Floral Characteristics and Reproductive Biology in Brazilian Melon Accessions: Insights from Commercial and Exotic Varieties
Abstract
1. Introduction
2. Material and Methods
2.1. Plant Materials
2.2. Floral Descriptors
2.3. Phenology
2.4. Pollen Viability
2.5. Stigma Receptivity and Pistil Morphological Description
2.6. Pollen Tube Growth and Arrival in Ovules In Vivo
2.7. Internal Structures of Bisexual Flowers
2.8. Statistical Analyses
3. Results
3.1. Floral Characteristics
3.2. Pollen Viability
3.3. Stigma Receptivity and Pistil Morphological Description
3.4. Detection of Pollen Tubes in the Style and Arrival in the Ovule In Vivo
3.5. Internal Structures of Bisexual Flower
4. Discussion
4.1. Genetic Diversity in Floral Characteristics and Pollen Grain Viability
4.2. Stigma’s Receptivity and Morphological Description
4.3. Detection of Pollen Tubes in the Style and Arrival in Ovules In Vivo
4.4. Internal Hermaphrodite Structure
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dantas, A.C.D.; Nunes, G.H.S.; Araújo, I.S.; Albuquerque, L.B. Caracterização molecular de acessos de melão coletados no Nordeste brasileiro. Rev. Bras. Frut. 2012, 34, 183–189. [Google Scholar] [CrossRef]
- Farcuh, M.; Copes, B.; Le-Navenec, G.; Marroquin, J.; Jaunet, T.; Chi-Ham, C.; Van Deynze, A. Texture diversity in melon (Cucumis melo L.): Sensory and physical assessments. Postharvest Biol. Technol. 2020, 159, 111024. [Google Scholar] [CrossRef]
- Latrasse, D.; Rodriguez-Granados, N.Y.; Veluchamy, A.; Mariappan, K.G.; Bevilacqua, C.; Crapart, N.; Bendahmane, A. The quest for epigenetic regulation underlying unisexual flower development in Cucumis melo. Epigenetics Chromatin 2017, 10, 22. [Google Scholar] [CrossRef]
- Food and Agriculture Organization (FAO). Available online: https://www.fao.org/faostat/en/#home (accessed on 21 March 2025).
- INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSCAS—(IBGE). Produção Agrícola Municipal, Disponível em. Available online: https://sidra.ibge.gov.br/pesquisa/pam/tabela (accessed on 21 May 2025).
- Aragão, F.A.S.; Torres Filho, J.; Nunes, G.H.S. Genetic divergence among accessions of melon from traditional agriculture of the Brazilian Northeast. Embrapa Recursos Genéticos e Biotecnologia-Artigo em periódico indexado (ALICE). Genet. Mol. Res. 2013, 12, 6356–6371. [Google Scholar] [CrossRef] [PubMed]
- Pitrat, M. Melon. In Vegetables, I; Springer: New York, NY, USA, 2008; pp. 283–315. [Google Scholar]
- Girek, Z.; Prodanovic, S.; Zdravkovic, J.; Zivanovic, T.; Ugrinovic, M.; Zdravkovic, M. The effect of growth regulators on sex expression in melon (Cucumis melo L.). Crop Breed. Appl. Biotechnol. 2013, 13, 165–171. [Google Scholar] [CrossRef]
- Martin, A.; Troadec, C.; Boualem, A. A transposon-induced epigenetic change leads to sex determination in melon. Nature 2009, 461, 1135–1138. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, M.D.F.; Silva, E.M.S.D.; Lima, I.D.O., Jr.; Ribeiro, M.D.F.; Kiill, L.H.P. Honey bees (Apis mellifera) visiting flowers of yellow melon (Cucumis melo) using different number of hives. Cienc. Rur. 2015, 45, 1768–1773. [Google Scholar] [CrossRef]
- Ge, L.L.; Xie, C.T.; Tian, H.; Russell, S.D. Distribution of calcium in the stigma and style of tobacco during pollen germination and tube elongation. Sex. Plant Reprod. 2009, 22, 87–96. [Google Scholar] [CrossRef]
- Ortega, E.; Egea, J.; Cánovas, J.; Dicenta, F. Pollen tube dynamics following half-and fully-compatible pollinations in self-compatible almond cultivars. Sex. Plant Reprod. 2002, 15, 47–51. [Google Scholar] [CrossRef]
- Lennon, K.A.; Roy, S.; Hepler, P.K. The structure of the transmitting tissue of Arabidopsis thaliana (L.) and the path of pollen tube growth. Sex. Plant Reprod. 1998, 11, 49–59. [Google Scholar] [CrossRef]
- Alcaraz, M.L.; Hormaza, J.I.; Rodrigo, J. Pistil starch reserves at anthesis correlate with final flower fate in avocado (Persea americana). PLoS ONE 2013, 8, 467–468. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; Wang, Z.; Yao, F.; Gao, L.; Ma, S.; Sui, X.; Zhang, Z. Down-regulating CsHT1, a cucumber pollen-specific hexose transporter, inhibits pollen germination, tube growth, and seed development. Plant Physiol. 2015, 168, 635–647. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.-B.; Bai, S.-N.; Xu, Z.-H.; Li, Y.-Q. Glandular characteristics of the stigma during the development of Cucumis sativus female flowers. J. Integr. Plant Biol. 2004, 46, 319–327. [Google Scholar]
- Čolić, S.; Zec, G.; Fotirić, M. Evaluation of self-(in) compatibility in the almond (Prunus amygdalus Batsch.) genotype population from the Slankamen Hill, Serbia. Ar. Biol. Sci. 2010, 62, 973–979. [Google Scholar] [CrossRef]
- Lin, S.; Dong, H.; Zhang, F.; Qiu, L.; Wang, F.; Cao, J.; Huang, L. BcMF8, a putative arabinogalactan protein-encoding gene, contributes to pollen wall development, aperture formation and pollen tube growth in Brassica campestris. Ann. Bot. 2014, 113, 777–788. [Google Scholar] [CrossRef]
- Nepi, M.; Pacini, E. Pollination, pollen viability and pistile receptivity in Cucurbita pepo. Ann. Bot. 1993, 72, 527–536. [Google Scholar] [CrossRef]
- Gomes, D.A.; Alves, I.M.; Maciel, G.M.; Siquieroli, A.C.S.; Peixoto, J.V.M.; Pires, P.D.S.; Medeiros, I.A.D. Genetic dissimilarity, selection index and correlation estimation in a melon germplasm. Hortic. Bras. 2021, 39, 46–51. [Google Scholar] [CrossRef]
- Currah, L. Pollination biology. In Onions and Allied Crops; CRC Press: Boca Raton, FL, USA, 2018; pp. 135–149. [Google Scholar]
- Deleu, W.; Esteras, C.; Roig, C. A set of EST-SNPs for map saturation and cultivar identification in melon. BMC Plant Biol. 2009, 9, 90. [Google Scholar] [CrossRef]
- Herrera, J. Flower size variation in Rosmarinus officinalis: Individuals, populations and habitats. Ann. Bot. 2005, 95, 431–437. [Google Scholar] [CrossRef]
- Guiu-Aragonés, C.; Monforte, A.J.; Saladié, M.; Corrêa, R.X.; Garcia-Mas, J.; Martín-Hernández, A.M. The complex resistance to cucumber mosaic cucumovirus (CMV) in the melon accession PI161375 is governed by one gene and at least two quantitative trait loci. Mol. Breed. 2014, 34, 351–362. [Google Scholar] [CrossRef]
- Sanabria-Verón, N.C.; Melo, C.A.F.D.; Pereira, J.; Nunes, G.H.D.S.; Oliveira, O.L.S.D.; Corrêa, R.X. Cucumber mosaic virus resistance and reproductive biology of brazilian melon accessions. Rev. Bras. Frut. 2019, 5, 2019. [Google Scholar] [CrossRef]
- De Castro Lima, E.M.; Do Amaral Faria, L.; Da Cunha Siqueir, T.N. Crescimento e Produção de Melão Cultivado Em Ambiente Protegido E Irrigado Por Gotejamento. IRRIGA 2018, 14, 449–457. [Google Scholar] [CrossRef]
- Andrade, I.S.; de Melo, C.A.F.; de Sousa Nunes, G.H.; Holanda, I.S.A.; Grangeiro, L.C.; Corrêa, R.X. Phenotypic variability, diversity and genetic-population structure in melon (Cucumis melo L.) Associated with total soluble solids. Sci. Hort. 2021, 278, 109844. [Google Scholar] [CrossRef]
- Stepansky, A.; Kovalski, I.; Perl-Treves, R. Intraspecific classification of melons (Cucumis melo L.) in view of their phenotypic and molecular variation. Plant Syst. Evol. 1999, 217, 313–332. [Google Scholar] [CrossRef]
- Galen, C.; Plowright, R.C. Testing the accuracy of using peroxidase activity to indicate stigma receptivity. Can. J. Bot. 1987, 65, 107–111. [Google Scholar] [CrossRef]
- Dafni, A. Pollination Ecology: A Practical Approach; Oxford University Press: Oxford, UK, 1992. [Google Scholar]
- Johansson, D.A. Plant Microtechnique; McGraw-Hill: New York, NY, USA, 1940. [Google Scholar]
- Martin, F.W. Staining and observing pollen tubes in the style by means of fluorescence. Stain. Tech. 1959, 34, 125–128. [Google Scholar] [CrossRef]
- Salles, L.A.; Ramos, J.D.; Pasqual, M.; Junqueira, K.P.; Silva, A.B.D. Sacarose e pH na germinação in vitro de grãos de pólen de citros. Cien Agrotec 2006, 30, 170–174. [Google Scholar] [CrossRef]
- Feder, N.E.D.; O’brien, T.P. Plant microtechnique: Some principles and new methods. Am. J. Bot. 1968, 55, 123–142. [Google Scholar] [CrossRef]
- Di Rienzo, J.A.; Casanoves, F.; Balzarini, M.G. Infostat; Versión 2013; Grupo InfoStat, FCA; Universidad Nacional de Córdoba: Córdoba, Argentina, 2013; Volume 8, pp. 195–199. Available online: http://www.infostat.com (accessed on 15 September 2021).
- Gower, J.C. A general coefficient of similarity and some of its properties. Biometrics 1971, 27, 857–871. [Google Scholar] [CrossRef]
- Andrade, I.S.; de Melo, C.A.F.; de Sousa Nunes, G.H.; Holanda, I.S.A.; Grangeiro, L.C.; Corrêa, R.X. Morphoagronomic genetic diversity of Brazilian melon accessions based on fruit traits. Sci. Hort. 2019, 243, 514–523. [Google Scholar] [CrossRef]
- Melo, C.A.F.; Souza, M.M.; Sousa, A.G.R. Multivariate analysis of backcross progeny of Passiflora, L. (Passifloraceae) for pre-breeding genotype selection. Genet. Mol. Res. 2015, 14, 15376–15389. [Google Scholar] [CrossRef] [PubMed]
- Poole, C.F.; Grimball, P.C. Inheritance of new sex forms in Cucumis melo L. J. Hered. 1939, 30, 21–25. [Google Scholar] [CrossRef]
- Belavadi, V.V. Floral biology and pollination in Cucumis melo L., a tropical andromonoecious cucurbit. J. Asia-Pac. Entomol. 2019, 22, 215–225. [Google Scholar] [CrossRef]
- Li, D.; Sheng, Y.; Niu, H.; Li, Z. Gene interactions regulating sex determination in cucurbits. Front. Plant Sci. 2019, 10, 1231. [Google Scholar] [CrossRef]
- Boualem, A.; Troadec, C.; Camps, C.; Lemhemdi, A.; Morin, H.; Sari, M.A.; Bendahmane, A. A cucurbit androecy gene reveals how unisexual flowers develop and dioecy emerges. Science 2015, 350, 688–691. [Google Scholar] [CrossRef]
- Kim, N.; Oh, J.; Kim, B.; Choi, E.K.; Hwang, U.S.; Staub, J.E.; Park, Y. The CmACS-7 gene provides sequence variation for development of DNA markers associated with monoecious sex expression in melon (Cucumis melo L.). Hortic. Environ. Biotechnol. 2015, 56, 535–545. [Google Scholar] [CrossRef]
- Cho, L.; Yoon, J.; An, G. The control of flowering time by environmental factors. Plant J. 2017, 90, 708–719. [Google Scholar] [CrossRef]
- Papadopoulou, E.; Little, H.A.; Hammar, S.A. Effect of modified endogenous ethylene production on sex expression, bisexual flower development and fruit production in melon (Cucumis melo L.). Sex. Plant Reprod. 2005, 18, 131–142. [Google Scholar] [CrossRef]
- Le Deunff, E.; Sauton, A.; Dumas, C. Effect of ovular receptivity on seed set and fruit development in cucumber (Cucumis sativus L.). Sex. Plant Reprod. 1993, 6, 139–146. [Google Scholar] [CrossRef]
- Kiill, L.H.P.; Feitoza, E.D.A.; Siqueira, K.M.M.D.; Ribeiro, M.D.F.; Silva, E.M.S.D. Evaluation of floral characteristics of melon hybrids (Cucumis melo L.) in pollinator attractiveness. Rev. Bras. Frut. 2016, 38, 2. [Google Scholar] [CrossRef]
- Lopez, H.A.; Anton, A.M.; Galetto, L. Pollen-pistil size correlation and pollen size-number trade-off in species of Argentinian Nyctaginaceae with different pollen reserves. Plant Syst. Evol. 2005, 256, 69–73. [Google Scholar] [CrossRef]
- Noguera, F.J.; Capel, J.; Alvarez, J.I.; Lozano, R. Development and mapping of a codominant SCAR marker linked to the andromonoecious gene of melon. Theor. Appl. Genet. 2005, 110, 714–720. [Google Scholar] [CrossRef] [PubMed]
- Franchi, G.G.; Nepi, M.; Dafni, A.; Pacini, E. Partially hydrated pollen: Taxonomic distribution, ecological and evolutionary significance. Plant Syst. Evol. 2002, 234, 211–227. [Google Scholar] [CrossRef]
- Ángel-Coca, C.; Nates-Parra, G.; Ospina-Torres, R.; Melo Ortiz, C.D. Biología floral y reproductiva de la gulupa Passiflora edulis Sims. F. edulis. Caldasia 2011, 33, 433–451. [Google Scholar]
- Rodríguez-Rojas, T.J.; Andrade-Rodríguez, M.; Canul-Ku, J.; Castillo-Gutiérrez, A.; Martínez-Fernández, E.; Guillén-Sánchez, D. Viabilidad de polen, receptividad del estigma y tipo de polinización en cinco especies Echeveria en condiciones de invernadero. Rev. Mex. De Cienc. Agrícolas 2015, 6, 111–123. [Google Scholar]
- Parés, J.; Basso, C.y.; Jáureguii, D. Momento de antesis, dehiscencia de anteras y receptividad estigmática en flores de lechosa (Carica papaya L.) Cv. Cartagena Amarillas. Bioagro 2002, 14, 17–24. [Google Scholar]
- Zalapa, J.E.; Staub, J.E.; McCreight, J.D. Generation means analysis of plant architectural traits and fruit yield in melon. Plant Breed. 2006, 125, 482–487. [Google Scholar] [CrossRef]
- Amanullah, S.; Saroj, A.; Osae, B.A.; Liu, S.; Liu, H.; Gao, P.; Luan, F. Detection of putative QTL regions associated with ovary traits in melon using SNP-CAPS markers. Sci. Hort. 2020, 270, 109445. [Google Scholar] [CrossRef]
- Périn, C.; Hagen, L.; Giovinazzo, N.; Besombes, D.; Dogimont, C.; Pitrat, M. Genetic control of fruit shape acts prior to anthesis in melon (Cucumis melo L.). Mol. Genet. Genom. 2002, 266, 933–941. [Google Scholar] [CrossRef]
- Monforte, A.J.; Oliver, M.; Gonzalo, M.J.; Alvarez, J.M.; Dolcet-Sanjuan, R.; Arus, P. Identification of quantitative trait loci involved in fruit quality traits in melon (Cucumis melo L.). Theor. Appl. Gen. 2004, 4, 750–758. [Google Scholar] [CrossRef]
- Ge, L.L.; Tian, H.Q.; Russell, S.D. Calcium function and distribution during fertilization in angiosperms. Am. J. Bot. 2007, 94, 1046–1060. [Google Scholar] [CrossRef]
- Hepler, P.K.; Vidali, L.; Cheung, A.Y. Polarized cell growth in higher plants. Ann. Rev. Cell Dev. Biol. 2001, 17, 159–187. [Google Scholar] [CrossRef]
- Cheung, A.Y. Pollen—Pistil interactions during pollen-tube growth. Trends Plant Sci. 1996, 1, 45–51. [Google Scholar] [CrossRef]
- Beharav, A.; Cohen, Y. Attempts to overcome the barrier of interspecific hybridization between Cucumis melo, C. metuliferus. Isr. J. Plant Sci. 1995, 43, 113–123. [Google Scholar] [CrossRef]
- Erbar, C. Pollen tube transmitting tissue: Place of competition of male gametophytes. Int. J. Plant Sci. 2003, 164, 265–277. [Google Scholar] [CrossRef]
- Herrero, M.; Hormaza, J.I. Pistil strategies controlling pollen tube growth. Sex. Plant Reprod. 1996, 9, 343–347. [Google Scholar] [CrossRef]
- Pacini, E.; Nepi, M. Effect of pistil age on pollen tube growth fruit development seed set in Cucurbita pepo, L. Acta Soc. Bot. Pol. 2001, 70, 165–172. [Google Scholar] [CrossRef]
- Lord, E.M.; Russell, S.D. The mechanisms of pollination and fertilization in plants. Ann. Rev. Cell Dev. Biol. 2002, 18, 81–105. [Google Scholar] [CrossRef] [PubMed]
- Carle, R.B.; Loy, J.B. Fused vein trait in Cucurbita pepo, L. associated with subvitality of the male gametophyte. J. Am. Soc. Hort. Sci. 1996, 121, 18–22. [Google Scholar] [CrossRef]
- Du, B.; Zhang, Q.; Cao, Q.; Xing, Y.; Qin, L.; Fang, K. Changes of cell wall components during embryogenesis of Castanea mollissima. J. Plant Res. 2020, 133, 257–270. [Google Scholar] [CrossRef]
- Abramova, L.I.; Avalkina, N.A.; Golubeva, E.A.; Pyzhenkova, Z.S.; Golubovskaya, I.N. Synthesis and deposition of callose in anthers and ovules of meiotic mutants of maize (Zea mays). Rus. J. Plant Physiol. 2003, 50, 324–329. [Google Scholar] [CrossRef]
- Tao, L.; Yang, Y.; Wang, Q.; You, X. Callose Deposition Is Required for Somatic Embryogenesis in Plasmolyzed Eleutherococcus senticosus Zygotic Embryos. Int. J. Mol. Sci. 2012, 13, 14115–14126. [Google Scholar] [CrossRef]
- Shen, S.; Ma, S.; Liu, Y.; Liao, S.; Li, J.; Wu, L.; Ruan, Y.L. Cell wall invertase and sugar transporters are differentially activated in tomato styles and ovaries during pollination and fertilization. Front. Plant Sci. 2019, 10, 506. [Google Scholar] [CrossRef]
- Dafni, A.; Firmage, D. Pollen viability and longevity: Practical, ecological and evolutionary implications. Pollen Pollinat. 2000, 222, 113–132. [Google Scholar] [CrossRef]
Ward–MLM Group | Accessions/Genotypes | PL | FW | RL | BL | RW | FL | PGV | MFT | BFT | FRT |
---|---|---|---|---|---|---|---|---|---|---|---|
I | A9 | 15.84 ± 0.68 a | 31.16 ± 0.28 a | 5.75 ± 0.22 c | 3.73 ± 0.52 b | 3.07 ± 0.11 b | 20.42 ± 0.50 b | 95.75 ± 1.11 a | PRE | PRE | SB |
A30 | 15.21 ± 0.06 a | 31.78 ± 0.9 a | 5.64 ± 0.11 c | 3.23 ± 0.02 c | 3.05 ± 0.09 b | 20.45 ± 0.53 c | 97.00 ± 0.14 a | PRE | PRE | SB | |
A35 | 14.40 ± 0.70 b | 29.70 ± 1.18 b | 5.20 ± 0.33d | 2.67 ± 0.54 c | 2.75 ± 0.21 b | 18.88 ± 1.04 c | 97.83 ± 0.97 a | PRE | PRE | SPB | |
I Group mean | 15.15 | 30.88 | 5.53 | 3.21 | 2.96 | 19.92 | 96.86 | - | - | - | |
II | A6 | 14.26 ± 0.52 b | 28.59 ± 0.07 b | 6.63 ± 0.34 b | 4.20 ± 0.56 b | 3.50 ± 0.15 a | 21.14 ± 0.05 b | 98.33 ± 0.14 a | MED | PRE | SB |
A18 | 14.18 ± 0.60 b | 28.36 ± 0.16 b | 6.20 ± 0.09 b | 4.13 ± 0.19 b | 3.21 ± 0.14 b | 20.53 ± 0.56 c | 98.50 ± 0.03 a | MED | PRE | SB | |
A44 | 15.04 ± 0.26 b | 28.06 ± 0.46 b | 6.63 ± 0.12 b | 3.47 ± 0.47 | 3.79 ± 0.44 a | 21.71 ± 0.62 b | 98.41 ± 0.06 a | MED | MED | SB | |
PI161375 | 15.65 ± 0.87 a | 29.05 ± 0.53 b | 5.71 ± 0.34 c | 3.95 ± 0.01 b | 2.90 ± 0.45 b | 20.99 ± 0.01 b | 98.66 ± 0.19 a | MED | MED | SB | |
II Group mean | 14.78 | 28.52 | 6.29 | 3.94 | 3.35 | 21.09 | 98.47 | - | - | - | |
III | A1 | 16.50 ± 0.45 a | 34.99 ± 0.85 a | 5.55 ± 0.77 c | 5.19 ± 0.10 a | 3.50 ± 0.08 a | 21.77 ± 1.28 b | 97.50 ± 1.22 a | MED | MED | SB |
A7 | 17.29 ± 0.34 a | 35.01 ± 0.87 a | 7.54 ± 1.22 a | 5.36 ± 0.27 a | 3.55 ± 0.13 a | 25.11 ± 2.06 a | 98.66 ± 0.06 a | MED | MED | SB | |
A24 | 15.94 ± 1.01 a | 32.61 ± 1.53 a | 6.05 ± 0.27 b | 5.02 ± 0.07 a | 3.41 ± 0.01 a | 21.19 ± 1.86 b | 99.66 ± 0.94 a | MED | MED | SB | |
A27 | 18.07 ± 1.12 a | 33.93 ± 0.21 a | 6.12 ± 0.20 b | 4.78 ± 0.31 a | 3.22 ± 0.20 b | 24.11 ± 1.06 a | 99.08 ± 0.36 a | MED | MED | SB | |
III Group mean | 16.95 | 34.14 | 6.32 | 5.09 | 3.42 | 23.05 | 98.72 | - | - | - | |
IV | A19 | 13.38 ± 3.57 b | 27.88 ± 0.75 b | 5.56 ± 0.19 c | 3.25 ± 0.13 c | 2.96 ± 0.21 b | 18.15 ± 1.01 c | 98.00 ± 0.44 a | LAT | PRE | SPB |
A50 | 13.93 ± 3.02 b | 27.65 ± 0.52 b | 5.46 ± 0.29 c | 2.72 ± 0.40 c | 3.10 ± 0.07 b | 19.57 ± 0.41 c | 97.00 ± 0.56 a | LAT | MED | SPB | |
Ouro | 12.86 ± 4.09 | 25.41 ± 1.72 c | 5.78 ± 0.03 | 2.69 ± 0.43 c | 3.24 ± 0.07 b | 18.88 ± 0.28 c | 99.00 ± 1.44 a | LAT | MED | SB | |
PI161375 x Ouro | 14.66 ± 2.29 b | 27.58 ± 0.45 b | 6.19 ± 0.44 b | 3.82 ± 0.70 b | 3.39 ± 0.22 a | 20.03 ± 0.87 c | 96.25 ± 1.31 a | LAT | MED | SB | |
IV Group mean | 16.95 | 27.13 | 5.75 | 3.12 | 3.17 | 19.16 | 97.56 | - | - | - | |
V | Piel de sapo (PS) | 13.01 ± 0.60 b | 23.46 ± 0.16 c | 5.71 ± 0.12 c | 5.21 ± 1.01 a | 3.68 ± 0.16 a | 19.66 ± 0.62 c | 96.25 ± 0.87 a | LAT | LAT | SB |
Galia | 11.81 ± 0.60 b | 23.78 ± 0.16 c | 5.47 ± 0.12 c | 3.19 ± 1.01 c | 3.35 ± 0.17 a | 18.41 ± 0.63 c | 98.00 ± 0.88 a | LAT | LAT | SB | |
VI Group mean | 12.41 | 23.62 | 5.59 | 4.20 | 3.52 | 19.04 | 97.12 | - | - | - | |
VI | A11 | 15.66 ± 0.59 a | 31.12 ± 1.32 a | 5.16 ± 0.21d | 4.00 ± 0.14 b | 3.34 ± 0.12 c | 20.45 ± 0.20 c | 97.25 ± 0.72 a | MED | PRE | SB |
A43 | 14.73 ± 0.34 b | 28.38 ± 1.42 b | 4.61 ± 0.79d | 4.12 ± 0.26 b | 2.93 ± 0.29 b | 17.30 ± 2.95 c | 97.00 ± 0.97 a | MED | LAT | SB | |
D2 | 14.87 ± 0.20 b | 29.67 ± 0.13 b | 5.76 ± 0.36 c | 3.31 ± 0.55 | 3.22 ± 0.00 b | 21.20 ± 0.95 b | 98.91 ± 0.94 a | PRE | LAT | SPB | |
PI161375 x Galia | 15.02 ± 0.05 b | 30.04 ± 0.24 b | 6.08 ± 0.68 b | 4.02 ± 0.16 b | 3.39 ± 0.17 a | 22.00 ± 1.75 b | 98.75 ± 0.78 a | LAT | LAT | SB | |
VI Group mean | 15.07 | 29.80 | 5.40 | 3.86 | 3.22 | 20.25 | 97.97 | - | - | - | |
Total group mean | 14.87 | 29.44 | 5.86 | 3.91 | 3.26 | 20.57 | 97.78 | - | - | - | |
CV% | 12.8 | 12.77 | 8.19 | 25.43 | 8.84 | 11.48 | 1.82 | - | - | - |
Accessions/ Genotypes | Descriptors | |||
---|---|---|---|---|
Ovary Length | Ovary Width | Stigma Length | Stigma Width | |
PI161375 | 16.68 ± 1.31 c | 8.59 ± 0.35 c | 5.13 ± 0.40 a | 5.12 ± 0.83 a |
Piel de Sapo | 21.07 ± 3.07 b | 11.05 ± 2.12 a | 4.82 ± 0.09 a | 3.93 ± 0.36 b |
Ouro | 15.13 ± 1.75 d | 7.15 ± 1.77 d | 4.68 ± 0.05 | 4.60 ± 0.31 a |
PI161375 x Ouro | 17.24 ± 0.74 c | 9.53 ± 0.60 b | 4.37 ± 0.36 a | 4.14 ± 0.15 b |
Galia | 13.18 ± 4.80 d | 8.44 ± 0.49 c | 4.60 ± 0.13 a | 3.51 ± 0.78 b |
PI161375 x Galia | 24.65 ± 6.66 a | 8.81 ± 0.12 c | 4.78 ± 0.05 a | 4.46 ± 0.17 b |
CV% | 8.39 | 7.66 | 7.87 | 10.55 |
Mean | 17.99 | 8.93 | 4.73 | 4.29 |
Accessions/ Genotypes | Pollen Tube Growth In Vivo | Pollen Tube Arriving in Ovule | ||||
---|---|---|---|---|---|---|
1 HAP | 2 HAP | 3 HAP | 1 HAP | 2 HAP | 3 HAP | |
PI161375 | 19.75 ± 0.03 c | 56.75 ± 25.58 a | 64.50 ± 26.92 a | 3.50 ± 1,79 b | 4.00 ± 0.25 b | 7.50 ± 1.05 a |
Piel de Sapo | 38.25 ± 18.92 b | 39.75 ± 8.58 b | 49.00 ± 11.42 b | 1.50 ± 0.21 c | 2.00 ± 1.75 c | 3.67 ± 2.78 b |
Ouro | 9.50 ± 10.05 c | 25.75 ± 5.42 b | 25.75 ± 11.83 c | 1.25 ± 0.46 c | 2.75 ± 1.00 b | 6.75 ± 0.03 a |
PI161375 x Ouro | 9.00 ± 10.54 c | 11.50 ± 16.67 c | 23.75 ± 11.83 b | 0.00 ± 1.71 c | 0.00 ± 3.75 c | 4.25 ± 2.20 b |
Galia | 14.50 ± 5.07 c | 20.75 ± 10.42 c | 28.00 ± 9.58 c | 3.50 ± 1.79 b | 6.00 ± 2.25 a | 8.50 ± 2.05 a |
PI161375 x Galia | 26.50 ± 6.92 b | 32.50 ± 1.33 b | 34.50 ± 3.08 b | 0.50 ± 1.21 c | 7.75 ± 4.00 a | 8.00 ± 1.55 a |
Phloem Cell Type | Functions | Accessions |
---|---|---|
Sieve tube elements | Translocation of sugar, amino acids and hormones | PI161375; Piel de sapo |
Companion cells | Metabolic support, phloem loading/unloading | Galia; Piel de sapo |
Parenchyma | Storage and synthesis | PI161375; Piel de sapo; Ouro |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sanabria-Verón, N.C.; Melo, C.A.F.d.; de Sousa Nunes, G.H.; Da Costa Silva, D.; de Souza, M.M.; Corrêa, R.X. Floral Characteristics and Reproductive Biology in Brazilian Melon Accessions: Insights from Commercial and Exotic Varieties. Plants 2025, 14, 3047. https://doi.org/10.3390/plants14193047
Sanabria-Verón NC, Melo CAFd, de Sousa Nunes GH, Da Costa Silva D, de Souza MM, Corrêa RX. Floral Characteristics and Reproductive Biology in Brazilian Melon Accessions: Insights from Commercial and Exotic Varieties. Plants. 2025; 14(19):3047. https://doi.org/10.3390/plants14193047
Chicago/Turabian StyleSanabria-Verón, Nadia Carolina, Cláusio Antônio Ferreira de Melo, Glauber Henrique de Sousa Nunes, Delmira Da Costa Silva, Margarete Magalhães de Souza, and Ronan Xavier Corrêa. 2025. "Floral Characteristics and Reproductive Biology in Brazilian Melon Accessions: Insights from Commercial and Exotic Varieties" Plants 14, no. 19: 3047. https://doi.org/10.3390/plants14193047
APA StyleSanabria-Verón, N. C., Melo, C. A. F. d., de Sousa Nunes, G. H., Da Costa Silva, D., de Souza, M. M., & Corrêa, R. X. (2025). Floral Characteristics and Reproductive Biology in Brazilian Melon Accessions: Insights from Commercial and Exotic Varieties. Plants, 14(19), 3047. https://doi.org/10.3390/plants14193047