The Phytochemical Composition and Molecular Mechanisms Involved in the Wound Healing Attributes of Bulbine Species—A Critical Review
Abstract
1. Introduction
2. Methodology
3. Bibliographic Results and Discussion
3.1. Ethnobotany of Bulbine Species
3.1.1. Wound Healing Properties of Bulbine Species
3.1.2. Traditional Methods of Preparing Bulbine Species for Wound Healing Purposes
4. Phytochemistry and Pharmacological Activities of Bulbine Plants
4.1. Anti-Nutrients
4.2. Tannins and Saponins
4.3. Flavonoids
4.4. Specialised Biomarker Compounds
Anthrones and Anthraquinones
5. Wound Healing Mechanisms of Bulbine Compounds
5.1. Wound Healing Activity of Flavonoids
5.1.1. Quercetin and Rutin
5.1.2. Luteolin and Chrysin
5.1.3. Apigenin
5.2. Wound Healing Properties of Bulbine Signature Compounds
5.2.1. Effects of Bulbine Signature Compounds on Transforming Growth Factor-β
5.2.2. Effects of Bulbine Signature Compounds on SMAD Proteins
5.2.3. Effects of Bulbine Signature Compounds on Mitogen-Activated Protein Kinases
5.3. In Vitro and In Vivo Studies Related to Remodelling Phase and Histopathology
6. Antimicrobial Properties of Bulbine Species
7. Toxicology Evidence of Some Wound Healing Bulbine Species
Bulbine Species | Plant Part (s) | Safe Dosage | Toxic Dosage | Toxicity | Key Finding | Reference |
---|---|---|---|---|---|---|
Bulbine abyssinica A.Rich. | Whole plant | LD50: 3120 µg/mL oil and 0.0625–1 mg/mL (fractions) | - | No toxic effect | All the plant fractions were non-toxic with LD50 values greater than 1 mg/mL. | [115,116] |
Leaves | 100–500 µg/mL | - | No toxic effect | B. abyssinica stimulated the proliferation of these cells can accelerate wound healing. | [114] | |
Bulbine frutescens (L.) Wild. | Whole plant | 62.5 and 125 mg/mL (aqueous extract) | 62.5 and 125 mg/mL (ethanol extract) | Hepatotoxicity | B. frutescens extracts increased glucose utilisation in Chang liver cells, except for toxic ethanolic extracts at 62.5 and 125 mg/mL. | [121] |
Leaves | 100–500 µg/mL | - | No toxic effect | B. frutescens stimulated the proliferation of these cells can accelerate wound healing. | [114] | |
Stem | 25 mg/kg of body weight | 50 and 100 mg/kg of body weight | Hepatorenal toxicity | Reduced kidney and liver weight, albumin and alkaline phosphatase. | [120] | |
Bulbine natalensis (L.) Baker (syn.: Bulbine latifolia Roem. Et Schult.) | Stem | 25 and 50 mg/kg of body weight | 100 mg/kg of body weight | Gonadotoxicity | 100 mg/kg body weight decreased progesterone and reproductive functions in male and female rats. | [122] |
Leaves | 100–500 µg/mL | - | No toxic effect | B.natalensis stimulated the proliferation of these cells can accelerate wound healing. | [114] |
8. Conclusions and Future Perspectives
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Moteetee, A.; Kose, L.S. Review of Medicinal Plants Used by the Basotho for Treatment of Skin Disorders: Their Phytochemical, Antimicrobial, and Anti-Inflammatory Potential. Afr. J. Tradit. Complement. Altern. Med. 2017, 14, 121–137. [Google Scholar] [CrossRef]
- Sharma, J.; Gairola, S.; Sharma, Y.P.; Gaur, R.D. Ethnomedicinal Plants Used to Treat Skin Diseases by Tharu Community of District Udham Singh Nagar, Uttarakhand, India. J. Ethnopharmacol. 2014, 158, 140–206. [Google Scholar] [CrossRef]
- Statistics South Africa. Statistical Release Mortality and Causes of Death in South Africa 2017: Findings from Death Notification; Government Printing Works: Pretoria, South African, 2020; Volume P0309.3.
- Abbasi, A.M.; Khan, M.A.; Ahmad, M.; Zafar, M.; Jahan, S.; Sultana, S. Ethnopharmacological Application of Medicinal Plants to Cure Skin Diseases and in Folk Cosmetics among the Tribal Communities of North-West Frontier Province, Pakistan. J. Ethnopharmacol. 2010, 128, 322–335. [Google Scholar] [CrossRef]
- Afolayan, A.J.; Grierson, D.S.; Mbeng, W.O. Ethnobotanical Survey of Medicinal Plants Used in the Management of Skin Disorders among the Xhosa Communities of the Amathole District, Eastern Cape, South Africa. J. Ethnopharmacol. 2014, 153, 220–232. [Google Scholar] [CrossRef]
- Coopoosamy, R.M. Traditional Information and Antibacterial Activity of Four Bulbine Species (Wolf). Afr. J. Biotechnol. 2011, 10, 220–224. [Google Scholar]
- Opinde, H.R.; Nyamache, A.K.; Gatheri, G.W. Antimicrobial Activity, Qualitative Phytochemical Composition of Crude Extracts from Medicinal Plants against Selected Enteric Bacterial Pathogens, Candida albicans. Asian J. Trop. Biotechnol. 2018, 15, 1–12. [Google Scholar] [CrossRef]
- Van Wyk, B.E. The Potential of South African Plants in the Development of New Medicinal Products. S. Afr. J. Bot. 2011, 77, 812–829. [Google Scholar] [CrossRef]
- Ghuman, S.; Ncube, B.; Finnie, J.F.; McGaw, L.J.; Mfotie Njoya, E.; Coopoosamy, R.M.; Van Staden, J. Antioxidant, Anti-Inflammatory and Wound Healing Properties of Medicinal Plant Extracts Used to Treat Wounds and Dermatological Disorders. S. Afr. J. Bot. 2019, 126, 232–240. [Google Scholar] [CrossRef]
- Shruthi, S.D.; Sujan Ganapathy, P.S.; Padmalatha Rai, S.; Ramachandra, Y.L. In Vitro, in Vivo and in Silico Antiarthritic Studies of Polyprenol from Kirganelia Reticulata Baill. J. Biochem. Technol. 2012, 3, 221–226. [Google Scholar]
- Kibiti, C.M.; Afolayan, A.J. Preliminary Phytochemical Screening and Biological Activities of Bulbine abyssinica Used in the Folk Medicine in the Eastern Cape Province, South Africa. Evid.-Based Complement. Altern. Med. 2015, 2015, 617607. [Google Scholar] [CrossRef] [PubMed]
- Klopper, R.R.; Klopper, A.W.; Baijnath, H.; Smith, G.R. Asphodelaceae: Alooideae. Bulbine triebneri, an Earlier Name for Bulbine alba, as Well as Additional and New Localities in Eastern and Northern Cape, South Africa. Bothalia 2008, 38, 67–69. [Google Scholar] [CrossRef]
- Shikalepo, R.; Mukakalisa, C.; Kandawa-Schulz, M.; Chingwaru, W.; Kapewangolo, P. In Vitro Anti-HIV and Antioxidant Potential of Bulbine frutescens (Asphodelaceae). J. Herb. Med. 2018, 12, 73–78. [Google Scholar] [CrossRef]
- Klopper, R.R.; van Wyk, A.E.; Smith, G.F. Phylogenetic Relationships in the Family Asphodelaceae (Asparagales). Biodivers. Ecol. Schumannia 2010, 3, 9–36. [Google Scholar]
- Kibiti, C.M.; Afolayan, A.J. Mineral Composition and Nutritive Analysis of Bulbine abyssinica A. Rich. Used in the Treatment of Infections and Complications Associated with Diabetes Mellitus in the Eastern Cape Province, South Africa. Afr. J. Tradit. Complement. Altern. Med. 2018, 15, 38–46. [Google Scholar] [CrossRef]
- Ghuman, S.; Ncube, B.; Finnie, J.F.; McGaw, L.J.; Coopoosamy, R.M.; Van Staden, J. Antimicrobial Activity, Phenolic Content, and Cytotoxicity of Medicinal Plant Extracts Used for Treating Dermatological Diseases and Wound Healing in KwaZulu-Natal, South Africa. Front. Pharmacol. 2016, 7, 1–9. [Google Scholar] [CrossRef]
- Iwalewa, E.O.; McGaw, L.J.; Naidoo, V.; Eloff, J.N. Inflammation: The Foundation of Diseases and Disorders. A Review of Phytomedicines of South African Origin Used to Treat Pain and Inflammatory Conditions. Afr. J. Biotechnol. 2007, 6, 2868–2885. [Google Scholar] [CrossRef]
- Ghuman, S.; Coopoosamy, R.M. Crude Sample Preparation, Extraction and in Vitro Screening for Antimicrobial Activity of Selected Wound Healing Medicinal Plants in Kwazulu-Natal, South Africa: A Review. J. Med. Plants Res. 2011, 5, 3572–3576. [Google Scholar]
- Odeyemi, S.W.; Afolayan, A.J. Identification of Antidiabetic Compounds from Polyphenolic-Rich Fractions of Bulbine Abyssinica A. Rich Leaves Samuel. Pharmacogn. Res. 2018, 10, 72–80. [Google Scholar] [CrossRef]
- Reddy, K.; Stafford, G.I.; Makunga, N.P. Skeletons in the Closet ? Using a Bibliometric Lens to Visualise Phytochemical and Pharmacological Activities Linked to Sceletium, a Mood Enhancer. Front. Plant Sci. 2024, 15, 1268101. [Google Scholar] [CrossRef]
- Motsei, M.L.; Lindsey, K.L.; Van Staden, J.; Jäger, A.K. Screening of Traditionally Used South African Plants for Antifungal Activity against Candida albicans. J. Ethnopharmacol. 2003, 86, 235–241. [Google Scholar] [CrossRef] [PubMed]
- Thring, T.S.A.; Weitz, F.M. Medicinal Plant Use in the Bredasdorp/Elim Region of the Southern Overberg in the Western Cape Province of South Africa. J. Ethnopharmacol. 2006, 103, 261–275. [Google Scholar] [CrossRef]
- Widgerow, A.D.; Chait, L.A.; Stals, R.; Stals, P.J. New Innovations in Scar Management. Aesthetic Plast. Surg. 2000, 24, 227–234. [Google Scholar] [CrossRef] [PubMed]
- Widgerow, A.D.; Chait, L.A. Treatment of Post Operative Scars with a Tape Containing a Gel from Bulbine frutescens. Patent No. 6,159,494, 12 December 2000. [Google Scholar]
- Keele, M.Z. Development of a Bulbine frutescens and Carpobrotus edulis Cream in Collaboration with Africa Traditional Healers of the Nelson Mandela Metropole. Ph.D. Thesis, Nelson Mandela Metropolitan University, Gqeberha, South Africa, 2014; pp. 1–137. [Google Scholar]
- Otang, W.M.; Grierson, D.S.; Ndip, R.N. Ethnobotanical Survey of Medicinal Plants Used in the Management of Opportunistic Fungal Infections in HIV/AIDS Patients in the Amathole District of the Eastern Cape Province, South Africa. J. Med. Plants Res. 2012, 6, 2071–2080. [Google Scholar] [CrossRef]
- Thinyane, Z.; Maroyi, A. Medicinal Plants Used by the Inhabitants of Alfred Nzo District Municipality in the Eastern Cape Province, South Africa. J. Pharm. Nutr. Sci. 2019, 9, 157–166. [Google Scholar] [CrossRef]
- Mocktar, C. Antimicrobial and Chemical Analyses of Selected Bulbine Species. Master’s Thesis, University of Durban-Westville, Durban, South Africa, 2001; pp. 1–102. [Google Scholar]
- Teffo, T.K.; Dukhan, S.; Ramalepe, P.; Risenga, I. Possible Implications of Climate Change on the Medicinal Properties of Bulbine Species with a Particular Focus on Bulbine abyssinica, Bulbine frutescens and Bulbine natalensis in South Africa. J. Pharmacogn. Phytochem. 2021, 10, 49–56. [Google Scholar] [CrossRef]
- Sagbo, J.; Mbeng, O.W. Plants Used for Cosmetics in the Eastern Cape Province of South Africa: A Case Study of Skin Care. Pharmacogn. Rev. 2021, 12, 139–156. [Google Scholar] [CrossRef]
- Prisa, D. Effective Microorganisms Improve Growth and Minerals Content in the Medicinal Plant Bulbine frutescens. Indian J. Nat. Sci. 2022, 12, 37763–37770. [Google Scholar]
- van Wyk, B.E. A Review of Khoi-San and Cape Dutch Medical Ethnobotany. J. Ethnopharmacol. 2008, 119, 331–341. [Google Scholar] [CrossRef]
- Lall, N.; Kishore, N. Are Plants Used for Skin Care in South Africa Fully Explored? J. Ethnopharmacol. 2014, 153, 61–84. [Google Scholar] [CrossRef]
- Agyare, C.; Boakye, Y.D.; Bekoe, E.O.; Hensel, A.; Dapaah, S.O.; Appiah, T. Review: African Medicinal Plants with Wound Healing Properties. J. Ethnopharmacol. 2016, 177, 85–100. [Google Scholar] [CrossRef]
- Lazarus, G.S.; Diane, M.; Knighton, D.R.; David, J.; Rodeheaver, G.; Robson, M.C. Definitions and Guidelines for Assessment of Wounds and Evaluation of Healing. Arch. Dermatol. 1994, 130, 4389–4493. [Google Scholar]
- Percival, N.J. Classification of Wounds and Their Management. Surgery 2002, 20, 114–117. [Google Scholar] [CrossRef]
- Pather, N.; Kramer, B. Bulbine Natalensis and Bulbine Frutescens Promote Cutaneous Wound Healing. J. Ethnopharmacol. 2012, 144, 523–532. [Google Scholar] [CrossRef] [PubMed]
- Pather, N.; Viljoen, A.M.; Kramer, B. A Biochemical Comparison of the in Vivo Effects of Bulbine Frutescens and Bulbine natalensis on Cutaneous Wound Healing. J. Ethnopharmacol. 2011, 133, 364–370. [Google Scholar] [CrossRef]
- Grierson, D.S.; Afolayan, A.J. Ethnobotanical Study of Plants Used for the Treatment of Diarrhoea in the Eastern Cape, South Africa. J. Ethnopharmacol. 1999, 67, 327–332. [Google Scholar] [CrossRef]
- Pretorius, J.C.; Magama, S.; Zietsman, P.C. Growth Inhibition of Plant Pathogenic Bacteria and Fungi by Extracts from Selected South African Plant Species. S. Afr. J. Bot. 2003, 69, 186–192. [Google Scholar] [CrossRef]
- Weideman, L. An Investigation into the Antibacterial Activities Medicinal Plants Traditionally Used in the Eastern Cape to Treat Secondary Skin Infections. Master’s. Thesis, Nelson Mandela Metropolitan University, Gqeberha, South Africa, 2005; pp. 1–105. [Google Scholar]
- Yakubu, M.T.; Mostafa, M.; Ashafa, A.O.T.; Afolayan, A.J. Anti-Microbial Activity of the Solvent Fractions from Bulbine natalensis Tuber. Afr. J. Tradit. Complement. Altern. Med. 2012, 9, 459–464. [Google Scholar] [PubMed]
- Seleteng-Kose, L.; Moteetee, A.; Van Vuuren, S. Medicinal Plants Used for the Treatment of Sexually Transmitted Infections in the Maseru District, Lesotho: Antimicrobial Validation, Phytochemical and Cytotoxicity Studies. S. Afr. J. Bot. 2019, 122, 457–466. [Google Scholar] [CrossRef]
- Ndidi, U.S.; Ndidi, C.U.; Olagunju, A.; Muhammad, A.; Billy, F.G.; Okpe, O. Proximate, Antinutrients and Mineral Composition of Raw and Processed (Boiled and Roasted) Sphenostylis Stenocarpa Seeds from Southern Kaduna, Northwest Nigeria. ISRN Nutr. 2014, 2014, 1–9. [Google Scholar] [CrossRef]
- Omoruyi, F.O.; Budiaman, A.; Eng, Y.; Olumese, F.E.; Hoesel, J.L.; Ejilemele, A.; Okorodudu, A.O. The Potential Benefits and Adverse Effects of Phytic Acid Supplement in Streptozotocin-Induced Diabetic Rats. Adv. Pharmacol. Sci. 2013, 2013. [Google Scholar] [CrossRef]
- Noonan, S.C.; Savage, G.P. Oxalate Content of Foods and Its Effect on Humans. Asia Pac. J. Clin. Nutr. 1999, 8, 64–74. [Google Scholar] [CrossRef]
- Prinsloo, G.; Nogemane, N.; Street, R. The Use of Plants Containing Genotoxic Carcinogens as Foods and Medicine. Food Chem. Toxicol. 2018, 116, 27–39. [Google Scholar] [CrossRef]
- Bodede, O.; Prinsloo, G. Ethnobotany, Phytochemistry and Pharmacological Significance of the Genus Bulbine (Asphodelaceae). J. Ethnopharmacol. 2020, 260, 112986. [Google Scholar] [CrossRef] [PubMed]
- Bodede, O.; Mahlangeni, N.; Moodley, R.; Nlooto, M.; Ojewole, E. Bioactive Metabolites of Bulbine natalensis (Baker): Isolation, Characterization, and Antioxidant Properties. Int. J. Green Pharm. 2020, 14, 106–121. [Google Scholar]
- Shahane, K.; Kshirsagar, M.; Tambe, S.; Jain, D.; Rout, S.; Ferreira, M.K.M.; Mali, S.; Amin, P.; Srivastav, P.P.; Cruz, J.; et al. An Updated Review on the Multifaceted Therapeutic Potential of Calendula officinalis L. Pharmaceuticals 2023, 16, 611. [Google Scholar] [CrossRef]
- Dias, M.C.; Pinto, D.C.G.A.; Silva, A.M.S. Plant Flavonoids: Chemical Characteristics and Biological Activity. Molecules 2021, 26, 5377. [Google Scholar] [CrossRef] [PubMed]
- Tariq, H.; Asif, S.; Andleeb, A.; Hano, C.; Abbasi, B.H. Flavonoid Production: Current Trends in Plant Metabolic Engineering and De Novo Microbial Production. Metabolites 2023, 13, 124. [Google Scholar] [CrossRef]
- Liga, S.; Paul, C.; Péter, F. Flavonoids: Overview of Biosynthesis, Biological Activity, and Current Extraction Techniques. Plants 2023, 12, 2732. [Google Scholar] [CrossRef]
- Nabavi, S.M.; Šamec, D.; Tomczyk, M.; Milella, L.; Russo, D.; Habtemariam, S.; Suntar, I.; Rastrelli, L.; Daglia, M.; Xiao, J.; et al. Flavonoid Biosynthetic Pathways in Plants: Versatile Targets for Metabolic Engineering. Biotechnol. Adv. 2020, 38, 107316. [Google Scholar] [CrossRef]
- Rehan, M. Biosynthesis of Diverse Class Flavonoids via Shikimate and Phenylpropanoid Pathway. In Bioactive Compounds-Biosynthesis, Characterization and Applications; Zepka, L.Q., do Nascimento, T.C., Jacob-Lopes, E., Eds.; IntechOpen: London, UK, 2021; p. 13. [Google Scholar]
- Cedillo-Cortezano, M.; Martinez-Cuevas, L.R.; López, J.A.M.; Barrera López, I.L.; Escutia-Perez, S.; Petricevich, V.L. Medicinal Plants in the Wound Healing Process: A Literature Review. Pharmaceuticals 2024, 17, 303. [Google Scholar] [CrossRef]
- Mssillou, I.; Bakour, M.; Slighoua, M.; Laaroussi, H.; Saghrouchni, H.; Ez-Zahra Amrati, F.; Lyoussi, B.; Derwich, E. Investigation on Wound Healing Effect of Mediterranean Medicinal Plants and Some Related Phenolic Compounds: A Review. J. Ethnopharmacol. 2022, 298, 115663. [Google Scholar] [CrossRef] [PubMed]
- Iwashina, T. Flavonoid Function and Activity to Plants and Other Organisms. Biol. Sci. Sp. (Uchū Seibutsu Kagaku) 2003, 17, 24–44. [Google Scholar] [CrossRef] [PubMed]
- Jeandet, P.; Clément, C.; Courot, E.; Cordelier, S. Modulation of Phytoalexin Biosynthesis in Engineered Plants for Disease Resistance. Int. J. Mol. Sci. 2013, 14, 14136–14170. [Google Scholar] [CrossRef]
- Agati, G.; Tattini, M. Multiple Functional Roles of Flavonoids in Photoprotection. New Phytol. 2010, 186, 786–793. [Google Scholar] [CrossRef] [PubMed]
- Smith, G.; van Wyk, B. Generic Relationships in the Alooideae Generic Relationships in the Alooideae (Asphodelaceae). Taxon 1991, 40, 557–581. [Google Scholar]
- Van Wyk, B.E.; Yenesew, A.; Dagne, E. Chemotaxonomic Significance of Anthraquinones in the Roots of Asphodeloideae (Asphodelaceae). Biochem. Syst. Ecol. 1995, 23, 277–281. [Google Scholar] [CrossRef]
- Bekele, E.T.; Gonfa, B.A.; Zelekew, O.A.; Belay, H.H.; Sabir, F.K. Synthesis of Titanium Oxide Nanoparticles Using Root Extract of Kniphofia foliosa as a Template, Characterization, and Its Application on Drug Resistance Bacteria. J. Nanomater. 2020, 2020, 1–10. [Google Scholar] [CrossRef]
- van Staden, L.F.; Drewes, S.E. Knipholone from Bulbine latifolia and Bulbine frutescens. Phytochemistry 1994, 35, 685–686. [Google Scholar] [CrossRef]
- Qhotsokoane-Lusunzi, M.A.; Karuso, P. Secondary Metabolites from Basotho Medicinal Plants. II Bulbine Capitata. Aust. J. Chem. 2001, 54, 427–430. [Google Scholar] [CrossRef]
- Bringmann, G.; Menche, D.; Brun, R.; Msuta, T.; Abegaz, B. Bulbine-Knipholone, a New, Axially Chiral Phenylanthraquinone from Bulbine abyssinica (Asphodelaceae): Isolation, Structural Elucidation, Synthesis, and Antiplasmodial Activity. Eur. J. Org. Chem. 2002, 2002, 1107–1111. [Google Scholar] [CrossRef]
- Wanjohi, J.M.; Yenesew, A.; Midiwo, J.O.; Heydenreich, M.; Peter, M.G.; Dreyer, M.; Reichert, M.; Bringmann, G. Three Dimeric Anthracene Derivatives from the Fruits of Bulbine abyssinica. Tetrahedron 2005, 61, 2667–2674. [Google Scholar] [CrossRef]
- Bezabih, M.; Abegaz, B.M.; Dufall, K.; Croft, K.; Skinner-Adams, T.; Davis, T.M.E. Antiplasmodial and Antioxidant Isofuranonaphthoquinones from the Roots of Bulbine capitata. Planta Med. 2001, 67, 340–344. [Google Scholar] [CrossRef]
- Morea, R.A. Plant Sterols in Functional Foods. In Phytosterols as Functional Food Components and Nutraceuticals; Dutta, P.C., Ed.; CRC Press: Boca Raton, FL, USA, 2003; p. 3. [Google Scholar]
- Bezabhi, M.; Abegaz, B.M. 4’-Demethylknipholone from Aerial Parts of Bulbine Capitata. Phytochemistry 1998, 48, 1071–1073. [Google Scholar] [CrossRef]
- Abegaz, B.M.; Bezabih, M.; Msuta, T.; Brun, R.; Menche, D.; Mühlbacher, J.; Bringmann, G. Gaboroquinones A and B and 4′-O-Demethylknipholone-4′-O-β-D-Glucopyranoside, Phenylanthraquinones from the Roots of Bulbine frutescens. J. Nat. Prod. 2002, 65, 1117–1121. [Google Scholar] [CrossRef]
- Abdissa, N.; Heydenreich, M.; Midiwo, J.O.; Ndakala, A.; Majer, Z.; Neumann, B.; Stammler, H.G.; Sewald, N.; Yenesew, A. A Xanthone and a Phenylanthraquinone from the Roots of Bulbine Frutescens, and the Revision of Six Seco-Anthraquinones into Xanthones. Phytochem. Lett. 2014, 9, 67–73. [Google Scholar] [CrossRef]
- Bringmann, G.; Menche, D.; Bezabih, M.; Abegaz, B.M.; Kaminsky, R. Antiplasmodial Activity of Knipholone and Related Natural Phenylanthraquinones. Planta Med. 1999, 65, 757–758. [Google Scholar] [CrossRef]
- Firdous, S.M.; Sautya, D. Medicinal Plants with Wound Healing Potential. Bangladesh J. Pharmacol. 2018, 13, 41–52. [Google Scholar] [CrossRef]
- Futagami, A.; Ishizaki, M.; Fukuda, Y.; Kawana, S.; Yamanaka, N. Wound Healing Involves Induction of Cyclooxygenase-2 Expression in Rat Skin. Lab. Investig. 2002, 82, 1503–1513. [Google Scholar] [CrossRef]
- Wilgus, T.A.; Vodovotz, Y.; Vittadini, E.; Clubbs, E.A.; Oberyszyn, T.M. Reduction of Scar Formation in Full-Thickness Wounds with Topical Celecoxib Treatment. Wound Repair Regen. 2003, 11, 25–34. [Google Scholar] [CrossRef]
- George, B.P.; Parimelazhagan, T.; Kumar, Y.T.; Sajeesh, T. Antitumor and Wound Healing Properties of Rubus ellipticus Smith. JAMS J. Acupunct. Meridian Stud. 2015, 8, 134–141. [Google Scholar] [CrossRef] [PubMed]
- Righi, N.; Boumerfeg, S.; Deghima, A.; Fernandes, P.A.R.; Coelho, E.; Baali, F.; Cardoso, S.M.; Coimbra, M.A.; Baghiani, A. Phenolic Profile, Safety Assessment, and Anti-Inflammatory Activity of Salvia verbenaca L. J. Ethnopharmacol. 2021, 272, 113940. [Google Scholar] [CrossRef]
- Sathyanarayanan, S.; Muniyandi, K.; George, E.; Sivaraj, D.; Sasidharan, S.P.; Thangaraj, P. Chemical Profiling of Pterolobium hexapetalum Leaves by HPLC Analysis and Its Productive Wound Healing Activities in Rats. Biomed. Pharmacother. 2017, 95, 287–297. [Google Scholar] [CrossRef]
- Zulkefli, N.; Che Zahari, C.N.M.; Sayuti, N.H.; Kamarudin, A.A.; Saad, N.; Hamezah, H.S.; Bunawan, H.; Baharum, S.N.; Mediani, A.; Ahmed, Q.U.; et al. Flavonoids as Potential Wound-Healing Molecules: Emphasis on Pathways Perspective. Int. J. Mol. Sci. 2023, 24, 4607. [Google Scholar] [CrossRef]
- Tizazu, A.; Bekele, T. A Review on the Medicinal Applications of Flavonoids from Aloe Species. Eur. J. Med. Chem. Rep. 2024, 10, 100135. [Google Scholar] [CrossRef]
- Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: An Overview. J. Nutr. Sci. 2016, 5, e47. [Google Scholar] [CrossRef]
- Singh, P.; Arif, Y.; Bajguz, A.; Hayat, S. The Role of Quercetin in Plants. Plant Physiol. Biochem. 2021, 166, 10–19. [Google Scholar] [CrossRef]
- Özay, Y.; Güzel, S.; Yumrutaş, Ö.; Pehlivanoğlu, B.; Erdoğdu, İ.H.; Yildirim, Z.; Türk, B.A.; Darcan, S. Wound Healing Effect of Kaempferol in Diabetic and Nondiabetic Rats. J. Surg. Res. 2019, 233, 284–296. [Google Scholar] [CrossRef]
- Oyedemi, S.O.; Bradley, G.; Afolayan, A.J. Ethnobotanical Survey of Medicinal Plants Used for the Management of Diabetes Mellitus in the Nkonkobe Municipality of South Africa. J. Med. Plants Res. 2009, 3, 1040–1044. [Google Scholar]
- Hossain, M.B.; Rai, D.K.; Brunton, N.P.; Martin-Diana, A.B.; Barry-Ryan, A.C. Characterization of Phenolic Composition in Lamiaceae Spices by LC-ESI-MS/MS. J. Agric. Food Chem. 2010, 58, 10576–10581. [Google Scholar] [CrossRef]
- Chen, L.Y.; Cheng, H.L.; Kuan, Y.H.; Liang, T.J.; Chao, Y.Y.; Lin, H.C. Therapeutic Potential of Luteolin on Impaired Wound Healing in Streptozotocin-Induced Rats. Biomedicines 2021, 9, 761. [Google Scholar] [CrossRef]
- Mohammadi, Z.; Sharif Zak, M.; Majdi, H.; Seidi, K.; Barati, M.; Akbarzadeh, A.; Latifi, A.M. The Effect of Chrysin-Loaded Nanofiber on Wound Healing Process in Male Rat. Chem. Biol. Drug Des. 2017, 90, 1106–1114. [Google Scholar] [CrossRef]
- Almeida, J.S.; Benvegnú, D.M.; Boufleur, N.; Reckziegel, P.; Barcelos, R.C.S.; Coradini, K.; De Carvalho, L.M.; Bürger, M.E.; Beck, R.C.R. Hydrogels Containing Rutin Intended for Cutaneous Administration: Efficacy in Wound Healing in Rats. Drug Dev. Ind. Pharm. 2012, 38, 792–799. [Google Scholar] [CrossRef]
- Pivec, T.; Kargl, R.; Maver, U.; Bracic, M.; Elschner, T.; Zagar, E.; Gradišnik, L.; Kleinschek, K.S. Chemical Structure—Antioxidant Activity Relationship of Water—Based Enzymatic Polymerized Rutin and Its Wound Healing Potential. Polymers 2019, 11, 1566. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, J.; Cheng, X.; Yi, B.; Zhang, X.; Li, Q. Apigenin Induces Dermal Collagen Synthesis via Smad2/3 Signaling Pathway. Eur. J. Histochem. 2015, 59, 98–106. [Google Scholar] [CrossRef]
- Yazarlu, O.; Iranshahi, M.; Kashani, H.R.K.; Reshadat, S.; Habtemariam, S.; Iranshahy, M.; Hasanpour, M. Perspective on the Application of Medicinal Plants and Natural Products in Wound Healing: A Mechanistic Review. Pharmacol. Res. 2021, 174, 105841. [Google Scholar] [CrossRef]
- Hwang, Y.P.; Oh, K.N.; Yun, H.J.; Jeong, H.G. The Flavonoids Apigenin and Luteolin Suppress Ultraviolet A-Induced Matrix Metalloproteinase-1 Expression via MAPKs and AP-1-Dependent Signaling in HaCaT Cells. J. Dermatol. Sci. 2011, 61, 23–31. [Google Scholar] [CrossRef]
- Tang, T.; Yin, L.; Yang, J.; Shan, G. Emodin, an Anthraquinone Derivative from Rheum officinale Baill, Enhances Cutaneous Wound Healing in Rats. Eur. J. Pharmacol. 2007, 567, 177–185. [Google Scholar] [CrossRef]
- Martin, P. Wound Healing—Aiming for Perfect Skin Regeneration. Science 1997, 276, 75–81. [Google Scholar] [CrossRef]
- Gunaydin-akyildiz, A.; Yanikoglu, R.S.; Gulec, M.; Alim-toraman, G.O. Emodin and Aloe-Emodin, Two Potential Molecules in Regulating Cell Migration of Skin Cells through the MAP Kinase Pathway and Affecting Caenorhabditis elegans Thermotolerance. BMC Mol. Cell Biol. 2023, 24, 1–11. [Google Scholar] [CrossRef]
- Dagne, E.; Yenesew, A. Anthraquinones and Chemotaxonomy of the Asphodelaceae. Pure Appl. Chem. 1994, 66, 2395–2398. [Google Scholar] [CrossRef]
- Dallavalle, S.; Artali, R.; Princiotto, S.; Musso, L.; Borgonovo, G.; Mazzini, S. Investigation of the Interaction between Aloe vera Anthraquinone Metabolites and C-Myc and C-Kit G-Quadruplex DNA Structures. Int. J. Mol. Sci. 2022, 23, 16018. [Google Scholar] [CrossRef]
- Penn, J.W.; Grobbelaar, A.O.; Rolfe, K.J. The Role of the TGF-β Family in Wound Healing, Burns and Scarring: A Review. Int. J. Burn. Trauma 2012, 2, 18–28. [Google Scholar]
- Han, G.; Li, F.; Ten Dijke, P.; Wang, X.J. Temporal Smad7 Transgene Induction in Mouse Epidermis Accelerates Skin Wound Healing. Am. J. Pathol. 2011, 179, 1768–1779. [Google Scholar] [CrossRef]
- Li, F.; Bian, L.; Iriyama, S.; Jian, Z.; Fan, B.; Luo, J.; Wang, D.D.; Young, C.D.; Han, G.; Wang, X.J. Smad7 Ameliorates TGF-β–Mediated Skin Inflammation and Associated Wound Healing Defects but Not Susceptibility to Experimental Skin Carcinogenesis. J. Investig. Dermatol. 2019, 139, 940–950. [Google Scholar] [CrossRef]
- Lin, L.X.; Wang, P.; Wang, Y.T.; Huang, Y.; Jiang, L.; Wang, X.M. Aloe Vera and Vitis Vinifera Improve Wound Healing in an in Vivo Rat Burn Wound Model. Mol. Med. Rep. 2016, 13, 1070–1076. [Google Scholar] [CrossRef]
- Hakvoort, T.E.; Altun, V.; Van Zuijlen, P.P.M.; De Boer, W.I.; van Schadewij, W.A.A.M.; van der Kwast, T. Transforming Growth Factor-Beta1, -Beta2, -Beta3, Basic Fibroblast Growth Factor and Vascular Endothelial Growth Factor Expression in Keratinocytes of Burn Scars. Eur. Cytokine Netw. 2000, 11, 233–239. [Google Scholar]
- Tsirogianni, A.K.; Moutsopoulos, N.M.; Moutsopoulos, H.M. Wound Healing: Immunological Aspects. Int. J. Care Inj. 2006, 37, 5–12. [Google Scholar] [CrossRef]
- Frank, S.; Madlener, M.; Werner, S. Transforming Growth Factors Β1, Β2, and Β3 and Their Receptors Are Differentially Regulated during Normal and Impaired Wound Healing. J. Biol. Chem. 1996, 271, 10188–10193. [Google Scholar] [CrossRef]
- Chithra, P.; Sajithlal, G.B.; Chandrakasan, G. Influence of Aloe Vera on the Healing of Dermal Wounds in Diabetic Rats. J. Ethnopharmacol. 1998, 59, 195–201. [Google Scholar] [CrossRef]
- Lee, C.W.; Efetova, M.; Engelmann, J.C.; Kramell, R.; Wasternack, C.; Ludwig-Müller, J.; Hedrich, R.; Deeken, R. Agrobacterium Tumefaciens Promotes Tumor Induction by Modulating Pathogen Defense in Arabidopsis thaliana. Plant Cell 2009, 21, 2948–2962. [Google Scholar] [CrossRef]
- Bae, J.Y.; Ali, Z.; Wang, Y.H.; Chittiboyina, A.G.; Zaki, A.A.; Viljoen, A.M.; Khan, I.A. Anthraquinone-Based Specialized Metabolites from Rhizomes of Bulbine natalensis. J. Nat. Prod. 2019, 82, 1893–1901. [Google Scholar] [CrossRef]
- Mbambo, B.; Odhav, B.; Mohanlall, V. Antifungal Activity of Stigmasterol, Sitosterol and Ergosterol from Bulbine natalensis Baker (Asphodelaceae). J. Med. Plants Res. 2012, 6, 5135–5141. [Google Scholar] [CrossRef]
- Rachuonyo, H.; Gatheri, G.; PE, O.; Arika, W.; Wambani, J.; Kebira, A.; Kamau, D. In Vitro Antifungal Activity of Leaf Extracts from Aloe secundiflora, Bulbine frutescens, Vernonia lasiopus and Tagetes Minuta against Candida albicans. Med. Aromat. Plants 2016, 5, 1000229. [Google Scholar] [CrossRef]
- Kharchoufa, L.; Merrouni, I.A.; Yamani, A.; Elachouri, M. Profile on Medicinal Plants Used by the People of North Eastern Morocco: Toxicity Concerns. Toxicon 2018, 154, 90–113. [Google Scholar] [CrossRef]
- Odukoya, J.O.; Odukoya, J.O.; Mmutlane, E.M.; Ndinteh, D.T. Ethnopharmacological Study of Medicinal Plants Used for the Treatment of Cardiovascular Diseases and Their Associated Risk Factors in Sub-Saharan Africa. Plants 2022, 11, 1387. [Google Scholar] [CrossRef]
- Odeyemi, S.; Bradley, G. Medicinal Plants Used for the Traditional Management of Diabetes in the Eastern Cape, South Africa: Pharmacology and Toxicology. Molecules 2018, 23, 2759. [Google Scholar] [CrossRef]
- Segone, R.T.; Sandasi, M.; Ncube, E.; Gouws, C.; Viljoen, A.M. Insights into the Wound-Healing Properties of Medicinally Important South African Bulbine Species—A Comparative Study. J. Ethnopharmacol. 2025, 337, 118901. [Google Scholar] [CrossRef]
- Ndhlala, A.R.; Thibane, V.S.; Masehla, C.M.; Mokwala, P.W. Ethnobotany and Toxicity Status of Medicinal Plants with Cosmeceutical Relevance from Eastern Cape, South Africa. Plants 2022, 11, 1451. [Google Scholar] [CrossRef]
- Kibiti, C.M.; Afolayan, A.J. Antifungal Activity and Brine Shrimp Toxicity Assessment of Bulbine Abyssinica Used in the Folk Medicine in the Eastern Cape Province, South Africa. Bangladesh J. Pharmacol. 2016, 11, 469–477. [Google Scholar] [CrossRef]
- Otang-Mbeng, W.; Sagbo, I.J. Cytotoxic, Cellular Antioxidant, and Antiglucuronidase Properties of the Ethanol Leaf Extract from Bulbine asphodeloides. Sci. World J. 2021, 2021, 6622318. [Google Scholar] [CrossRef]
- Tambama, P.; Abegaz, B.; Mukanganyama, S. Antiproliferative Activity of the Isofuranonaphthoquinone Isolated from Bulbine frutescens against Jurkat T Cells. Biomed Res. Int. 2014, 2014. [Google Scholar] [CrossRef]
- Habtemariam, S. Knipholone Anthrone from Kniphofia foliosa Induces a Rapid Onset of Necrotic Cell Death in Cancer Cells. Fitoterapia 2010, 81, 1013–1019. [Google Scholar] [CrossRef] [PubMed]
- Afolayan, A.J.; Yakubu, M.T. Effect of Bulbine natalensis Baker Stem Extract on the Functional Indices and Histology of the Liver and Kidney of Male Wistar Rats. J. Med. Food 2009, 12, 814–820. [Google Scholar] [CrossRef]
- van Huyssteen, M.; Milne, P.J.; Campbell, E.E.; van de Venter, M. Antidiabetic and Cytotoxicity Screening of Five Medicinal Plants Used by Traditional African Health Practitioners in the Nelson Mandela Metropole, South Africa. Afr. J. Tradit. Complement. Altern. Med. 2011, 8, 150–158. [Google Scholar] [CrossRef] [PubMed]
- Yakubu, M.T.; Afolayan, A.J. Reproductive Toxicologic Evaluations of Bulbine natalensis Baker Stem Extract in Albino Rats. Theriogenology 2009, 72, 322–332. [Google Scholar] [CrossRef]
- Das, A.; Dutta, S. Binding Studies of Aloe-Active Compounds with G-Quadruplex Sequences. ACS Omega 2021, 6, 18344–18351. [Google Scholar] [CrossRef]
- Kosiol, N.; Juranek, S.; Brossart, P.; Heine, A.; Paeschke, K. G-Quadruplexes: A Promising Target for Cancer Therapy. Mol. Cancer 2021, 20, 1–18. [Google Scholar] [CrossRef]
- Phan, A.T.; Kuryavyi, V.; Burge, S.; Neidle, S.; Patel, D.J. Structure of an Unprecedented G-Quadruplex Scaffold in the Human c-Kit Promoter. J. Am. Chem. Soc. 2007, 129, 4386–4392. [Google Scholar] [CrossRef]
- Yang, D.; Hurley, L. Structure of the Biologically Relevant G-Quadruplex in the c-MYC Promoter. Nucleosides Nucleotides Nucleic Acids 2006, 25, 951–968. [Google Scholar] [CrossRef]
- Cogoi, S.; Xodo, L.E. G-Quadruplex Formation within the Promoter of the KRAS Proto-Oncogene and Its Effect on Transcription. Nucleic Acids Res. 2006, 34, 2536–2549. [Google Scholar] [CrossRef]
- Sun, D.; Guo, K.; Rusche, J.J.; Hurley, L.H. Facilitation of a Structural Transition in the Polypurine/Polypyrimidine Tract within the Proximal Promoter Region of the Human VEGF Gene by the Presence of Potassium and G-Quadruplex-Interactive Agents. Nucleic Acids Res. 2005, 33, 6070–6080. [Google Scholar] [CrossRef] [PubMed]
Bulbine Species | Common Name | Distribution | Ethnicity | Method of Preparation | Ethnobotanical Uses | Reference |
---|---|---|---|---|---|---|
Bulbine abyssinica A.Rich. | Geelkatstert, moetsa-mollo, ibhucu, and intelzi | Central and Eastern Africa from the Somali to Angola, Ethiopia, Eswatini, and South Africa. | Afrikaners, Zulus, Sotho, and Xhosa people | Tea and decoction | Decoctions from crushed roots are used against infertility problems and back pains, while ingesting leaves in tea form curbs coughs and bladder and vaginal infections. It is also used to manage diabetes and as livestock medicine (anti-helminthic for cattle). | [28,29] |
Bulbine asphodeloides (L.) Spreng. | Copaiva, Balsamkopieva | KwaZulu-Natal, Lesotho, and the Eastern Cape | Zulus, Xhosas, Sothos and Mfengu people | Crush leaf to extract the gel | Leaf gel/juice is smeared on rough skin, sunburns, and also acts as an anti-ageing cosmetic. South Basotho people use leaf juice for dressing burns and cracked lips. Tubers are used to treat rashes, sores and wounds. | [17,28,30] |
Not reported | Eastern Cape, Free State and KwaZulu-Natal | Zulu and Xhosa people | Crush leaf to extract the gel | The leaf gel is also applied to fresh cuts, mosquito bites, and chapped lips, as well as on abrasions. | [31] | |
Bulbine alooides (L.) Willd. | Not reported | Eastern Cape and KwaZulu-Natal | Zulu and Xhosa people | Not specified | Tubers are used as treatments for urinary tract infections, rheumatism, syphilis, wounds, rashes, and diarrhoea, whereas roots treat venereal diseases. | [28] |
Bulbine frutescens (L.) Wild. | Ibhucu | Eastern Cape | Xhosas, Khoisan, and Dutch settlers | Decoction and infusion | Roots and rhizomes are applied as scrofula treatment and extract as styptic. | [6,32] |
Intelezi, ingelwane, rankkopieva | KwaZulu-Natal and Limpopo | Zulus | Decoction and infusion | Treatment for fever blisters, cracked fingers, nails, heels, acne, insect bites, mouth ulcers, and genital sores. Also administered as cattle anti-helminthic. | [6,29] | |
Snake flower, Geelkatstert | Not reported | Afrikaans | Not specified | Fresh leaf extracts are used as remedies for coughs, arthritis, insect bites, acne, colds, and for fast wound healing. Cosmeceutical relevance includes taken to treat burns. | [33] | |
Ithethe elimpofu, | Free State, Northern Cape, and Western Cape | Zulus and Xhosas | Decoction and infusion | Roots are pulverised into decoctions as treatments for Xhosa children with convulsions. Zulus use root and leaf infusions as an emetic to mad patients. | [31] | |
Rankkopieva | Lesotho | Sotho | Not specified | Leaves are used against sciatica and rheumatism. | [28] | |
Bulbine narcissifolia (L.) Salm-Dyck | Tloruthloru, khomo-ea basemane, kopiva | Lesotho, Gauteng, Free State, Western Cape, KwaZulu-Natal | Sotho, Griqua and Zulus | Infusion and decoction | Leaf sap applied as regimen for warts, ringworms, corns, and lip breakages. Cold infusion of leaf is administered as purgative whereas decoctions prepared from roots are administered to treat venereal diseases. | [28] |
Bulbine natalensis (L.) Baker (syn.: Bulbine latifolia (L. f.) Roem. Et Schult.) | Ibhucu | Cape Floristic Region | Khoisan and Cape Dutch settlers | Not specified | Tubers are used as blood purifier and lumbago. Leaf sap is directly applied to treat eczema rashes, itches, wounds, and burns. | [6,17,18,32] |
Incelwani | Eastern Cape | Xhosas | Decoction | Leaf sap and roots are prepared into decoctions taken orally to treat diabetes, dysentery, eczema, rheumatism, and as an emetic. | [27] | |
KwaZulu-Natal | Mfengu, Khoikhoi, Zulus, Shona and Xhosas | Decoction | Mfengu people used decoctions of dry root as remedies for lumbago, abdominal complaints, diarrhoea, dysentery, and syphilis. Leaf and leaf sap are used for septic wounds and eczema. | [28] | ||
Intelezi and ibhucu | Eastern Cape, KwaZulu-Natal, Zimbabwe, and Mozambique | Xhosas and Zulus | Infusion and decoction | Direct skin application of leaf sap treats wounds, burns, sores, rheumatism, ringworms, rashes, sunburns, and herpes. | [6,9] |
Bulbine Species | Part Used | Extractant | Concentration (g/mL) | Anti-Microbial Activity (MIC50 mg/mL) | Reference | ||
---|---|---|---|---|---|---|---|
Gram(+)Bacteria | Gram(-)Bacteria | Fungi | |||||
Bulbine asphodeloides (L.) Spreng. | Inflorescence | Ethanol | 2 | Cm | Ec and 0.90 Xc | Not reported | [40] |
Roots | Ethanol | 2 | Cm | Ec and 0.90 Xc | |||
Bulbine frutescens (L.) Wild. | Leaves | Chloroform | 0.05 | 0.63 Bs, Sp and Sa | 0.63 Spy, Pv, Pa and Pm | 0.63 Ca, Ct and Tm 1.25 Tr | [6,16,41] |
Bulbs | Chloroform | 20 | 0.63 Se and Ab | 0.63 Pm and 2.50 Ss | |||
Leaves | Methanol | 0.05 | 0.63 Sa | 0.63 Pv and 2.50 Pa | |||
Methanol | 1.00 | 0.26 Sa and MRSA | 0.26 Acb and 0.06 Klp | ||||
Leaves | Acetone | 1.00 | 0.19 Sa, MRSA, 5.0 Bs and 2.0 Mk | 0.06 Acb and Klp | |||
Leaves | Aqueous solvent | 1.00 and 0.50 | 0.43 Sa, MRSA and 2.0 Bs | 0.43 Acb, 0.05 Klp, Esc and Pv | |||
Roots | Aqueous solvent | 0.50 | 3.0 Mk | Esc and Kla | |||
Leaves | Acetone | 0.05 | 2.0 Mk, 1.0 Bs and 1.0 Sa | Esc, Pv and Kla | Not reported | [6] | |
Bulbine longifolia | Ethyl acetate | 5.0 Bs, 4.0 Mk and 3.0 Sa | |||||
Roots | Acetone | 0.05 | 2.0 Bs, Mk and Sa | Esc, Pv and Kla | |||
Ethyl acetate | 7.0 Bs, 5.0 Mk and 5.0 Sa | Esc, Pv and Kla | |||||
Rhizomes | Acetone | 1.0 Sa, 1.0 Bs and 2.0 Mk | Esc, Pv and Kla | ||||
Ethyl acetate | 7.0 Bs, 6.0 Mk and 4.0 Sa | Esc, Pv and Kla | |||||
Leaves | Acetone | 0.05 | 1.0 Bs, Mk and Sa | 3.0 Esc, 3.0 Pv and Kla | Not reported | [6] | |
Ethyl acetate | 3.0 Bs, 2.0 Mk and 2.0 Sa | Esc, Pv and Kla | |||||
Bulbine natalensis (L.) Baker | Roots | Acetone | 0.05 | 2.0 Bs, Mk and Sa | Esc, Pv and Kla | ||
Rhizomes | Acetone | 0.05 | 2.0 Bs, 1.0 Mk and 1.0 Sa | ||||
Ethyl acetate | 3.0 Bs, 4.0 Mk and 4.0 Sa | Esc, Pv and Kla | |||||
Bulbs | Chloroform | 0.05 | 0.63 Bs, Sa and Se | 0.63 Spy and Pm | 0.31 Tm, 0.63 Ca and Ct | [16,42] | |
Leaves | Hexane | 0.05 | 0.63 Bs and Sa | 0.63 Spy, Pv, Pa and Pm | |||
Tuber | Ethanol | 0.0001–0.01 | 10 Sa | 1 Esc, 1 Pa and 10 Kla | |||
Ethyl acetate | 5 Sa | 7 Esc, 1 Pa and 1 Kla | |||||
n-Butanol | 5 Sa | 3 Esc, 3 Pa and 5 Kla | |||||
Leaves | Aqueous solvent | 0.05 | Bs, Mk and Sa | Esc, Pv and Kla | 1 Ca | [6,43] | |
Bulbine narcissifolia (L.) Salm-Dyck | Methanol | 6.0 Bs, 3.0 Mk and 4.0 Sa | Esc, Pv and Kla | ||||
Roots | Methanol | 0.032 | 1.0 Bs, 3.0 Mk and 1.0 Sa | 0.04 Ng and >8 Ou | |||
Rhizomes | Methanol | 2.0 Bs and 3.0 Mks | Pv and Kla |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Voko, M.P.; Ogbe, A.A.; Kulkarni, M.G.; Coopoosamy, R.M.; Van Staden, J. The Phytochemical Composition and Molecular Mechanisms Involved in the Wound Healing Attributes of Bulbine Species—A Critical Review. Plants 2025, 14, 3045. https://doi.org/10.3390/plants14193045
Voko MP, Ogbe AA, Kulkarni MG, Coopoosamy RM, Van Staden J. The Phytochemical Composition and Molecular Mechanisms Involved in the Wound Healing Attributes of Bulbine Species—A Critical Review. Plants. 2025; 14(19):3045. https://doi.org/10.3390/plants14193045
Chicago/Turabian StyleVoko, Mxolisi P., Abdulazeez A. Ogbe, Manoj G. Kulkarni, Roger M. Coopoosamy, and Johannes Van Staden. 2025. "The Phytochemical Composition and Molecular Mechanisms Involved in the Wound Healing Attributes of Bulbine Species—A Critical Review" Plants 14, no. 19: 3045. https://doi.org/10.3390/plants14193045
APA StyleVoko, M. P., Ogbe, A. A., Kulkarni, M. G., Coopoosamy, R. M., & Van Staden, J. (2025). The Phytochemical Composition and Molecular Mechanisms Involved in the Wound Healing Attributes of Bulbine Species—A Critical Review. Plants, 14(19), 3045. https://doi.org/10.3390/plants14193045