Transcriptomic Analysis Reveals the Role of Silver Nanoparticles in Promoting Maize Germination
Abstract
1. Introduction
2. Results
2.1. Germination and Growth Responses to AgNP Treatment
2.2. Transcriptome Sequencing and Differential Gene Expression in Two 178 Inbreds After AgNP Treatment
2.3. Identification of Differentially Expressed Genes (DEGs) Induced by AgNP Treatment
2.4. Common DEGs Induced by AgNP and Specific DEGs Different from Aging Sensitivity and Tolerant Inbreds
2.5. Functional Pathways of sDEGs in Two 178 Inbreds After AgNP Treatment
2.6. Membrane Repair Against Oxidation and Cell Wall Development Genes
3. Discussion
3.1. Enhancement in Germination and Seedling Growth in Aging-Sensitive Maize by AgNPs
3.2. Transcriptomic Insights into AgNP-Mediated Regulation of Seed Vigor
3.3. Membrane Repair, Antioxidant Defense, and Cell Wall Development as Core Mechanisms
3.4. Agricultural Implications and Future Perspectives
4. Materials and Methods
4.1. Preparation of Silver Nanoparticles
4.2. Plant Materials and Seed Treatment
4.3. Germination and Seedling Measurements
4.4. Transcriptome Sequencing and Analysis
4.5. RT-qPCR Validation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Edy; Muchdar, A.; Numba, S.; Takdir, A. Growth and production evaluation of corn varieties and genotypes grow from seed with different storage ages. IOP Conf. Ser. Earth Environ. Sci. 2021, 911, 12067. [Google Scholar] [CrossRef]
- Kurek, K.; Plitta-Michalak, B.; Ratajczak, E. Reactive oxygen species as potential drivers of the seed aging process. Plants 2019, 8, 174. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Zhang, Y.; Sun, J.; Meng, J.; Tao, J. Deterioration of orthodox seeds during ageing: Influencing factors, physiological alterations and the role of reactive oxygen species. Plant Physiol. Biochem. 2021, 158, 475–485. [Google Scholar] [CrossRef]
- Goel, A.; Sheoran, I. Changes in oxidative stress enzymes during artificial ageing in cotton (Gossypium hirsutum L.) seeds. J. Plant Physiol. 2003, 160, 1093–1100. [Google Scholar] [CrossRef]
- Ebone, L.A.; Caverzan, A.; Chavarria, G. Physiologic alterations in orthodox seeds due to deterioration processes. Plant Physiol. Biochem. 2019, 145, 34–42. [Google Scholar] [CrossRef]
- Sharma, S.N.; Maheshwari, A.; Sharma, C.; Shukla, N. Gene expression patterns regulating the seed metabolism in relation to deterioration/ageing of primed mung bean (Vigna radiata L.) seeds. Plant Physiol. Biochem. 2018, 124, 40–49. [Google Scholar] [CrossRef]
- Du, Y.; Lin, J.; Jiang, H.; Zhao, H.; Zhang, X.; Wang, R.; Feng, F. Genetic mapping for seed aging tolerance under multiple environments in sweet corn. Agronomy 2025, 15, 225. [Google Scholar] [CrossRef]
- Andrade, G.C.D.; Coelho, C.M.M.; Padilha, M.S. Seed reserves reduction rate and reserves mobilization to the seedling explain the vigour of maize seeds. J. Seed Sci. 2019, 41, 488–497. [Google Scholar] [CrossRef]
- Latef, A.A.A.; Tran, L. Impacts of priming with silicon on the growth and tolerance of maize plants to alkaline stress. Front. Plant Sci. 2016, 7, 243. [Google Scholar] [CrossRef]
- Chen, S.; Liu, H.; Yangzong, Z.; Gardea-Torresdey, J.L.; White, J.C.; Zhao, L. Seed Priming with Reactive Oxygen Species-Generating Nanoparticles Enhanced Maize Tolerance to Multiple Abiotic Stresses. Environ. Sci. Technol. 2023, 57, 19932–19941. [Google Scholar] [CrossRef] [PubMed]
- Nile, S.H.; Thiruvengadam, M.; Wang, Y.; Samynathan, R.; Shariati, M.A.; Rebezov, M.; Nile, A.; Sun, M.; Venkidasamy, B.; Xiao, J.; et al. Nano-priming as emerging seed priming technology for sustainable agriculture—Recent developments and future perspectives. J. Nanobiotechnol. 2022, 20, 254. [Google Scholar] [CrossRef]
- Acharya, P.; Jayaprakasha, G.K.; Crosby, K.M.; Jifon, J.L.; Patil, B.S. Nanoparticle-Mediated Seed Priming Improves Germination, Growth, Yield, and Quality of Watermelons (Citrullus lanatus) at multi-locations in Texas. Sci. Rep. 2020, 10, 5037. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, L.; Zhang, Q.; Wei, J.; Zhao, X.; Zheng, Z.; Chen, B.; Xu, Z. Nanopriming boost seed vigor: Deeper insights into the effect mechanism. Plant Physiol. Biochem. 2024, 214, 108895. [Google Scholar] [CrossRef]
- Bakht, J.; Shafi, M.; Jamal, Y.; Sher, H. Response of maize (Zea mays L.) to seed priming with NaCl and salinity stress. Span. J. Agric. Res. 1970, 9, 252–261. [Google Scholar] [CrossRef]
- Rhaman, M.S.; Rauf, F.; Tania, S.S.; Khatun, M. Seed Priming Methods: Application in Field Crops and Future Perspectives. Asian J. Res. Crop Sci. 2020, 5, 8–19. [Google Scholar] [CrossRef]
- Mahakham, W.; Sarmah, A.K.; Maensiri, S.; Theerakulpisut, P. Nanopriming technology for enhancing germination and starch metabolism of aged rice seeds using phytosynthesized silver nanoparticles. Sci. Rep. 2017, 7, 8263. [Google Scholar] [CrossRef]
- Siddiqi, K.S.; Husen, A.; Rao, R.A.K. A review on biosynthesis of silver nanoparticles and their biocidal properties. J. Nanobiotechnol. 2018, 16, 14. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Wang, F.; Li, X.; Peng, Y.; Hey, S.; Wang, G.; Wang, J.; Gu, R. Comparative analysis of the accelerated aged seed transcriptome profiles of two maize chromosome segment substitution lines. PLoS ONE 2019, 14, e0216977. [Google Scholar] [CrossRef] [PubMed]
- Alhammad, B.A.; Ahmad, A.; Seleiman, M.F.; Tola, E. Seed priming with nanoparticles and 24-epibrassinolide improved seed germination and enzymatic performance of Zea mays L. in salt-stressed soil. Plants 2023, 12, 690. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, E.A. Seed priming to alleviate salinity stress in germinating seeds. J. Plant Physiol. 2016, 192, 38–46. [Google Scholar] [CrossRef]
- Rai, P.; Pratap Singh, V.; Sharma, S.; Tripathi, D.K.; Sharma, S. Iron oxide nanoparticles impart cross tolerance to arsenate stress in rice roots through involvement of nitric oxide. Environ. Pollut. 2022, 307, 119320. [Google Scholar] [CrossRef]
- Rai-Kalal, P.; Jajoo, A. Priming with zinc oxide nanoparticles improve germination and photosynthetic performance in wheat. Plant Physiol. Biochem. 2021, 160, 341–351. [Google Scholar] [CrossRef]
- Kaur, S.; Kumari, A.; Sharma, N.; Pandey, A.K.; Garg, M. Physiological and molecular response of colored wheat seedlings against phosphate deficiency is linked to accumulation of distinct anthocyanins. Plant Physiol. Biochem. 2022, 170, 338–349. [Google Scholar] [CrossRef]
- Tian, Y.; Gama-Arachchige, N.S.; Zhao, M. Trends in seed priming research in the past 30 years based on bibliometric analysis. Plants 2023, 12, 3483. [Google Scholar] [CrossRef]
- Dong, Q.; Huang, T.; Zhou, C.; Wan, X.; He, X.; Miao, P.; Cheng, H.; Wang, X.; Yu, H.; Hu, M.; et al. Nano-priming with selenium nanoparticles reprograms seed germination, antioxidant defense, and phenylpropanoid metabolism to enhance fusarium graminearum resistance in maize seedlings. J. Adv. Res. 2025, in press. [Google Scholar] [CrossRef] [PubMed]
- Soleymani, S.; Piri, S.; Aazami, M.A.; Salehi, B. Cerium oxide nanoparticles alleviate drought stress in apple seedlings by regulating ion homeostasis, antioxidant defense, gene expression, and phytohormone balance. Sci. Rep. 2025, 15, 11805. [Google Scholar] [CrossRef]
- Donia, D.T.; Carbone, M. Seed priming with zinc oxide nanoparticles to enhance crop tolerance to environmental stresses. Int. J. Mol. Sci. 2023, 24, 17612. [Google Scholar] [CrossRef] [PubMed]
- Das, G.; Dutta, P. Effect of nanopriming with zinc oxide and silver nanoparticles on storage of chickpea seeds and management of wilt disease. Mdrsjrns 2022, 24, 213–226. [Google Scholar]
- Waqas Mazhar, M.; Ishtiaq, M.; Hussain, I.; Parveen, A.; Hayat Bhatti, K.; Azeem, M.; Thind, S.; Ajaib, M.; Maqbool, M.; Sardar, T.; et al. Seed nano-priming with zinc oxide nanoparticles in rice mitigates drought and enhances agronomic profile. PLoS ONE 2022, 17, e0264967. [Google Scholar] [CrossRef]
- Fang, J.; Zhong, C.; Mu, R. The study of deposited silver particulate films by simple method for efficient SERS. Chem. Phys. Lett. 2005, 401, 271–275. [Google Scholar] [CrossRef]
- Šileikaitė, A.; Prosyčevas, I.; Puišo, J.; Juraitis, A.; Guobienė, A. Analysis of silver nanoparticles produced by chemical reduction of silver salt solution. Mater. Sci. 2006, 12, 287–291. [Google Scholar]
- Jia, J.; Yu, H.; Wei, D.; White, J.C.; Guo, Y.; Saleem, K.; Li, M.; Wang, Y.; Song, C. Mitigating cadmium stress in soybean plants: Seed priming with nanoscale TiO2 and ZnO for safer crop production. J. Agric. Food Chem. 2025, 73, 18602–18616. [Google Scholar] [CrossRef]
- Thakur, M.; Tiwari, S.; Kataria, S.; Anand, A. Recent advances in seed priming strategies for enhancing planting value of vegetable seeds. Sci. Hortic. 2022, 305, 111355. [Google Scholar] [CrossRef]
- Xin, X.; Zhao, F.; Rho, J.Y.; Goodrich, S.L.; Sumerlin, B.S.; He, Z. Use of polymeric nanoparticles to improve seed germination and plant growth under copper stress. Sci. Total Environ. 2020, 745, 141055. [Google Scholar] [CrossRef]
- Gohari, G.; Jiang, M.; Manganaris, G.A.; Zhou, J.; Fotopoulos, V. Next generation chemical priming: With a little help from our nanocarrier friends. Trends Plant Sci. 2024, 29, 150–166. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.; Lv, H.; Wang, L.; Deng, X.; Ci, X. Isoorientin Ameliorates APAP-Induced Hepatotoxicity via Activation Nrf2 Antioxidative Pathway: The Involvement of AMPK/Akt/GSK3β. Front. Pharmacol. 2018, 9, 1334. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Zhu, F.; Zheng, X.; Yang, L.; Diao, Y.; Hu, Z. Evaluation and validation of suitable reference genes for quantitative real-time PCR analysis in lotus (Nelumbo nucifera Gaertn.). Sci. Rep. 2024, 14, 10857. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.-Y.; Kim, M.; Sung, J.-S.; Koduru, J.R.; Nile, S.H.; Syed, A.; Bahkali, A.H.; Seth, C.S.; Ghodake, G.S. Extracellular synthesis of silver nanoparticle using yeast extracts: Antibacterial and seed priming applications. Appl. Microbiol. Biotechnol. 2024, 108, 150. [Google Scholar] [CrossRef]
- Angelini, J.; Klassen, R.; Široká, J.; Novák, O.; Záruba, K.; Siegel, J.; Novotná, Z.; Valentová, O. Silver Nanoparticles Alter Microtubule Arrangement, Dynamics and Stress Phytohormone Levels. Plants 2022, 11, 313. [Google Scholar] [CrossRef]
Lines | Rep | Total Reads | Rate of Total Mapped Reads (%) | Num. of Expressed Genes | Rate of Expressed Genes (%) |
---|---|---|---|---|---|
I178-CK | 1 | 44,359,018 | 99.35 | 23,058 | 53.06 |
2 | 43,820,934 | 99.37 | 23,675 | 54.48 | |
I178-PT | 1 | 44,696,386 | 98.73 | 22,826 | 52.52 |
2 | 43,717,508 | 99.06 | 22,598 | 52.00 | |
X178-CK | 1 | 44,393,260 | 99.12 | 23,208 | 53.40 |
2 | 45,159,698 | 99.04 | 22,980 | 52.88 | |
X178-PT | 1 | 43,138,354 | 98.87 | 23,723 | 54.59 |
2 | 40,423,338 | 99.06 | 23,438 | 53.93 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, Z.; Li, X.; Liang, Z.; Li, R.; Wang, W.; Li, X.; Du, X.; Chen, Q.; Gu, R.; Wang, J.; et al. Transcriptomic Analysis Reveals the Role of Silver Nanoparticles in Promoting Maize Germination. Plants 2025, 14, 3022. https://doi.org/10.3390/plants14193022
Yuan Z, Li X, Liang Z, Li R, Wang W, Li X, Du X, Chen Q, Gu R, Wang J, et al. Transcriptomic Analysis Reveals the Role of Silver Nanoparticles in Promoting Maize Germination. Plants. 2025; 14(19):3022. https://doi.org/10.3390/plants14193022
Chicago/Turabian StyleYuan, Zhipeng, Xuhui Li, Zhi Liang, Ran Li, Weiping Wang, Xiangfeng Li, Xuemei Du, Quanquan Chen, Riliang Gu, Jianhua Wang, and et al. 2025. "Transcriptomic Analysis Reveals the Role of Silver Nanoparticles in Promoting Maize Germination" Plants 14, no. 19: 3022. https://doi.org/10.3390/plants14193022
APA StyleYuan, Z., Li, X., Liang, Z., Li, R., Wang, W., Li, X., Du, X., Chen, Q., Gu, R., Wang, J., & Li, L. (2025). Transcriptomic Analysis Reveals the Role of Silver Nanoparticles in Promoting Maize Germination. Plants, 14(19), 3022. https://doi.org/10.3390/plants14193022