Do Oxytetracycline and Ciprofloxacin Affect Growth Phenotype, Leaf Photosynthetic Enzyme Activity, Nitrogen Metabolism, and Endogenous Hormone Homeostasis in Maize Seedlings?
Abstract
1. Introduction
2. Results
2.1. Phenotypes of Maize Seedlings
2.2. Relative Water Content of Maize Seedling Leaves
2.3. Relative Electrical Conductivity of Maize Seedling Leaves
2.4. Root Activity of Maize Seedlings
2.5. Photosynthetic Key Enzyme Activities in Maize Seedling Leaves
2.6. Hormones in Maize Seedling Root System
2.7. Hormones in Maize Seedling Leaves
2.8. Nitrogen Metabolism-Related Enzyme Activities in Maize Seedling Roots
2.9. Nitrogen Metabolism-Related Enzyme Activities in Maize Seedling Leaves
2.10. Parameters of Maize Seedling Root Systems
3. Discussion
4. Materials and Methods
4.1. Experimental Materials
4.2. Seedling Experiment
- (1)
- Seed Germination: we select the Longken 10 seeds and place them in a Petri dish (60 mm) for dark germination in a constant temperature incubator for 48 h.
- (2)
- Transplanting: we select uniform and healthy seedlings without damage and transplant them into cultivation pots (60 × 30 × 15 cm), with 30 seedlings per pot. Add 10 L of nutrient solution to each pot. Set the light exposure to 12 h per day, with a temperature of 28 ± 1 °C. Change the nutrient solution every 3 days until the seedlings reach the two-leaf and one-heart stage, then proceed with antibiotic treatment.
- (3)
- Antibiotic Treatment: we select uniformly grown seedlings and divide them into 11 treatment groups—Control group: 1/2 Hoagland nutrient solution, forming 1 control group; Treatment groups—Mix CIP and OTC at concentrations of 3, 5, 30, 60, and 120 mg·L−1 into 1/2 Hoagland nutrient solution, forming 10 treatment groups.
- (4)
- Environmental Settings: The seedlings were cultivated in a growth chamber with controllable environmental parameters with a daytime temperature of 28 ± 1 °C and a nighttime temperature of 25 ± 1 °C. The light intensity was set at approximately 300 μmol·m−2·s−1. This intensity was chosen because it falls within the range typically used for growing maize seedlings and is suitable for supporting normal photosynthesis and growth activities. The light cycle was maintained at 12 h of light and 12 h of darkness. The relative humidity is maintained at 65–75%. The first day is marked as day 0. After continuous treatment for 4 days, samples of the parts to be measured are collected. Each index is repeated 3 times. These settings were carefully calibrated to simulate the natural day–night cycle and provide the seedlings with the optimal light environment to promote their growth and development.
4.3. Phenotypic Measurement of Seedling Growth
4.4. Determination of Leaf Relative Water Content
4.5. Determination of Relative Electrical Conductivity of Leaves (EL)
4.6. Determination of Photosynthetic Enzyme Activities in Leaves
4.7. Determination of Endogenous Hormone Activity
4.8. Determination of Nitrogen Metabolism-Related Enzyme Activities
4.9. Root System Parameters and Root Activity Measurement
4.10. Data Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, Z.; Zhao, L.; Jin, Q.; Luo, Q.; He, H. Combined contamination of microplastic and antibiotic alters the composition of microbial community and metabolism in wheat and maize rhizosphere soil. J. Hazard. Mater. 2024, 473, 13. [Google Scholar] [CrossRef]
- Qin, L.; Pang, X.; Zeng, H.; Liang, Y.; Mo, L.; Wang, D.; Dai, J. Ecological and Human Health Risk of Sulfonamides in Surface Water and Groundwater of Huixian Karst Wetland in Guilin, China. Sci. Total Environ. 2020, 708, 134552. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, H.; Zhang, L.; Jiang, Y.; Gin, K.; He, Y. Occurrence, Distribution, and Risk Assessment of Antibiotics in a Subtropical River-Reservoir System. Water 2018, 10, 104. [Google Scholar] [CrossRef]
- Zhang, Q.; Ying, G.; Pan, C.; Liu, Y.; Zhao, J. Comprehensive Evaluation of Antibiotics Emission and Fate in the River Basins of China: Source Analysis, Multimedia Modeling, and Linkage to Bacterial Resistance. Environ. Sci. Technol. 2015, 49, 6772–6782. [Google Scholar] [CrossRef]
- Garner, E.; Chen, C.; Xia, K.; Bowers, J.; Engelthaler, D.M.; McLain, J.; Edwards, M.A.; Pruden, A. Metagenomic Characterization of Antibiotic Resistance Genes in Full-Scale Reclaimed Water Distribution Systems and Corresponding Potable Systems. Environ. Sci. Technol. 2018, 52, 6113–6125. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, P.; Feng, Y.; Yang, F. Fate of Antibiotics during Wastewater Treatment and Antibiotic Distribution in the Effluent-Receiving Waters of the Yellow Sea, Northern China. Mar. Pollut. Bull. 2013, 73, 282–290. [Google Scholar] [CrossRef]
- He, K.; Soares, A.D.; Adejumo, H.; McDiarmid, M.; Squibb, K.; Blaney, L. Detection of a Wide Variety of Human and Veterinary Fluoroquinolone Antibiotics in Municipal Wastewater and Wastewater-Impacted Surface Water. J. Pharm. Biomed. Anal. 2015, 106, 136–143. [Google Scholar] [CrossRef]
- Kümmerer, K. Antibiotics in the Aquatic Environment—A Review—Part II. Chemosphere 2009, 75, 435–441. [Google Scholar] [CrossRef] [PubMed]
- Christoph, K.; Sven, J.; Rosendahl, I.; Joost, G.; Ellen, K.; Ute, Z.; Viola, W.; Jan, S.; Wulf, A.; Holger, H.; et al. Abundance and Transferability of Antibiotic Resistance as Related to the Fate of Sulfadiazine in Maize Rhizosphere and Bulk Soil. FEMS Microbiol. Ecol. 2013, 83, 125–134. [Google Scholar] [CrossRef]
- Song, G.; Zhang, S.; Zhuang, H.; Zhou, P.; Chen, H.; Song, Q.; Fang, B. Pollution assessment of macrolide antibiotics and fungicides residues inagricultural land. Environ. Chem. 2022, 41, 2309–2319. [Google Scholar] [CrossRef]
- Tang, S.S.; Apisarnthanarak, A.; Hsu, L.Y. Mechanisms of β-Lactam Antimicrobial Resistance and Epidemiology of Major Community- and Healthcare-Associated Multidrug-Resistant Bacteria. Adv. Drug Deliv. Rev. 2014, 78, 3–13. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, M.; Gu, G. Residues of Tetracyclines in Livestock and Poultry Manures and Agricultural Soils from North Zhejiang Province. J. Ecol. Rural Environ. 2008, 24, 69–73. [Google Scholar]
- Li, Y.; Mong, C.; Zhao, N.; Tai, Y.; Bao, Y.; Wang, J.; Li, M.; Liang, W. Investigation of Sulfonamides and Tetracyclines Antibiotics in Soils from Various Vegetable Fields. Environ. Sci. 2009, 30, 1762–1766. [Google Scholar] [CrossRef]
- Chen, X.; Wang, M.; Yang, C.; Wu, L. Review of contaminations in water of tetracyclines in China and toxicity on aquatic organisms. Appl. Chem. Ind. 2021, 50, 2780–2785. [Google Scholar] [CrossRef]
- Xu, Y.; Guo, C.; Luo, Y.; Lv, J.; Zhang, Y.; Lin, H.; Wang, L.; Xu, J. Occurrence and Distribution of Antibiotics, Antibiotic Resistance Genes in the Urban Rivers in Beijing, China. Environ. Pollut. 2016, 213, 833–840. [Google Scholar] [CrossRef]
- Wu, X. Pollution Characteristics and Heath Risk of Quinolone Antibiotics in Vegetables of Pearl River Delta Area. Master’s Thesis, Jinan University, Guangzhou, China, 2011. [Google Scholar]
- Lan, X.; Liu, Y.; Lv, Z.; Hou, H.; Ji, J.; Wang, L.; Liu, X. Research Advance in Residues and Ecological Risks of Fluoroquinolone Antibiotics in Agricultural Soil in China. Acta Agric. Jiangxi 2019, 31, 108–115. [Google Scholar] [CrossRef]
- Golet, E.M.; Strehler, A.; Alder, A.C.; Giger, W. Determination of Fluoroquinolone Antibacterial Agents in Sewage Sludge and Sludge-Treated Soil Using Accelerated Solvent Extraction Followed by Solid-Phase Extraction. Anal. Chem. 2002, 74, 5455–5462. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.; Gao, H.; Zhang, K.; Kong, L.; Na, G. Occurrence and risk assessment of antibiotics in typical river basins in China. Environ. Pollut. Control 2021, 43, 94–102. [Google Scholar] [CrossRef]
- Zhao, F.; Gao, H.; Li, R.; Jin, S.; Zhang, H.; Li, S.; Zhang, K.; Shu, Q.; Na, G. Occurrences and risk assessment of antibiotics in water bodies of major rivers in Bohai Rim Basin. China Environ. Sci. 2022, 42, 109–118. [Google Scholar] [CrossRef]
- Ma, J.; Wang, Z.; Zhang, Z.; Liu, Q.; Li, L. Distribution Characteristics of 29 Antibiotics in Groundwater in Harbin. Rock Miner. Anal. 2021, 40, 944–953. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, G.; Liu, Y.; Lu, S.; Qin, P.; Guo, X.; Bi, B.; Wang, L.; Xi, B.; Wu, F.; et al. Occurrence and Fate of Antibiotics and Antibiotic Resistance Genes in Typical Urban Water of Beijing, China. Environ. Pollut. 2019, 246, 163–173. [Google Scholar] [CrossRef]
- Yang, J.; Huang, Y.; Chen, Y.; Hassan, M.; Zhang, X.; Zhang, B.; Gin, K.Y.-H.; He, Y. Multi-Phase Distribution, Spatiotemporal Variation and Risk Assessment of Antibiotics in a Typical Urban-Rural Watershed. Ecotoxicol. Environ. Saf. 2020, 206, 111156. [Google Scholar] [CrossRef] [PubMed]
- Chiffre, A.; Degiorgi, F.; Buleté, A.; Spinner, L.; Badot, P.-M. Occurrence of Pharmaceuticals in WWTP Effluents and Their Impact in a Karstic Rural Catchment of Eastern France. Environ. Sci. Pollut. Res. 2016, 23, 25427–25441. [Google Scholar] [CrossRef]
- Karthikeyan, K.G.; Meyer, M.T. Occurrence of Antibiotics in Wastewater Treatment Facilities in Wisconsin, USA. Sci. Total Environ. 2006, 361, 196–207. [Google Scholar] [CrossRef]
- Binh, V.N.; Dang, N.; Anh, N.T.K.; Ky, L.X.; Thai, P.K. Antibiotics in the Aquatic Environment of Vietnam: Sources, Concentrations, Risk and Control Strategy. Chemosphere 2018, 197, 438–450. [Google Scholar] [CrossRef] [PubMed]
- Böger, B.; Surek, M.; Vilhena, R.D.O.; Fachi, M.M.; Junkert, A.M.; Santos, J.M.; Domingos, E.L.; Cobre, A.D.F.; Momade, D.R.; Pontarolo, R. Occurrence of Antibiotics and Antibiotic Resistant Bacteria in Subtropical Urban Rivers in Brazil. J. Hazard. Mater. 2021, 402, 123448. [Google Scholar] [CrossRef]
- Valdés, M.E.; Santos, L.H.M.L.M.; Rodríguez Castro, M.C.; Giorgi, A.; Barceló, D.; Rodríguez-Mozaz, S.; Amé, M.V. Distribution of Antibiotics in Water, Sediments and Biofilm in an Urban River (Córdoba, Argentina, LA). Environ. Pollut. 2021, 269, 116133. [Google Scholar] [CrossRef] [PubMed]
- Christou, A.; Karaolia, P.; Hapeshi, E.; Michael, C.; Fatta-Kassinos, D. Long-Term Wastewater Irrigation of Vegetables in Real Agricultural Systems: Concentration of Pharmaceuticals in Soil, Uptake and Bioaccumulation in Tomato Fruits and Human Health Risk Assessment. Water Res. 2017, 109, 24–34. [Google Scholar] [CrossRef]
- Pan, M.; Chu, L.M. Adsorption and Degradation of Five Selected Antibiotics in Agricultural Soil. Sci. Total Environ. 2016, 545–546, 48–56. [Google Scholar] [CrossRef]
- Pei, H.; Xu, Y.; Chen, R.; Tu, Q.; Li, H.; Shi, R. Distribution Characteristics and Influencing Factors of Antibiotics in Soils of Different Land Use Types in Suburbs of Tianjin. Environ. Eng. 2021, 39, 166–173. [Google Scholar] [CrossRef]
- Peng, Q.; Wang, W.; Xu, W. Ecological Risk Assessment of Tetracycline Antibiotics in Livestock Manure and Vegetable Soil of Chongqing. Environ. Sci. 2020, 41, 4757–4766. [Google Scholar] [CrossRef]
- Ma, X.; Hu, Y.; Li, N.; Hou, Y. Risk Assessment of Antibiotic Residues in Livestock Farm Soil in Minjiang River Valley. Environ. Sci. Technol. 2021, 44, 223–228. [Google Scholar] [CrossRef]
- Zhu, X.; Zeng, Q.; Xie, Q.; Ding, D.; Ru, S. Residues and risk assessment of tetracycline antibiotics in vegetable-growing soils from suburban areas of northern Guangzhou. J. Agro-Environ. Sci. 2017, 36, 2257–2266. [Google Scholar]
- Al-Wabel, M.I.; Ahmad, M.; Ahmad, J.; Lubis, N.M.A.; Usman, A.R.A.; Al-Farraj, A.S.F. Assessing the Prevalence of Veterinary Antibiotics and Associated Potential Ecological Risk in Dryland Soil, Manure, and Compost: A Case Study from Saudi Arabia. J. King Saud Univ.-Sci. 2021, 33, 101558. [Google Scholar] [CrossRef]
- Van Doorslaer, X.; Dewulf, J.; Van Langenhove, H.; Demeestere, K. Fluoroquinolone antibiotics: An emerging class of environmental micropollutants. Sci. Total Environ. 2014, 500–501C, 250–269. [Google Scholar] [CrossRef]
- Martínez-Carballo, E.; González-Barreiro, C.; Scharf, S.; Gans, O. Environmental Monitoring Study of Selected Veterinary Antibiotics in Animal Manure and Soils in Austria. Environ. Pollut. 2007, 148, 570–579. [Google Scholar] [CrossRef] [PubMed]
- Ho, Y.B.; Zakaria, M.P.; Latif, P.A.; Saari, N. Occurrence of Veterinary Antibiotics and Progesterone in Broiler Manure and Agricultural Soil in Malaysia. Sci. Total Environ. 2014, 488–489, 261–267. [Google Scholar] [CrossRef]
- Richardson, B.J.; Lam, P.K.S.; Martin, M. Emerging Chemicals of Concern: Pharmaceuticals and Personal Care Products (PPCPs) in Asia, with Particular Reference to Southern China. Mar. Pollut. Bull. 2005, 50, 913–920. [Google Scholar] [CrossRef]
- Wu, P.; Wang, Y.; Shen, H. Toxic Effects of Oxytetracycline on Scenedesmus obliquus. Asian J. Ecotoxicol. 2020, 15, 215–223. [Google Scholar] [CrossRef]
- Yao, H.; Shang, S.; Shu, Y. Ecotoxicological effects of oxytetracycline on 10 economic crops. Jiangsu Agric. Sci. 2019, 47, 313–317. [Google Scholar] [CrossRef]
- Zheng, R.; Yang, J.; Zhou, L.; Sun, H.; Liao, S.; Wang, J.; Tan, A.; Lv, S. Ecological toxicity of antibiotics on the germination of Medicago sativa. J. South. Agric. 2021, 52, 2457–2464. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Z.; Cheng, X.; Su, R.; Chang, C.; He, H. Effects of Phosphorus and Oxytetracycline on Seedling Growth and Root Development of Wheat and Alfalfa. J. Soil Water Conserv. 2021, 35, 328–335. [Google Scholar] [CrossRef]
- Zhang, Z. Effects of Oxytetracycline on Plant Growth and Phosphorus Utilization of Alfalfa and Wheat. Master’s Thesis, Northwest A & F University, Yangling, China, 2022. [Google Scholar]
- Chen, B.; Yu, B.; Qiao, X.; Wang, L.; Luo, T.; Zhang, Z. Zinc and oxytetracycline stress effects on maize germination and seedling antioxidant system. Jiangsu J. Agric. Sci. 2017, 33, 13–18. [Google Scholar] [CrossRef]
- Gu, G.; Zhang, M. Effect of oxytetracycline on root growth and physiological characteristics of rice seedlings. Acta Agric. Zhejiangensis 2016, 28, 190–194. [Google Scholar] [CrossRef]
- He, D.; Wu, G.; Xu, Z.; Fang, J.; Zhang, S. Uptake of Selected Tetracycline Antibiotics by Pakchoi and Radish from Manure-Amended Soils. J. Agro-Environ. Sci. 2014, 33, 1095–1099. [Google Scholar] [CrossRef]
- Qin, J.; Bu, Z.; Li, Z.; Guo, J. Influcnce of Oxytcracycline Stress on the Growth of Soybean and Wheat Seedlings. J. Shanxi Agric. Univ. Nat. Sci. Ed. 2012, 32, 103–106. [Google Scholar] [CrossRef]
- Liu, L.; Xiang, H.; Liu, Y.; Liu, C.; Huang, X.; Zhu, G. Effect of oxytetracycline on the properties of hybrid pennisetum and soil in constructed wetlands. Environ. Eng. 2014, 32, 20–24. [Google Scholar] [CrossRef]
- Fu, Y.; Zhao, Y.; Yu, H.; Yan, C.; Ma, R.; Su, F.; Ge, C. Response to Biogas Liquid of Rubber Wastewater in Seed Germination of Cabbage Under Oxytetracycline Stress. Chin. J. Trop. Crops 2019, 40, 1223–1229. [Google Scholar] [CrossRef]
- Ge, C.; Yu, H.; Jiao, P. Toxicological effects of two tetracycline antibiotics on the inhibition of seed germination and root elongation of Chinese cabbages. Ecol. Environ. Sci. 2012, 21, 1143–1148. [Google Scholar] [CrossRef]
- Li, J.; Cui, S.; Cao, H.; Fan, L.; Su, Y. The Absorption and Accumulation Ability of Oxytetracycline in Solution by Three Kinds of Vegetables. Food Ind. 2017, 38, 141–144. [Google Scholar]
- Bao, C.; Gu, G.; Zhang, M. Effects of Veterinary Antibiotics Stress on Growth and Antibiotics Accumulation of Oenanthe javanica DC. Chin. J. Soil Sci. 2016, 47, 164–172. [Google Scholar] [CrossRef]
- Ling, D. Effects of Oxytetracycline and Sulfamethazine on Pepper Physiological Reaction and Physical and Chemical Properties of Soil. Master’s Thesis, Sichuan Agricultural University, Ya’an, China, 2016. [Google Scholar]
- Pan, D. Ecotoxicological Effects of Oxytetracycline and 4-epi-Oxytctracyclinc on the Seedling Development of Chinese White Cabbage. Master’s Thesis, Northeast Agricultural University, Harbin, China, 2018. [Google Scholar]
- Yu, Q. Physiological Mechanisms of Oxytetracycline on Growth and Cell Division of Tomato Root. Master’s Thesis, Zhejiang University, Hangzhou, China, 2016. [Google Scholar]
- Akhtar, R.; Yousaf, M.; Naqvi, S.A.R.; Irfan, M.; Zahoor, A.F.; Hussain, A.I.; Chatha, S.A.S. Synthesis of Ciprofloxacin-Based Compounds: A Review. Synth. Commun. 2016, 46, 1849–1879. [Google Scholar] [CrossRef]
- Cui, C. The Toxic Effects of Ciprofloxacin Hydrochloride Phaeodactylum tricornutum. Master’s Thesis, Shanxi University, Taiyuan, China, 2021. [Google Scholar]
- Liu, B. Toxic Effects and Its Mechanism of Erythromycin, Ciprofloxacin and Sulfamethoxazole to Selenastrum capricornulum. Master’s Thesis, Jinan University, Guangzhou, China, 2011. [Google Scholar]
- Feng, L.; Yan, Y.; Han, J. Effect of Root Surface Iron Membrane on Absorption of Ciprofloxacin by Eichhornia crassipes. Asian J. Ecotoxicol. 2021, 16, 326–333. [Google Scholar]
- Wang, P.; Zhang, H.; Wang, R.; Yang, Q.; Gong, F.; Chang, F. Effects of antibiotic exposure on the growth and endophytic bacterial community of Chinese cabbage seedlings. J. Agro-Environ. Sci. 2017, 36, 1734–1740. [Google Scholar] [CrossRef]
- Chang, S. Effects of Microplastic and Ciprofloxacin Single and Compound Contamination on Lettuce Growth. Master’s Thesis, Foshan University, Foshan, China, 2022. [Google Scholar]
- Li, T.; Jin, C.; Zhu, W.; Liu, G.; Liu, H.; Zheng, L. Toxicity of Ciprofloxacin to Three Crops. Asian J. Ecotoxicol. 2013, 8, 442–446. [Google Scholar] [CrossRef]
- Deng, S.; Ma, C.; Yan, Y.; Ye, X.; Wang, G. Ecotoxicological Effects of Three Antibiotics on Seed Germination of Lolium perenne. Asian J. Ecotoxicol. 2019, 14, 279–285. [Google Scholar] [CrossRef]
- Qi, Y.; Zhang, W.; Liu, M.; Yang, D.; Yan, Y.; He, N. Effect of ciprofloxacin and copper combined pollution on the early growth of wheat. Chin. J. Ecol. 2014, 33, 2376–2381. [Google Scholar] [CrossRef]
- Zhang, T. Effects of Two Typical Antibiotics on the Ecological Toxicity of Wheat Seedlings. Master’s Thesis, Yangzhou University, Yangzhou, China, 2021. [Google Scholar]
- Wang, P.; Wen, B.; Zhang, S. Influence of Ciprofloxacin (Cip) on Antioxidative Enzymes and Free Radical Levels in Maize (Zea mays L.) Early Stage Development. Environ. Chem. 2011, 30, 753–759. [Google Scholar]
- Zhu, J.; Long, J.; Zhang, M.; Hu, J.; Kang, F.; Qi, R.; Liu, F. Effects of Levofloxacin Hydrochloride on Seeds Germination and Antioxidant Enzyme Systems of Maize. Seed 2009, 28, 97–100. [Google Scholar] [CrossRef]
- Zerihun, A.; Montagu, K.D. Belowground to Aboveground Biomass Ratio and Vertical Root Distribution Responses of Mature Pinus radiata Stands to Phosphorus Fertilization at Planting. Can. J. For. Res. 2004, 34, 1883–1894. [Google Scholar] [CrossRef]
- Zhang, T.; Yu, B.; Lin, W.; Dai, A.; Qian, X. Effects of sulfadimidine and ciprofloxacin stress on seed germination and seedling growth of wheat. J. Agric. Resour. Environ. 2021, 38, 176–184. [Google Scholar] [CrossRef]
- Loutfy, N.; El-Tayeb, M.A.; Hassanen, A.M.; Moustafa, M.F.M.; Sakuma, Y.; Inouhe, M. Changes in the Water Status and Osmotic Solute Contents in Response to Drought and Salicylic Acid Treatments in Four Different Cultivars of Wheat (Triticum aestivum). J. Plant Res. 2012, 125, 173–184. [Google Scholar] [CrossRef]
- Liu, F. Study on the Dehydration Resistance and Physiological and Biochemical Characteristics of Corn Hybrid Leaves. Seed Sci. Technol. 2022, 40, 46–48. [Google Scholar] [CrossRef]
- Romero-Puertas, M.C.; Palma, J.M.; Gómez, M.; Del Río, L.A.; Sandalio, L.M. Cadmium Causes the Oxidative Modification of Proteins in Pea Plants. Plant Cell Environ. 2002, 25, 677–686. [Google Scholar] [CrossRef]
- Wei, Y.; Zhang, J.; Xie, S.; Liang, Y.; Zhang, C. The Effects on Seed Germination and Seedlings Growth of Miscanthus saccharifloru and Phragmites australis under Cd Stress. J. Anhui Norm. Univ. Nat. Sci. 2021, 44, 145–152. [Google Scholar] [CrossRef]
- Wang, H.; Zhao, S.; Xia, W.; Wang, X.; Fan, H.; Zhou, W. Effect of cadmium stress on photosynthesis, lipid peroxidation and antioxidant enzyme activities in maize (Zea mays L.) seedlings. J. Plant Nutr. Fertil. 2008, 14, 36–42. [Google Scholar] [CrossRef]
- Yan, H.; Wang, X.; Dai, Z. Effects of Cadmium Stress on Physiological Characteristics of Soybean Seedlings. Soil Fertil. Sci. China 2021, 6, 269–275. [Google Scholar] [CrossRef]
- Luo, N. Effects of Low-Temperature Stress on Maize Root Physiological Characteristics and Hormone Metabolism. Master’s Thesis, Northeast Agricultural University, Harbin, China, 2016. [Google Scholar]
- Liu, Z. Physiological and Biochemical Mechanism of Geniposide Enhancing Tolerance of Maize to Saline-Alkali Stress. Master’s Thesis, Northeast Agricultural University, Harbin, China, 2022. [Google Scholar]
- Habibi, P.; Soccol, C.R.; Grossi-de-Sa, M.F. Hairy Root-Mediated Biotransformation: Recent Advances and Exciting Prospects. In Hairy Roots; Srivastava, V., Mehrotra, S., Mishra, S., Eds.; Springer Singapore: Singapore, 2018; pp. 185–211. ISBN 978-981-13-2561-8. [Google Scholar]
- Palavan, N.; Goren, R.; Galston, A.W. Effects of Some Growth Regulators on Polyamine Biosynthetic Enzymes in Etiolated Pea Seedlings. Plant Cell Physiol. 1984, 25, 541–546. [Google Scholar] [CrossRef]
- Sembdner, G.; Parthier, B. The Biochemistry and the Physiological and Molecular Actions of Jasmonates. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1993, 44, 569–589. [Google Scholar] [CrossRef]
- Rahman, A.; Tsurumi, S.; Amakawa, T.; Soga, K.; Hoson, T.; Goto, N.; Kamisaka, S. Involvement of Ethylene and Gibberellin Signalings in Chromosaponin I-Induced Cell Division and Cell Elongation in the Roots of Arabidopsis Seedlings. Plant Cell Physiol. 2000, 41, 1–9. [Google Scholar] [CrossRef]
- Werner, T.; Köllmer, I.; Bartrina, I.; Holst, K.; Schmülling, T. New Insights into the Biology of Cytokinin Degradation. Plant Biol. 2006, 8, 371–381. [Google Scholar] [CrossRef]
- Finch-Savage, W.E.; Blake, P.S.; Clay, H.A. Desiccation Stress in Recalcitrant Quercus robur L. Seeds Results in Lipid Peroxidation and Increased Synthesis of Jasmonates and Abscisic Acid. J. Exp. Bot. 1996, 47, 661–667. [Google Scholar] [CrossRef]
- Yu, Z.; Duan, X.; Luo, L.; Dai, S.; Ding, Z.; Xia, G. How Plant Hormones Mediate Salt Stress Responses. Trends Plant Sci. 2020, 25, 1117–1130. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.-J.; Yang, Y.-J.; Liu, C.-Y.; Zhang, F.; Hu, W.; Gong, S.-B.; Wu, Q.-S. Auxin Modulates Root-Hair Growth through Its Signaling Pathway in Citrus. Sci. Hortic. 2018, 236, 73–78. [Google Scholar] [CrossRef]
- Stoll, M.; Loveys, B.; Dry, P. Hormonal Changes Induced by Partial Rootzone Drying of Irrigated Grapevine. J. Exp. Bot. 2000, 51, 1627–1634. [Google Scholar] [CrossRef]
- Champigny, M.-L.; Foyer, C. Nitrate Activation of Cytosolic Protein Kinases Diverts Photosynthetic Carbon from Sucrose to Amino Acid Biosynthesis: Basis for a New Concept. Plant Physiol. 1992, 100, 7–12. [Google Scholar] [CrossRef]
- Vigani, G.; Zocchi, G. Effect of Fe Deficiency on Mitochondrial Alternative NAD(P)H Dehydrogenases in Cucumber Roots. J. Plant Physiol. 2010, 167, 666–669. [Google Scholar] [CrossRef]
- Xu, P.; Tu, X.; Cheng, F.; Bi, Y. Toxic Effects of Gentamicin on Growth and Activity of Photosynthetic System II of Scenedesmus obliquus. Environ. Sci. Technol. 2021, 44, 146–153. [Google Scholar] [CrossRef]
- Zhe, Y. Toxic Effects of Sulfadiazine on Selenastrum capricornutum. Master’s Thesis, Shanxi University, Taiyuan, China, 2021. [Google Scholar]
- Xu, C.; Wang, D.; Chen, S.; Chen, L.; Zhang, X. Effects of Aeration on Root Physiology and Nitrogen Metabolism in Rice. Rice Sci. 2013, 20, 148–153. [Google Scholar] [CrossRef]
- Wang, M.; Shen, Q.; Xu, G.; Guo, S. New Insight into the Strategy for Nitrogen Metabolism in Plant Cells. In International Review of Cell and Molecular Biology; Elsevier: Amsterdam, The Netherlands, 2014; Volume 310, pp. 1–37. ISBN 978-0-12-800180-6. [Google Scholar]
- Uhart, S.A.; Andrade, F.H. Nitrogen Deficiency in Maize: II. Carbon-Nitrogen Interaction Effects on Kernel Number and Grain Yield. Crop Sci. 1995, 35, 1384–1389. [Google Scholar] [CrossRef]
- Martin, A.; Lee, J.; Kichey, T.; Gerentes, D.; Zivy, M.; Tatout, C.; Dubois, F.; Balliau, T.; Valot, B.; Davanture, M.; et al. Two Cytosolic Glutamine Synthetase Isoforms of Maize Are Specifically Involved in the Control of Grain Production. Plant Cell. 2006, 18, 3252–3274. [Google Scholar] [CrossRef]
- Ota, K.; Yamamoto, Y. Effects of Different Nitrogen Sources on Glutamine Synthetase and Ferredoxin Dependent Glutamate Synthase Activities and on Free Amino Acid Composition in Radish Plants. Soil Sci. Plant Nutr. 1990, 36, 645–652. [Google Scholar] [CrossRef]
- González-Moro, B.; Mena-Petite, A.; Lacuesta, M.; González-Murua, C.; Muñoz-Rueda, A. Glutamine Synthetase from Mesophyll and Bundle Sheath Maize Cells: Isoenzyme Complements and Different Sensitivities to Phosphinothricin. Plant Cell Rep. 2000, 19, 1127–1134. [Google Scholar] [CrossRef] [PubMed]
- Uhart, S.A.; Andrade, F.H. Nitrogen Defeciency in Maize: I. Effects on Crop Growth, Development, Dry Matter Partitioning, and Kernel Set. Crop Sci. 1995, 35, 1376–1383. [Google Scholar] [CrossRef]
- Gulati, A.; Jaiwal, P.K. Effect of NaCI on Nitrate Reductase, Glutamate Dehydrogenase and Glutamate Synthase in Vigna Radiata Calli. Biol. Plant. 1996, 38, 177–183. [Google Scholar] [CrossRef]
- Srivastava, H.S.; Singh, R.P. Role and Regulation of L-Glutamate Dehydrogenase Activity in Higher Plants. Phytochemistry 1987, 26, 597–610. [Google Scholar] [CrossRef]
- Zhou, J.; Yang, C.; Song, Z.; He, C.; He, J.; Huang, W.; Dang, Z. Influences of tetracycline and cadmium on rice roots: Growth and root exudates. Acta Sci. Circumstantiae 2021, 41, 1518–1528. [Google Scholar] [CrossRef]
- Siqinbateer; Wu, H. Effect of different stress on roots activity and nitrate reductase activity in Zea mays L. Agric. Res. Arid Areas 2001, 19, 67–70. [Google Scholar] [CrossRef]
- Khan, N.M.; Imran, M.; Ashraf, M.; Arshad, H.; Awan, A.R. Oxytetracycline and ciprofloxacin antibiotics exhibit contrasting effects on soil microflora, nitrogen uptake, growth, and yield of wheat (Triticum aestivum L.). J. Soil Sci. Plant Nutr. 2022, 22, 3788–3797. [Google Scholar] [CrossRef]
- Zhang, Z.; Qu, X.; Yu, N.; Ren, B.; Liu, P.; Zhao, B.; Zhang, J. Effects of nitrogen application rate on grain filling characteristics and endogenous hormones in summer maize. Acta Agron. Sin. 2022, 48, 2366–2376. [Google Scholar] [CrossRef]
Antibiotics | Concentrations (mg·L−1) | PEPCase (μmol·mg−1 pro·min−1) | NADP-ME (μmol·mg−1 pro·min−1) | PPDK (μmol·mg−1 pro·min−1) | NADP-MDH (μmol·mg−1 pro·min−1) | RUBPCase (μmol·mg−1 pro·min−1) |
---|---|---|---|---|---|---|
OTC | 0 | 89.72 ± 1.37 c | 58.66 ± 0.55 c | 75.91 ± 4.19 c | 71.32 ± 0.35 c | 160.21 ± 0.44 ab |
3 | 116.81 ± 3.91 a | 77.66 ± 5.21 a | 118.19 ± 5.77 a | 89.99 ± 1.11 a | 186.49 ± 6.07 a | |
5 | 94.02 ± 0.64 b | 64.97 ± 0.19 b | 109.08 ± 0.77 b | 79.58 ± 0.87 b | 167.38 ± 1.47 a | |
30 | 82.55 ± 0.63 d | 53.48 ± 2.67 d | 73.74 ± 1.40 c | 67.69 ± 2.16 d | 149.13 ± 4.57 ab | |
60 | 72.25 ± 2.15 e | 47.25 ± 2.30 e | 51.61 ± 0.97 d | 52.55 ± 1.25 e | 89.22 ± 63.92 d | |
120 | 61.11 ± 1.05 f | 39.98 ± 1.02 f | 39.96 ± 1.07 e | 47.43 ± 1.73 f | 114.41 ± 0.27 bc | |
CIP | 0 | 89.72 ± 1.37 c | 58.66 ± 0.55 c | 75.91 ± 4.19 b | 71.32 ± 0.35 b | 160.21 ± 0.44 c |
3 | 98.17 ± 0.74 b | 68.33 ± 1.38 b | 72.16 ± 2.20 b | 63.11 ± 0.56 c | 169.98 ± 0.55 b | |
5 | 120.10 ± 3.25 a | 78.43 ± 5.11 a | 117.91 ± 8.42 a | 84.08 ± 3.66 a | 195.23 ± 5.99 a | |
30 | 77.18 ± 0.46 d | 55.49 ± 1.06 c | 60.67 ± 1.33 c | 52.16 ± 1.17 d | 136.40 ± 6.50 d | |
60 | 61.82 ± 1.65 e | 41.17 ± 0.67 d | 49.91 ± 0.98 d | 38.45 ± 0.78 e | 102.13 ± 2.12 e | |
120 | 51.40 ± 1.68 f | 26.62 ± 1.11 e | 26.97 ± 1.67 e | 31.09 ± 1.16 f | 88.62 ± 1.69 f |
Antibiotics | Concentrations (mg·L−1) | MeJA (ng·g−1) | ABA (ng·g−1) | GA (ng·g−1) | ZR (ng·g−1) | IAA (ng·g−1) |
---|---|---|---|---|---|---|
OTC | 0 | 60.89 ± 1.99 d | 169.15 ± 1.60 c | 450.50 ± 5.63 c | 225.92 ± 4.35 c | 329.86 ± 8.14 c |
3 | 22.36 ± 0.92 f | 104.12 ± 2.43 e | 506.34 ± 12.35 a | 275.28 ± 12.7 a | 553.19 ± 13.86 a | |
5 | 48.09 ± 1.63 e | 134.84 ± 7.37 d | 476.24 ± 4.29 b | 257.00 ± 8.89 b | 456.22 ± 17.57 b | |
30 | 72.57 ± 3.50 c | 174.12 ± 2.43 c | 234.86 ± 10.73 d | 137.68 ± 2.19 d | 249.86 ± 12.15 d | |
60 | 88.07 ± 1.22 b | 184.85 ± 1.30 b | 163.52 ± 11.37 e | 110.48 ± 2.17 e | 210.83 ± 11.20 e | |
120 | 92.22 ± 1.60 a | 197.42 ± 6.75 a | 148.16 ± 8.11 e | 91.66 ± 0.79 f | 175.56 ± 10.34 f | |
CIP | 0 | 60.89 ± 1.99 d | 169.15 ± 1.60 c | 450.50 ± 5.63 b | 225.92 ± 4.35 c | 329.86 ± 8.14 c |
3 | 48.56 ± 1.21 e | 154.07 ± 4.63 d | 539.59 ± 9.50 a | 268.26 ± 4.96 b | 404.15 ± 12.41 b | |
5 | 36.98 ± 1.97 f | 133.66 ± 8.52 e | 557.39 ± 11.35 a | 315.89 ± 6.63 a | 494.94 ± 29.07 a | |
30 | 85.95 ± 2.26 c | 178.27 ± 2.24 bc | 409.48 ± 18.80 c | 222.49 ± 15.2 c | 318.21 ± 4.69 c | |
60 | 96.35 ± 3.61 b | 184.91 ± 4.70 b | 395.66 ± 7.61 c | 168.26 ± 4.96 d | 271.10 ± 3.76 d | |
120 | 101.26 ± 4.0 a | 216.38 ± 12.25 a | 347.43 ± 3.82 d | 158.77 ± 7.37 d | 193.71 ± 19.46 e |
Antibiotics | Concentrations (mg·L−1) | MeJA (ng·g−1) | ABA (ng·g−1) | GA (ng·g−1) | ZR (ng·g−1) | IAA (ng·g−1) |
---|---|---|---|---|---|---|
OTC | 0 | 71.36 ± 3.97 c | 248.07 ± 4.77 b | 448.28 ± 5.82 c | 167.37 ± 3.05 c | 296.50 ± 8.72 c |
3 | 45.63 ± 2.07 e | 203.52 ± 9.62 c | 510.78 ± 6.89 a | 185.67 ± 1.96 a | 433.61 ± 11.72 a | |
5 | 59.22 ± 4.33 d | 210.99 ± 5.80 c | 493.46 ± 5.56 b | 178.89 ± 1.55 b | 394.03 ± 18.75 b | |
30 | 73.63 ± 3.66 c | 259.04 ± 2.04 b | 393.46 ± 5.56 d | 116.75 ± 1.31 d | 240.31 ± 13.53 d | |
60 | 81.77 ± 1.42 b | 261.25 ± 5.24 b | 331.38 ± 5.25 e | 105.36 ± 1.55 e | 206.27 ± 20.36 e | |
120 | 96.58 ± 0.48 a | 304.93 ± 14.29 a | 259.82 ± 3.03 f | 97.18 ± 2.92 f | 195.52 ± 1.78 e | |
CIP | 0 | 71.36 ± 3.97 c | 248.07 ± 4.77 c | 448.28 ± 5.82 c | 167.37 ± 3.05 c | 296.50 ± 8.72 b |
3 | 57.24 ± 0.98 d | 221.15 ± 27.95 d | 494.91 ± 8.90 b | 181.99 ± 2.12 b | 311.72 ± 0.42 b | |
5 | 47.12 ± 0.40 e | 203.50 ± 2.98 d | 517.20 ± 9.42 a | 192.76 ± 8.32 a | 423.69 ± 19.91 a | |
30 | 74.70 ± 3.51 c | 263.12 ± 1.99 c | 416.78 ± 12.36 d | 152.27 ± 1.59 d | 290.91 ± 13.22 b | |
60 | 79.72 ± 1.54 b | 285.70 ± 3.79 b | 389.04 ± 11.83 e | 143.69 ± 1.88 e | 273.94 ± 1.96 c | |
120 | 86.29 ± 3.02 a | 313.61 ± 1.58 a | 333.02 ± 19.56 f | 122.85 ± 3.14 f | 247.34 ± 1.37 d |
Antibiotics | Concentrations (mg·L−1) | GAD (μmol·min−1·g−1 FW) | GS (μ·g−1 FW·h−1) | GOGAT (μ·g−1 FW·h−1) | GDH (μmol·min−1·g−1 FW) |
---|---|---|---|---|---|
OTC | 0 | 60.96 ± 1.96 b | 0.273 ± 0.006 c | 13.79 ± 0.94 b | 71.98 ± 1.81 c |
3 | 68.27 ± 0.81 a | 0.343 ± 0.029 a | 18.54 ± 0.98 a | 47.54 ± 1.24 e | |
5 | 65.43 ± 1.81 b | 0.287 ± 0.015 b | 14.88 ± 0.82 b | 57.68 ± 0.94 d | |
30 | 48.62 ± 2.22 c | 0.180 ± 0.010 d | 9.88 ± 0.16 c | 74.13 ± 3.37 c | |
60 | 37.85 ± 0.51 d | 0.170 ± 0.010 d | 8.80 ± 0.74 c | 80.65 ± 1.32 b | |
120 | 24.98 ± 0.13 e | 0.140 ± 0.010 e | 7.17 ± 0.16 d | 89.02 ± 1.18 a | |
CIP | 0 | 60.96 ± 1.96 b | 0.273 ± 0.006 c | 13.79 ± 0.94 c | 71.98 ± 1.81 d |
3 | 63.77 ± 2.53 b | 0.333 ± 0.021 b | 18.62 ± 0.60 b | 61.40 ± 2.35 e | |
5 | 69.42 ± 2.19 a | 0.382 ± 0.007 a | 21.91 ± 0.81 a | 48.10 ± 1.58 f | |
30 | 59.72 ± 1.83 c | 0.253 ± 0.006 c | 10.20 ± 0.20 d | 76.67 ± 2.49 c | |
60 | 53.16 ± 1.18 d | 0.243 ± 0.023 d | 9.31 ± 0.88 d | 84.03 ± 1.20 b | |
120 | 47.59 ± 1.19 e | 0.170 ± 0.010 e | 7.22 ± 0.23 e | 89.44 ± 0.88 a |
Antibiotics | Concentrations (mg·L−1) | GAD (μmol·min−1·g−1 FW) | GS (μ·g−1 FW·h−1) | GOGAT (μ·g−1 FW·h−1) | GDH (μmol·min−1·g−1 FW) |
---|---|---|---|---|---|
OTC | 0 | 62.84 ± 1.77 c | 0.453 ± 0.006 c | 22.16 ± 0.69 bc | 88.78 ± 2.17 c |
3 | 84.54 ± 0.76 a | 0.511 ± 0.033 a | 26.37 ± 1.76 a | 61.84 ± 1.47 e | |
5 | 72.77 ± 2.08 b | 0.474 ± 0.010 b | 23.88 ± 1.65 b | 78.28 ± 4.87 d | |
30 | 56.92 ± 0.87 d | 0.390 ± 0.006 d | 19.79 ± 1.07 d | 89.64 ± 2.79 c | |
60 | 45.59 ± 3.12 e | 0.354 ± 0.041 e | 16.79 ± 1.07 e | 93.88 ± 1.61 b | |
120 | 35.13 ± 3.65 f | 0.330 ± 0.026 e | 12.38 ± 0.74 f | 102.58 ± 3.14 a | |
CIP | 0 | 62.84 ± 1.77 c | 0.453 ± 0.006 c | 22.16 ± 0.69 c | 88.78 ± 2.17 b |
3 | 77.00 ± 3.82 b | 0.554 ± 0.040 b | 26.75 ± 2.49 b | 75.29 ± 0.76 d | |
5 | 82.59 ± 2.35 a | 0.608 ± 0.014 a | 32.38 ± 0.74 a | 68.74 ± 4.15 c | |
30 | 59.06 ± 1.73 d | 0.450 ± 0.003 d | 20.47 ± 1.70 c | 89.06 ± 3.28 b | |
60 | 53.59 ± 1.28 e | 0.390 ± 0.003 e | 17.74 ± 0.41 d | 95.19 ± 1.85 a | |
120 | 40.41 ± 0.98 f | 0.380 ± 0.015 e | 16.11 ± 0.47 d | 97.39 ± 2.75 a |
Antibiotics | Concentrations (mg·L−1) | Average Root Diameter (mm) | Number of Root Tips | Total Root Volume (cm3) | Number of Root Tips (cm) | Root Surface Area (cm2) |
---|---|---|---|---|---|---|
OTC | 0 | 0.851 ± 0.105 a | 333.67 ± 7.37 c | 0.097 ± 0.004 b | 20.55 ± 1.63 c | 4.68 ± 0.37 c |
3 | 0.923 ± 0.060 a | 405.00 ± 9.17 a | 0.155 ± 0.033 a | 58.41 ± 3.22 a | 12.25 ± 0.52 a | |
5 | 0.908 ± 0.077 a | 384.00 ± 8.00 b | 0.114 ± 0.009 b | 42.07 ± 4.29 b | 8.28 ± 1.04 b | |
30 | 0.524 ± 0.081 b | 315.00 ± 9.85 d | 0.098 ± 0.004 b | 17.36 ± 1.95 cd | 4.10 ± 0.15 c | |
60 | 0.421 ± 0.056 bc | 234.67 ± 5.51 e | 0.091 ± 0.006 b | 14.33 ± 2.13 de | 3.91 ± 0.16 cd | |
120 | 0.362 ± 0.052 c | 174.33 ± 9.29 f | 0.046 ± 0.006 c | 10.12 ± 0.89 e | 3.05 ± 0.06 d | |
CIP | 0 | 0.851 ± 0.105 bc | 333.67 ± 7.37 b | 0.097 ± 0.004 b | 20.55 ± 1.63 c | 4.68 ± 0.37 c |
3 | 1.058 ± 0.050 ab | 351.67 ± 13.32 c | 0.122 ± 0.003 c | 40.29 ± 4.45 b | 5.56 ± 0.62 b | |
5 | 1.269 ± 0.394 a | 420.33 ± 17.01 a | 0.136 ± 0.006 a | 61.29 ± 1.23 a | 9.52 ± 0.50 a | |
30 | 0.792 ± 0.082 bc | 144.67 ± 6.66 d | 0.091 ± 0.004 d | 14.29 ± 1.01 d | 4.49 ± 0.21 cd | |
60 | 0.567 ± 0.048 cd | 126.67 ± 8.08 de | 0.081 ± 0.006 de | 12.29 ± 0.42 d | 3.82 ± 0.69 d | |
120 | 0.418 ± 0.081 d | 114.67 ± 9.29 e | 0.057 ± 0.004 e | 8.44 ± 0.17 e | 2.74 ± 0.08 e |
Name | Formula | Molecular Weight (g·mol−1) | Structural Formula | CAS Number | Density (g/cm3) | Solubility (mg·L−1) | Log Kow |
---|---|---|---|---|---|---|---|
OTC | C22H24O9N2 | 460.434 | 79-57-2 | 1.6340 | H2O: slightly soluble | 3.74 | |
CIP | C17H18FN3O3 | 331.341 | 85721-33-1 | 1.461 | H2O: almost insoluble | 1.98 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, M.; Wang, Y.; Li, G.; Hu, G.; Fu, L.; Hu, S.; Yang, J.; Wang, Z. Do Oxytetracycline and Ciprofloxacin Affect Growth Phenotype, Leaf Photosynthetic Enzyme Activity, Nitrogen Metabolism, and Endogenous Hormone Homeostasis in Maize Seedlings? Plants 2025, 14, 3021. https://doi.org/10.3390/plants14193021
Wang M, Wang Y, Li G, Hu G, Fu L, Hu S, Yang J, Wang Z. Do Oxytetracycline and Ciprofloxacin Affect Growth Phenotype, Leaf Photosynthetic Enzyme Activity, Nitrogen Metabolism, and Endogenous Hormone Homeostasis in Maize Seedlings? Plants. 2025; 14(19):3021. https://doi.org/10.3390/plants14193021
Chicago/Turabian StyleWang, Mingquan, Yong Wang, Guoliang Li, Guanghui Hu, Lixin Fu, Shaoxin Hu, Jianfei Yang, and Zhiguo Wang. 2025. "Do Oxytetracycline and Ciprofloxacin Affect Growth Phenotype, Leaf Photosynthetic Enzyme Activity, Nitrogen Metabolism, and Endogenous Hormone Homeostasis in Maize Seedlings?" Plants 14, no. 19: 3021. https://doi.org/10.3390/plants14193021
APA StyleWang, M., Wang, Y., Li, G., Hu, G., Fu, L., Hu, S., Yang, J., & Wang, Z. (2025). Do Oxytetracycline and Ciprofloxacin Affect Growth Phenotype, Leaf Photosynthetic Enzyme Activity, Nitrogen Metabolism, and Endogenous Hormone Homeostasis in Maize Seedlings? Plants, 14(19), 3021. https://doi.org/10.3390/plants14193021