3218. https://doi.org/10.3390/plants14203218
Chicago/Turabian StyleBoucelha, Lilya, Réda Djebbar, Sabrina Gueridi, and Othmane Merah. 2025. "Modifications in Carbon and Nitrogen Metabolites of Vigna unguiculata L. Seed Organs Induced by Different Priming Treatments" Plants 14, no. 20: 3218. https://doi.org/10.3390/plants14203218
APA StyleBoucelha, L., Djebbar, R., Gueridi, S., & Merah, O. (2025). Modifications in Carbon and Nitrogen Metabolites of Vigna unguiculata L. Seed Organs Induced by Different Priming Treatments. Plants, 14(20), 3218. https://doi.org/10.3390/plants14203218