Phytochemicals from Brazilian Red Propolis: A Review of Their Anti-Inflammatory Potential
Abstract
1. Introduction
2. Chemical Composition of BRP and Its Plant Source
3. Anti-Inflammatory Potential of BRP Compounds
3.1. Formononetin
3.2. Biochanin A
3.3. Daidzein
3.4. Calycosin
3.5. Medicarpin
3.6. Vestitol and Neovestitol
3.7. Isoliquiritigenin and Liquiritigenin
3.8. Guttiferone E and Oblongifolin B
3.9. β-Amyrin
4. Research Methodology
5. Conclusions and Future Remarks
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
Aβ | Amyloid Beta |
ADME | Absorption, distribution, metabolism, and excretion |
AKI | Acute kidney injury |
Arg-1 | Arginase-1 |
ARE | Antioxidant response element |
BAX | Bcl-2-associated X protein |
BBB | Blood–brain barrier |
Bcl-2 | B-cell lymphoma 2 |
BRP | Brazilian red propolis |
BV2 | Microglial BV2 cell line |
CAT | Catalase |
CD | Cluster of differentiation |
COX-2 | Cyclooxygenase-2 |
CXCL1 | C-X-C motif chemokine ligand 1 |
CXCR3 | C-X-C chemokine receptor type 3 |
cAMP | Cyclic adenosine monophosphate |
CYP51 | Sterol 14-alpha-demethylase |
DMH | 1,2-dimethylhydrazine |
DOX | Doxorubicin |
EGF | Epidermal growth gactor |
EMT | Epithelial–mesenchymal transition |
ER | Estrogen receptor |
ERK | Extracellular signal-regulated kinase |
FOXO3a | Forkhead box O3a |
FOXP3 | Forkhead box P3 |
G6PD | Glucose-6-phosphate dehydrogenase |
GPX4 | Glutathione peroxidase 4 |
GR | Glutathione reductase |
GSH | Glutathione |
HO-1 | Heme oxygenase 1 |
HSFs | Human skin fibroblasts |
IC50 | Half maximal inhibitory concentration |
ICAM-1 | Intercellular adhesion molecule-1 |
IFN | Interferon |
IFN-α | Interferon-alpha |
IFN-β | Interferon-beta |
IFN-γ | Interferon-gamma |
IKK | IκB kinase |
IL-1β | Interleukin 1 beta |
IL-6 | Interleukin 6 |
IRF1 | Interferon regulatory factor 1 |
JAK2 | Janus kinase 2 |
JNK | c-Jun N-terminal kinase |
Keap-1 | Kelch-like ECH-associated protein 1 |
LC3II/I | Microtubule-associated proteins 1A/1B light chain 3B (form II/I) |
LPS | Lipopolysaccharide |
M1/M2 | Macrophage phenotypes: M1 (pro-inflammatory), M2 (anti-inflammatory) |
MCAO | Middle cerebral artery occlusion |
MCP-1 | Monocyte chemoattractant protein-1 |
MAPK | Mitogen-activated protein kinase |
MDA | Malondialdehyde |
MDCK | Madin–Darby canine kidney |
MMP-2 | Matrix metallopeptidase 2 |
MRSA | Methicillin-resistant Staphylococcus Aureus |
mTOR | Mammalian target of rapamycin |
NLRP3 | NLR family pyrin domain containing 3 |
NF-κB | Nuclear factor κB (nuclear factor kappa-light-chain-enhancer of activated B cells) |
NO | Nitric oxide |
NQO1 | NAD(P)H quinone dehydrogenase 1 |
Nrf2 | Nuclear factor erythroid 2–related factor 2 |
NSCLC | Non-small-cell lung cancer |
OGD | Oxygen-glucose deprivation |
P62 | Sequestosome 1 |
PASI | Psoriasis area and severity index |
PCNA | Proliferating cell nuclear antigen |
PD-L1 | Programmed death-ligand 1 |
PGE2 | Prostaglandin E2 |
PGES | Prostaglandin E synthase |
PI3K | Phosphoinositide 3-kinase |
PTGS2 | Prostaglandin-endoperoxide synthase 2 |
P-gp | P-glycoprotein |
ROS | Reactive oxygen species |
RORγt | RAR-related orphan receptor gamma |
SIRT3 | Sirtuin 3 |
Smad2/3 | SMAD family member 2 and 3 |
SOD | Superoxide dismutase |
STAT | Signal transducer and activator of transcription |
TAC | Transverse aortic constriction |
TGF-β1 | Transforming growth factor beta 1 |
TLR4 | Toll-like receptor 4 |
TNF-α | Tumor necrosis factor alpha |
TR | Trypanothione reductase |
TSLP | Thymic stromal lymphopoietin |
VEGF | Vascular endothelial growth factor |
ZO-1 | Zonula occludens-1 |
References
- Freires, I.A.; De Alencar, S.M.; Rosalen, P.L. A Pharmacological Perspective on the Use of Brazilian Red Propolis and Its Isolated Compounds against Human Diseases. Eur. J. Med. Chem. 2016, 110, 267–279. [Google Scholar] [CrossRef]
- Rufatto, L.C.; Luchtenberg, P.; Garcia, C.; Thomassigny, C.; Bouttier, S.; Henriques, J.A.P.; Roesch-Ely, M.; Dumas, F.; Moura, S. Brazilian Red Propolis: Chemical Composition and Antibacterial Activity Determined Using Bioguided Fractionation. Microbiol. Res. 2018, 214, 74–82. [Google Scholar] [CrossRef] [PubMed]
- Silva, B.B.; Rosalen, P.L.; Cury, J.A.; Ikegaki, M.; Souza, V.C.; Esteves, A.; Alencar, S.M. Chemical Composition and Botanical Origin of Red Propolis, a New Type of Brazilian Propolis. Evid.-Based Complement. Altern. Med. 2008, 5, 313–316. [Google Scholar] [CrossRef]
- Bueno-Silva, B.; Marsola, A.; Ikegaki, M.; Alencar, S.M.; Rosalen, P.L. The Effect of Seasons on Brazilian Red Propolis and Its Botanical Source: Chemical Composition and Antibacterial Activity. Nat. Prod. Res. 2017, 31, 1318–1324. [Google Scholar] [CrossRef]
- Ccana-Ccapatinta, G.V.; Mejía, J.A.A.; Tanimoto, M.H.; Groppo, M.; de Carvalho, J.C.A.S.; Bastos, J.K. Dalbergia ecastaphyllum (L.) Taub. and Symphonia globulifera L.f.: The Botanical Sources of Isoflavonoids and Benzophenones in Brazilian Red Propolis. Molecules 2020, 25, 2060. [Google Scholar] [CrossRef] [PubMed]
- Pemmari, A.; Moilanen, E. Macrophage and Chondrocyte Phenotypes in Inflammation. Basic. Clin. Pharmacol. Toxicol. 2024, 135, 537–549. [Google Scholar] [CrossRef]
- Pan, X.; Jiang, S.; Zhang, X.; Wang, Z.; Wang, X.; Cao, L.; Xiao, W. Recent Strategies in Target Identification of Natural Products: Exploring Applications in Chronic Inflammation and Beyond. Br. J. Pharmacol. 2024, 182, 4841–4860. [Google Scholar] [CrossRef] [PubMed]
- Aldana-Mejía, J.A.; Ccana-Ccapatinta, G.V.; Ribeiro, V.P.; Arruda, C.; Veneziani, R.C.S.; Ambrósio, S.R.; Bastos, J.K. A Validated HPLC-UV Method for the Analysis of Phenolic Compounds in Brazilian Red Propolis and Dalbergia ecastaphyllum. J. Pharm. Biomed. Anal. 2021, 198, 114029. [Google Scholar] [CrossRef]
- Bueno-Silva, B.; Alencar, S.M.; Koo, H.; Ikegaki, M.; Silva, G.V.J.; Napimoga, M.H.; Rosalen, P.L. Anti-Inflammatory and Antimicrobial Evaluation of Neovestitol and Vestitol Isolated from Brazilian Red Propolis. J. Agric. Food Chem. 2013, 61, 4546–4550. [Google Scholar] [CrossRef]
- de Moraes Porto, I.C.C.; de Barros Rocha, A.B.; Ferreira, I.I.S.; de Barros, B.M.; Ávila, E.C.; da Silva, M.C.; de Oliveira, M.P.S.; Lôbo, T.d.L.G.F.; Oliveira, J.M.d.S.; do Nascimento, T.G.; et al. Polyphenols and Brazilian Red Propolis Incorporated into a Total-Etching Adhesive System Help in Maintaining Bonding Durability. Heliyon 2021, 7, e06237. [Google Scholar] [CrossRef]
- de Freitas, M.C.D.; de Miranda, M.B.; de Oliveira, D.T.; Vieira-Filho, S.A.; Caligiorne, R.B.; de Figueiredo, S.M. Biological Activities of Red Propolis: A Review. Recent. Pat. Endocr. Metab. Immune Drug Discov. 2018, 11, 3–12. [Google Scholar] [CrossRef]
- Daugsch, A.; Moraes, C.S.; Fort, P.; Park, Y.K. Brazilian Red Propolis—Chemical Composition and Botanical Origin. eCAM 2007, 5, 435–441. [Google Scholar] [CrossRef]
- Lima Cavendish, R.; de Souza Santos, J.; Belo Neto, R.; Oliveira Paixão, A.; Valéria Oliveira, J.; Divino de Araujo, E.; Berretta e Silva, A.A.; Maria Thomazzi, S.; Cordeiro Cardoso, J.; Zanardo Gomes, M. Antinociceptive and Anti-Inflammatory Effects of Brazilian Red Propolis Extract and Formononetin in Rodents. J. Ethnopharmacol. 2015, 173, 127–133. [Google Scholar] [CrossRef]
- Barbosa, R.A.; Nunes, T.L.G.M.; Nunes, T.L.G.M.; Paixão, A.O.D.; Neto, R.B.; Moura, S.; Albuquerque Junior, R.L.C.; Cândido, E.A.F.; Padilha, F.F.; Quintans-Júnior, L.J.; et al. Hydroalcoholic Extract of Red Propolis Promotes Functional Recovery and Axon Repair after Sciatic Nerve Injury in Rats. Pharm. Biol. 2016, 54, 993–1004. [Google Scholar] [CrossRef]
- Xu, H.T.; Zheng, Q.; Tai, Z.G.; Jiang, W.C.; Xie, S.Q.; Luo, Y.; Fei, X.Y.; Luo, Y.; Ma, X.; Kuai, L.; et al. Formononetin Attenuates Psoriasiform Inflammation by Regulating Interferon Signaling Pathway. Phytomedicine 2024, 128, 155412. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Zhou, S.; Li, J.; Yu, W.; Gao, W.; Luo, H.; Fang, X. The Anti-Inflammatory Effects of Formononetin, an Active Constituent of Pueraria Montana Var. Lobata, via Modulation of Macrophage Autophagy and Polarization. Molecules 2025, 30, 196. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Wang, R.H.; Wang, K.H. Formononetin Ameliorates Polycystic Ovary Syndrome through Suppressing NLRP3 Inflammasome. Mol. Med. 2025, 31, 27. [Google Scholar] [CrossRef]
- Zhang, Y.; Deng, J.; Chen, T.; Liu, S.; Tang, Y.; Zhao, J.R.; Guo, Z.; Zhang, W. Formononetin Alleviates No Reflow after Myocardial Ischemia-Reperfusion via Modulation of Gut Microbiota to Inhibit Inflammation. Life Sci. 2024, 358, 123110. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Yang, Z.; Huang, X.; Li, X.; Chou, F.; Zeng, S. Formononetin Alleviates Thermal Injury-Induced Skin Fibroblast Apoptosis and Promotes Cell Proliferation and Migration. Burns 2024, 51, 107256. [Google Scholar] [CrossRef]
- Chen, J.; Cai, Y.; Wei, D.; Cao, L.; He, Q.; Zhang, Y. Formononetin Inhibits Neuroinflammation in BV2 Microglia Induced by Glucose and Oxygen Deprivation Reperfusion through TLR4/NF-ΚB Signaling Pathway. Brain Res. 2024, 1845, 149218. [Google Scholar] [CrossRef]
- de Mendonça, M.A.A.; Ribeiro, A.R.S.; de Lima, A.K.; Bezerra, G.B.; Pinheiro, M.S.; de Albuquerque-Júnior, R.L.C.; Gomes, M.Z.; Padilha, F.F.; Thomazzi, S.M.; Novellino, E.; et al. Red Propolis and Its Dyslipidemic Regulator Formononetin: Evaluation of Antioxidant Activity and Gastroprotective Effects in Rat Model of Gastric Ulcer. Nutrients 2020, 12, 2951. [Google Scholar] [CrossRef]
- Jeong, E.J.; Jia, X.; Hu, M. Disposition of Formononetin via Enteric Recycling: Metabolism and Excretion in Mouse Intestinal Perfusion and Caco-2 Cell Models. Mol. Pharm. 2005, 2, 319–328. [Google Scholar] [CrossRef] [PubMed]
- Luo, L.-Y.; Fan, M.-X.; Zhao, H.-Y.; Li, M.-X.; Wu, X.; Gao, W.-Y. Pharmacokinetics and Bioavailability of the Isoflavones Formononetin and Ononin and Their in Vitro Absorption in Ussing Chamber and Caco-2 Cell Models. J. Agric. Food Chem. 2018, 66, 2917–2924. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Li, G.; Gao, Y.; Sun, C.; Wang, X. A 90-Day Subchronic Toxicity Study with Sodium Formononetin-3’-Sulphonate (Sul-F) Delivered to Dogs via Intravenous Administration. Regul. Toxicol. Pharmacol. 2016, 77, 87–92. [Google Scholar] [CrossRef]
- Wang, D.; Zheng, C.; Chen, B.; Ma, S. Biochanin A Induces Apoptosis in MCF-7 Breast Cancer Cells through Mitochondrial Pathway and Pi3K/AKT Inhibition. Cell Biochem. Funct. 2024, 42, e70014. [Google Scholar] [CrossRef]
- Wu, P.S.; Yen, J.H.; Chen, P.Y.; Wu, M.J. Molecular Mechanisms of Biochanin A in AML Cells: Apoptosis Induction and Pathway-Specific Regulation in U937 and THP-1. Int. J. Mol. Sci. 2025, 26, 5317. [Google Scholar] [CrossRef] [PubMed]
- Andugulapati, S.B.; Gourishetti, K.; Tirunavalli, S.K.; Shaikh, T.B.; Sistla, R. Biochanin-A Ameliorates Pulmonary Fibrosis by Suppressing the TGF-β Mediated EMT, Myofibroblasts Differentiation and Collagen Deposition in in Vitro and in Vivo Systems. Phytomedicine 2020, 78, 153298. [Google Scholar] [CrossRef]
- Zhang, S.; Niu, Y.; Yang, Z.; Zhang, Y.; Guo, Q.; Yang, Y.; Zhou, X.; Ding, Y.; Liu, C. Biochanin A Alleviates Gingival Inflammation and Alveolar Bone Loss in Rats with Experimental Periodontitis. Exp. Ther. Med. 2020, 20, 251. [Google Scholar] [CrossRef]
- Walvekar, K.P.; Tirunavalli, S.K.; Eedara, A.C.; Chandra, Y.; Kuncha, M.; B.R.Kumar, A.; Sistla, R.; Andugulapati, S.B.; Chilaka, S. Biochanin A Ameliorates Imiquimod-Induced Psoriasis-Like Skin Inflammation in Mice by Modulating the NF-ΚB and MAPK Signaling Pathways. Inflammation 2024, 48, 1125–1142. [Google Scholar] [CrossRef]
- Lv, Y.; Xu, Y.; Liu, S.; Zeng, X.; Yang, B. Biochanin A Attenuates Psoriasiform Inflammation by Regulating Nrf2/HO-1 Pathway Activation and Attenuating Inflammatory Signalling. Cell Biochem. Biophys. 2024, 83, 1879–1895. [Google Scholar] [CrossRef]
- Feng, Z.; Zhang, N.; Bai, J.; Lin, Q.Y.; Xie, Y.; Xia, Y.-L. Biochanin A Inhibits Cardiac Hypertrophy and Fibrosis in Vivo and in Vitro. Biomed. Pharmacother. 2024, 170, 116002. [Google Scholar] [CrossRef]
- Mahajan, U.B.; Goyal, S. Biochanin A Mitigates Oxidative Stress and Inflammation in Diabetic Myocardial Infarction: Insights From a Streptozotocin and Isoproterenol Rat Model. Cureus 2025, 17, e81455. [Google Scholar] [CrossRef]
- Deng, B.; Wang, K.; He, H.; Xu, M.; Li, J.; He, P.; Liu, Y.; Ma, J.; Zhang, J.; Dong, W. Biochanin A Mitigates Colitis by Inhibiting Ferroptosis-Mediated Intestinal Barrier Dysfunction, Oxidative Stress, and Inflammation via the JAK2/STAT3 Signaling Pathway. Phytomedicine 2025, 141, 156699. [Google Scholar] [CrossRef]
- Ram, C.; Gairola, S.; Syed, A.M.; Kulhari, U.; Kundu, S.; Mugale, M.N.; Murty, U.S.; Sahu, B.D. Biochanin A Alleviates Unilateral Ureteral Obstruction-Induced Renal Interstitial Fibrosis and Inflammation by Inhibiting the TGF-Β1/Smad2/3 and NF-KB/NLRP3 Signaling Axis in Mice. Life Sci. 2022, 298, 120527. [Google Scholar] [CrossRef]
- Li, X.; Fu, J.; Guan, M.; Shi, H.; Pan, W.; Lou, X. Biochanin A Attenuates Spinal Cord Injury in Rats during Early Stages by Inhibiting Oxidative Stress and Inflammasome Activation. Neural Regen. Res. 2024, 19, 2050–2056. [Google Scholar] [CrossRef]
- Thakkar, A.B.; Subramanian, R.B.; Thakkar, S.S.; Thakkar, V.R.; Thakor, P. Biochanin A—A G6PD Inhibitor: In Silico and in Vitro Studies in Non-Small Cell Lung Cancer Cells (A549). Toxicol. Vitr. 2024, 96, 105785. [Google Scholar] [CrossRef] [PubMed]
- Batista, C.M.; Alves, A.V.F.; Queiroz, L.A.; Lima, B.S.; Filho, R.N.P.; Araújo, A.A.S.; de Albuquerque Júnior, R.L.C.; Cardoso, J.C. The Photoprotective and Anti-Inflammatory Activity of Red Propolis Extract in Rats. J. Photochem. Photobiol. B 2018, 180, 198–207. [Google Scholar] [CrossRef]
- Barbosa Bezerra, G.; de Menezes de Souza, L.; dos Santos, A.S.; de Almeida, G.K.M.; Souza, M.T.S.; Santos, S.L.; Aparecido Camargo, E.; dos Santos Lima, B.; de Souza Araújo, A.A.; Cardoso, J.C.; et al. Hydroalcoholic Extract of Brazilian Red Propolis Exerts Protective Effects on Acetic Acid-Induced Ulcerative Colitis in a Rodent Model. Biomed. Pharmacother. 2017, 85, 687–696. [Google Scholar] [CrossRef]
- Tan, Y.; Zhang, X.; Cheang, W.S. Isoflavones Daidzin and Daidzein Inhibit Lipopolysaccharide-Induced Inflammation in RAW264.7 Macrophages. Chin. Med. 2022, 17, 95. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Yang, L.; Deng, S.; Liang, M. Daidzein Ameliorates LPS-Induced Hepatocyte Injury by Inhibiting Inflammation and Oxidative Stress. Eur. J. Pharmacol. 2020, 885, 173399. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Zhang, M.; Wang, Y.; Gong, K.; Yan, T.; Wang, D.; Meng, X.; Yang, X.; Chen, Y.; Han, J.; et al. Daidzein Alleviates Doxorubicin-Induced Heart Failure via the SIRT3/FOXO3a Signaling Pathway. Food Funct. 2022, 13, 9576–9588. [Google Scholar] [CrossRef]
- Xie, K.; Li, Y.; He, G.; Zhao, X.; Chen, D.; Yu, B.; Luo, Y.; Mao, X.; Huang, Z.; Yu, J.; et al. Daidzein Supplementation Improved Fecundity in Sows via Modulation of Ovarian Oxidative Stress and Inflammation. J. Nutr. Biochem. 2022, 110, 109145. [Google Scholar] [CrossRef] [PubMed]
- Márquez-Flores, Y.K.; Martínez-Galero, E.; Correa-Basurto, J.; Sixto-López, Y.; Villegas, I.; Rosillo, M.; Cárdeno, A.; Alarcón-de-la-Lastra, C. Daidzein and Equol: Ex Vivo and In Silico Approaches Targeting COX-2, INOS, and the Canonical Inflammasome Signaling Pathway. Pharmaceuticals 2024, 17, 647. [Google Scholar] [CrossRef]
- Liu, Z.M.; Chen, B.; Li, S.; Li, G.; Zhang, D.; Ho, S.C.; Chen, Y.M.; Ma, J.; Qi, H.; Ling, W.H. Effect of Whole Soy and Isoflavones Daidzein on Bone Turnover and Inflammatory Markers: A 6-Month Double-Blind, Randomized Controlled Trial in Chinese Postmenopausal Women Who Are Equol Producers. Ther. Adv. Endocrinol. Metab. 2020, 11, 2042018820920555. [Google Scholar] [CrossRef]
- Özdemir, A.Y.; Çetin, E.A.; Novotný, J.; Rudajev, V. Daidzein Effectively Mitigates Amyloid-β-Induced Damage in SH-SY5Y Neuroblastoma Cells and C6 Glioma Cells. Biomed. Pharmacother. 2025, 187, 118157. [Google Scholar] [CrossRef]
- Guru, A.; Sudhakaran, G.; Velayutham, M.; Murugan, R.; Pachaiappan, R.; Mothana, R.A.; Noman, O.M.; Juliet, A.; Arockiaraj, J. Daidzein Normalized Gentamicin-Induced Nephrotoxicity and Associated pro-Inflammatory Cytokines in MDCK and Zebrafish: Possible Mechanism of Nephroprotection. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2022, 258, 109364. [Google Scholar] [CrossRef]
- Kassab, R.B.; Elhenawy, A.A.; AbdulrahmanTheyab; Hawsawi, Y.M.; Al-Amer, O.M.; Oyouni, A.A.A.; Habotta, O.A.; Althagafi, H.A.; Alharthi, F.; Lokman, M.S.; et al. Modulation of Inflammatory, Oxidative, and Apoptotic Stresses Mediates the Renoprotective Effect of Daidzein against Glycerol-Induced Acute Kidney Injury in Rats. Environ. Sci. Pollut. Res. Int. 2023, 30, 119016–119033. [Google Scholar] [CrossRef] [PubMed]
- Karale, S.; Kamath, J.V. Effect of Daidzein on Cisplatin-Induced Hematotoxicity and Hepatotoxicity in Experimental Rats. Indian. J. Pharmacol. 2017, 49, 49–54. [Google Scholar] [CrossRef] [PubMed]
- Laddha, A.P.; Murugesan, S.; Kulkarni, Y.A. In-Vivo and in-Silico Toxicity Studies of Daidzein: An Isoflavone from Soy. Drug Chem. Toxicol. 2022, 45, 1408–1416. [Google Scholar] [CrossRef]
- Faria, W.C.S.; Martinelli, R.C.; Arcas, A.S.; Da Silva Junior, I.F.; Colodel, E.M.; Cavenaghi, D.; Oliveira, A.P.; Barros, W.M. Acute and Subacute Toxicity Study on Dietary Supplementation with Soy Isoflavones in Wistar Rats. Curr. Nutr. Food Sci. 2018, 14, 68–78. [Google Scholar] [CrossRef]
- Yang, X.; Pan, Y.; Cai, L.; Wang, W.; Zhai, X.; Zhang, Y.; Wu, Q.; Chen, J.; Zhang, C.; Wang, Y. Calycosin Ameliorates Neuroinflammation via TLR4-Mediated Signal Following Cerebral Ischemia/Reperfusion Injury in Vivo and in Vitro. J. Inflamm. Res. 2024, 17, 10711–10727. [Google Scholar] [CrossRef]
- Liu, X.; Shao, Y.; Zhang, X.; Ji, X.; Xie, M.; Liu, H. Calycosin Attenuates Pulmonary Fibrosis by the Epithelial-Mesenchymal Transition Repression upon Inhibiting the AKT/GSK3β/β-Catenin Signaling Pathway. Acta Histochem. 2021, 123, 151746. [Google Scholar] [CrossRef]
- Liu, H.; Bai, X.; Wei, W.; Li, Z.; Zhang, Z.; Tan, W.; Wei, B.; Zhao, H.; Jiao, Y. Calycosin Ameliorates Bleomycin-Induced Pulmonary Fibrosis via Suppressing Oxidative Stress, Apoptosis, and Enhancing Autophagy. Evid.-Based Complement. Altern. Med. 2022, 2022, 9969729. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Deng, G.; Tian, N.; Wang, H.; Zhao, H.; Kuai, L.; Luo, Y.; Gao, C.; Ding, X.; Li, B. Calycosin Enhances Treg Differentiation for Alleviating Skin Inflammation in Atopic Dermatitis. J. Ethnopharmacol. 2024, 326, 117883. [Google Scholar] [CrossRef]
- Peng, H.; Jin, L.; Zhang, Q.; Shen, Y.; Wang, Z.; Zhou, F.; Yu, Q. Calycosin Improves Intestinal Mucosal Barrier Function after Gastrectomy in Rats through Alleviating Bacterial Translocation, Inflammation, and Oxidative Stress. Evid.-Based Complement. Altern. Med. 2022, 2022, 7412331. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Li, W.; Zhang, Y.; Sun, Q.; Cao, J.; Tan, N.N.; Yang, S.; Lu, L.; Zhang, Q.; Wei, P.; et al. Calycosin as a Novel PI3K Activator Reduces Inflammation and Fibrosis in Heart Failure Through AKT–IKK/STAT3 Axis. Front. Pharmacol. 2022, 13, 828061. [Google Scholar] [CrossRef]
- Xu, S.; Huang, P.; Yang, J.; Du, H.; Wan, H.; He, Y. Calycosin Alleviates Cerebral Ischemia/Reperfusion Injury by Repressing Autophagy via STAT3/FOXO3a Signaling Pathway. Phytomedicine 2023, 115, 154845. [Google Scholar] [CrossRef]
- Shi, X.; Jie, L.; Wu, P.; Zhang, N.; Mao, J.; Wang, P.; Yin, S. Calycosin Mitigates Chondrocyte Inflammation and Apoptosis by Inhibiting the PI3K/AKT and NF-ΚB Pathways. J. Ethnopharmacol. 2022, 297, 115536. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Xue, L.F.; Hu, B.; Liu, H.H.; Huang, S.B.; Khan, S.; Meng, Y. Calycosin-Loaded Nanoliposomes as Potential Nanoplatforms for Treatment of Diabetic Nephropathy through Regulation of Mitochondrial Respiratory Function. J. Nanobiotechnol. 2021, 19, 178. [Google Scholar] [CrossRef]
- Kim, J.H.; Kang, D.M.; Cho, Y.J.; Hyun, J.W.; Ahn, M.J. Medicarpin Increases Antioxidant Genes by Inducing NRF2 Transcriptional Level in HeLa Cells. Antioxidants 2022, 11, 421. [Google Scholar] [CrossRef]
- Boeing, T.; Mejía, J.A.A.; Ccana-Ccapatinta, G.V.; Mariott, M.; de Cássia Melo Vilhena de Andrade Fonseca Da Silva, R.; de Souza, P.; Mariano, L.N.B.; Oliveira, G.R.; da Rocha, I.M.; da Costa, G.A.; et al. The Gastroprotective Effect of Red Propolis Extract from Northeastern Brazil and the Role of Its Isolated Compounds. J. Ethnopharmacol. 2021, 267, 113623. [Google Scholar] [CrossRef]
- Chen, Y.; Yin, L.; Hao, M.; Xu, W.; Gao, J.; Sun, Y.; Wang, Q.; Chen, S.; Liang, Y.; Guo, R.; et al. Medicarpin Induces G1 Arrest and Mitochondria-Mediated Intrinsic Apoptotic Pathway in Bladder Cancer Cells. Acta Pharm. 2023, 73, 211–225. [Google Scholar] [CrossRef]
- Squarisi, I.S.; Ribeiro, V.P.; Ribeiro, A.B.; de Souza, L.T.M.; de Melo Junqueira, M.; de Oliveira, K.M.; Hayot, G.; Dickmeis, T.; Bastos, J.K.; Veneziani, R.C.S.; et al. Development of a Benzophenone-Free Red Propolis Extract and Evaluation of Its Efficacy against Colon Carcinogenesis. Pharmaceuticals 2024, 17, 1340. [Google Scholar] [CrossRef]
- Williams, D.; Perry, D.; Carraway, J.; Simpson, S.; Uwamariya, P.; Christian, O.E. Antigonococcal Activity of (+)-Medicarpin. ACS Omega 2021, 6, 15274–15278. [Google Scholar] [CrossRef]
- Aldana-Mejía, J.A.; Ccana-Ccapatinta, G.V.; Squarisi, I.S.; Nascimento, S.; Tanimoto, M.H.; Ribeiro, V.P.; Arruda, C.; Nicolella, H.; Esperandim, T.; Ribeiro, A.B.; et al. Nonclinical Toxicological Studies of Brazilian Red Propolis and Its Primary Botanical Source Dalbergia ecastaphyllum. Chem. Res. Toxicol. 2021, 34, 1024–1033. [Google Scholar] [CrossRef]
- Franchin, M.; Colón, D.F.; Da Cunha, M.G.; Castanheira, F.V.S.; Saraiva, A.L.L.; Bueno-Silva, B.; Alencar, S.M.; Cunha, T.M.; Rosalen, P.L. Neovestitol, an Isoflavonoid Isolated from Brazilian Red Propolis, Reduces Acute and Chronic Inflammation: Involvement of Nitric Oxide and IL-6. Sci. Rep. 2016, 6, 36401. [Google Scholar] [CrossRef] [PubMed]
- Bueno-Silva, B.; Rosalen, P.L.; Alencar, S.M.; Mayer, M.P.A. Vestitol Drives LPS-Activated Macrophages into M2 Phenotype through Modulation of NF-ΚB Pathway. Int. Immunopharmacol. 2020, 82, 106329. [Google Scholar] [CrossRef]
- Bueno-silva, B.; Bueno, M.R.; Kawamoto, D.; Casarin, R.C.; Pingueiro, J.M.S.; Alencar, S.M.; Rosalen, P.L.; Mayer, M.P.A. Anti-Inflammatory Effects of (3S)-Vestitol on Peritoneal Macrophages. Pharmaceuticals 2022, 15, 553. [Google Scholar] [CrossRef]
- Nani, B.D.; Franchin, M.; Lazarini, J.G.; Freires, I.A.; da Cunha, M.G.; Bueno-Silva, B.; de Alencar, S.M.; Murata, R.M.; Rosalen, P.L. Isoflavonoids from Brazilian Red Propolis Down-Regulate the Expression of Cancer-Related Target Proteins: A Pharmacogenomic Analysis. Phytother. Res. 2018, 32, 750–754. [Google Scholar] [CrossRef] [PubMed]
- Aldana-Mejía, J.A.; Ribeiro, V.P.; Meepagala, K.M.; Bastos, J.K.; Ross, S.A. Bioactive Metabolites of Brazilian Red Propolis: Cytotoxic, Antimalarial, and Antimicrobial Properties. Fitoterapia 2025, 181, 106351. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, R.O.; Andrade, V.M.; Bullé Rêgo, E.S.; Azevedo Dória, G.A.; dos Santos Lima, B.; Da Silva, F.A.; De Souza Araújo, A.A.; De Albuquerque Júnior, R.L.C.; Cordeiro Cardoso, J.; Zanardo Gomes, M. Acute and Sub-Acute Oral Toxicity of Brazilian Red Propolis in Rats. J. Ethnopharmacol. 2015, 170, 66–71. [Google Scholar] [CrossRef]
- Dutra, R.P.; de Sousa, M.M.; Mignoni, M.S.P.M.; de Oliveira, K.G.M.; Pereira, E.B.; Figueredo, A.S.; da Costa, A.A.C.; Dias, T.G.; Vasconcelos, C.C.; Silva, L.A.; et al. Brazilian Amazon Red Propolis: Leishmanicidal Activity and Chemical Composition of a New Variety of Red Propolis. Metabolites 2023, 13, 1027. [Google Scholar] [CrossRef]
- Oldoni, T.L.C.; Cabral, I.S.R.; D’Arce, M.A.B.R.; Rosalen, P.L.; Ikegaki, M.; Nascimento, A.M.; Alencar, S.M. Isolation and Analysis of Bioactive Isoflavonoids and Chalcone from a New Type of Brazilian Propolis. Sep. Purif. Technol. 2011, 77, 208–213. [Google Scholar] [CrossRef]
- Chen, Z.; Ding, W.; Yang, X.; Lu, T.; Liu, Y. Isoliquiritigenin, a Potential Therapeutic Agent for Treatment of Inflammation-Associated Diseases. J. Ethnopharmacol. 2024, 318, 117059. [Google Scholar] [CrossRef]
- Huang, X.; Shi, Y.; Chen, H.; Le, R.; Gong, X.; Xu, K.; Zhu, Q.; Shen, F.; Chen, Z.; Gu, X.; et al. Isoliquiritigenin Prevents Hyperglycemia-Induced Renal Injuries by Inhibiting Inflammation and Oxidative Stress via SIRT1-Dependent Mechanism. Cell Death Dis. 2020, 11, 1040. [Google Scholar] [CrossRef]
- Feng, R.; Meng, T.; Zhao, X.; Yu, W.; Li, H.; Wang, Z.; Chen, J.; Yang, C. Isoliquiritigenin Reduces Experimental Autoimmune Prostatitis by Facilitating Nrf2 Activation and Suppressing the NLRP3 Inflammasome Pathway. Mol. Immunol. 2024, 169, 37–49. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Chen, W.-q.; Zhang, S.-q.; Bai, J.-x.; Liu, B.; Yung, K.K.-L.; Ko, J.K.-S. Isoliquiritigenin Inhibits Pancreatic Cancer Progression through Blockade of P38 MAPK-Regulated Autophagy. Phytomedicine 2022, 106, 154406. [Google Scholar] [CrossRef]
- Babu, V.; Kapkoti, D.S.; Binwal, M.; Bhakuni, R.S.; Shanker, K.; Singh, M.; Tandon, S.; Mugale, M.N.; Kumar, N.; Bawankule, D.U. Liquiritigenin, Isoliquiritigenin Rich Extract of Glycyrrhiza Glabra Roots Attenuates Inflammation in Macrophages and Collagen-Induced Arthritis in Rats. Inflammopharmacology 2023, 31, 983–996. [Google Scholar] [CrossRef] [PubMed]
- Tu, C.; Ma, Y.; Song, M.; Yan, J.; Xiao, Y.; Wu, H. Liquiritigenin Inhibits IL-1β-Induced Inflammation and Cartilage Matrix Degradation in Rat Chondrocytes. Eur. J. Pharmacol. 2019, 858, 172445. [Google Scholar] [CrossRef] [PubMed]
- Ning, X.; Ni, Y.; Cao, J.; Zhang, H. Liquiritigenin Attenuated Collagen-Induced Arthritis and Cardiac Complication via Inflammation and Fibrosis Inhibition in Mice. Chem Pharm Bull 2023, 71, 269–276. [Google Scholar] [CrossRef]
- Qin, M.; Guo, A.; Li, F.; Zhang, F.; Bi, M.; Zhang, Y.; Zhu, W. Liquiritigenin Enhances Cyclic Adenosine Monophosphate Production to Mitigate Inflammation in Dendritic Cells. Int. J. Immunopathol. Pharmacol. 2021, 35, 20587384211038098. [Google Scholar] [CrossRef]
- Du, Y.; Luo, M.; Du, Y.; Xu, M.; Yao, Q.; Wang, K.; He, G. Liquiritigenin Decreases Aβ Levels and Ameliorates Cognitive Decline by Regulating Microglia M1/M2 Transformation in AD Mice. Neurotox. Res. 2021, 39, 349–358. [Google Scholar] [CrossRef]
- Zhang, M.; Xue, Y.; Zheng, B.; Li, L.; Chu, X.; Zhao, Y.; Wu, Y.; Zhang, J.; Han, X.; Wu, Z.; et al. Liquiritigenin Protects against Arsenic Trioxide-Induced Liver Injury by Inhibiting Oxidative Stress and Enhancing MTOR-Mediated Autophagy. Biomed. Pharmacother. 2021, 143, 112167. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.; Zhang, Y.; Zhang, H.; Rajendran, R.S.; Wang, R.; Hsiao, C.D.; Li, J.; Xia, Q.; Liu, K. Isoliquiritigenin Triggers Developmental Toxicity and Oxidative Stress–Mediated Apoptosis in Zebrafish Embryos/Larvae via Nrf2-HO1/JNK-ERK/Mitochondrion Pathway. Chemosphere 2020, 246, 125727. [Google Scholar] [CrossRef]
- Yang, K.; Ganesan, K.; Gao, F.; Xie, C.; Chen, J. Subacute Toxicity of Isoliquiritigenin-Zein Phosphatidylcholine Nanoparticles on Biochemical, Hematological, and Histopathological Parameters in Sprague-Dawley Rats. Explor. Drug Sci. 2024, 2, 234–253. [Google Scholar] [CrossRef]
- Fasolo, D.; Bergold, A.M.; von Poser, G.; Teixeira, H.F. Determination of Benzophenones in Lipophilic Extract of Brazilian Red Propolis, Nanotechnology-Based Product and Porcine Skin and Mucosa: Analytical and Bioanalytical Assays. J. Pharm. Biomed. Anal. 2016, 124, 57–66. [Google Scholar] [CrossRef]
- Pires, L.M.; Santos, M.F.C.; Figueiredo, L.R.; Faleiros, R.; Badoco, F.R.; Silva, K.B.; Ambrósio, S.R.; Bastos, J.K.; SANTOS, R.A.A.; Veneziani, R.C.S. Polyprenylated Benzophenones from Brazilian Red Propolis: Analytical Characterization and Anticancer Activity. Chem. Biodivers. 2024, 21, e202401288. [Google Scholar] [CrossRef]
- De Freitas, K.S.; Da Silva, L.H.D.; Squarisi, I.S.; De Souza Oliveira, L.T.; Ribeiro, A.B.; Alves, B.S.; Esperandim, T.R.; De Melo, M.R.S.; Ozelin, S.D.; Lemes, D.C.; et al. Red Propolis Exhibits Chemopreventive Effect Associated with Antiproliferative and Anti-Inflammatory Activities. Toxicol. Res. 2022, 11, 750–757. [Google Scholar] [CrossRef] [PubMed]
- Nathani, A.; Khan, I.; Tanimoto, M.H.; Mejía, J.A.A.; DE Miranda, A.M.; Rishi, A.; Dev, S.; Bastos, J.K.; Singh, M. Antitumor Potential of Guttiferone E Combined With Carboplatin Against Osimertinib-Resistant H1975 Lung Cancer Through Apoptosis. Anticancer. Res. 2024, 44, 4175–4188. [Google Scholar] [CrossRef]
- Ripari, N.; Lopes, E.C.; Francisco, Á.F.; de Almeida, J.F.S.; da Silva Honorio, M.; Júnior, A.F.; de Mattos Fontes, R.; Tanimoto, M.H.; de Azevedo Calderon, L.; Bastos, J.K.; et al. Guttiferone E from Brazilian Red Propolis Inhibited Wound-Isolated Methicillin-Resistant Staphylococcus Aureus and Enhanced the Bactericidal Action of Suppressed Macrophages. Phytomedicine 2025, 140, 156615. [Google Scholar] [CrossRef] [PubMed]
- Thirupathi, A.; Silveira, P.C.; Nesi, R.T.; Pinho, R.A. β-Amyrin, a Pentacyclic Triterpene, Exhibits Anti-Fibrotic, Anti-Inflammatory, and Anti-Apoptotic Effects on Dimethyl Nitrosamine-Induced Hepatic Fibrosis in Male Rats. Hum. Exp. Toxicol. 2017, 36, 113–122. [Google Scholar] [CrossRef]
- Askari, V.R.; Fereydouni, N.; Baradaran Rahimi, V.; Askari, N.; Sahebkar, A.H.; Rahmanian-Devin, P.; Samzadeh-Kermani, A. β-Amyrin, the Cannabinoid Receptors Agonist, Abrogates Mice Brain Microglial Cells Inflammation Induced by Lipopolysaccharide/Interferon-γ and Regulates Mφ1/Mφ2 Balances. Biomed. Pharmacother. 2018, 101, 438–446. [Google Scholar] [CrossRef] [PubMed]
- Zahid, S.; Malik, A.; Waqar, S.; Zahid, F.; Tariq, N.; Khawaja, A.I.; Safir, W.; Gulzar, F.; Iqbal, J.; Ali, Q. Countenance and Implication of Β-Sitosterol, Β-Amyrin and Epiafzelechin in Nickel Exposed Rat: In-Silico and in-Vivo Approach. Sci. Rep. 2023, 13, 21351. [Google Scholar] [CrossRef] [PubMed]
- Cai, Z.; Liu, J.; Bian, H.; Cai, J. β-Amyrin Ameliorates Pulmonary Fibrosis by Inhibiting Inflammatory Response and Oxidative Stress in Mice. Pak. J. Pharm. Sci. 2023, 36, 431–436. [Google Scholar] [CrossRef] [PubMed]
- Lissin, L.W.; Oka, R.; Lakshmi, S.; Cooke, J.P. Isoflavones Improve Vascular Reactivity in Post-Menopausal Women with Hypercholesterolemia. Vasc. Med. 2004, 9, 26–30. [Google Scholar] [CrossRef]
- Abshirini, M.; Omidian, M.; Kord-Varkaneh, H. Effect of Soy Protein Containing Isoflavones on Endothelial and Vascular Function in Postmenopausal Women: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Menopause 2020, 27, 1425–1433. [Google Scholar] [CrossRef]
Compound | Study Type | Experimental Model | Species/Cell Line | Concentration/Dose | Key Findings | Reference |
---|---|---|---|---|---|---|
Formononetin | In vivo | Inflammatory and visceral pain model | Mouse | 10–30 mg/kg (extract), 10 mg/kg (pure) | Reduced paw edema; leukocyte migration. | [13] |
In vitro | HaCaT keratinocytes (psoriasiform inflammation) | Human | 20–40 µM | Decreased TNF-α, IL-6, epidermal thickness via IFN/STAT pathway inhibition. | [15] | |
In vivo | Imiquimod-induced psoriasis | Mouse | 2% topical cream, 12 days | Reduced PASI scores, epidermal thickness, pro-inflammatory cytokines. | [15] | |
In vitro | LPS-stimulated macrophages, zebrafish inflammation | Murine, zebrafish | 20 µM | Reduced IL-6, IL-1β; promoted autophagy and M1-to-M2 shift. | [16] | |
In vivo | PCOS induced by DHEA | Rat | 15–60 mg/kg | Reduced oxidative stress, inflammation, NLRP3 activation. | [17] | |
In vivo | Myocardial ischemia–reperfusion injury | Rat | 20 mg/kg | Reduced infarct size, platelet activation, neutrophil traps via CD36/ERK5 inhibition. | [18] | |
In vitro | Human skin fibroblasts (thermal injury) | Human | 10 µM | Increased proliferation/migration; reduced apoptosis and cytokines. | [19] | |
In vitro | BV2 microglia (OGD/R) | Murine | 10 µM | Reduced TNF-α, IL-1β; inhibited TLR4/NF-κB; induced M2 polarization. | [20] | |
Biochanin A | In vivo | Bleomycin-induced pulmonary fibrosis | Mouse | 5–10 mg/kg | Inhibited TGF-β1/Smad2/3; reduced inflammation and fibrosis. | [27] |
In vivo | Experimental periodontitis | Rat | 12.5–50 mg/kg/day, i.v., 4 weeks | Reduced IL-1β, TNF-α, ROS; increased Nrf2 and osteocalcin. | [28] | |
In vivo | Imiquimod-induced psoriasis | Mouse | 0.3–3% topical | Reduced IL-17A, IL-23; inhibited NF-κB/MAPK. | [29] | |
In vitro & in vivo | Various inflammatory models | Murine, rat | 5–50 mg/kg | Increased IL-10, antioxidant enzymes via Nrf2/HO-1 activation. | [30] | |
In vivo | DSS-induced colitis | Mouse | 40 mg/kg | Restored barrier integrity, inhibited ferroptosis via JAK2/STAT3 modulation. | [33] | |
In vivo | Renal fibrosis (UUO model) | Mouse | 40 mg/kg | Inhibited TGF-β1/Smad2/3 and NF-κB/NLRP3. | [34] | |
In vivo | Spinal cord injury | Rat | 40 mg/kg i.p., 14 days | Reduced inflammasome activation, oxidative stress; activated Nrf2/HO-1. | [35] | |
In vitro | NSCLC A549 cells | Human | IC50 = 21.92 µM | Reduced IL-6, IL-8, MMPs; anti-metastatic effect. | [36] | |
Daidzein | In vitro | LPS-treated hepatocytes | Human | 100 µM | Reduced IL-1β, IL-6, TNF-α via ERK1/2 and NF-κB inhibition. | [39] |
In vivo | DOX-induced heart failure | Mouse | 10 mg/kg i.p. | Reduced cardiac inflammation, oxidative stress, fibrosis. | [41] | |
In vivo | Ovarian oxidative stress (sows) | Pig | 200 mg/kg in diet | Decreased MDA, IL-1β, IL-6, TNF-α via TLR4/NF-κB inhibition. | [42] | |
Ex vivo | LPS-stimulated peritoneal macrophages | Mouse | 100 µM | Reduced COX-2, PGE2, iNOS; inhibited NLRP3 inflammasome. | [43] | |
In vivo | Gentamicin nephrotoxicity | Zebrafish | 100 µM | Reduced COX-2, TNF-α, IL-1β; increased antioxidants. | [46] | |
In vivo | Acute kidney injury | Rat | 100 mg/kg p.o. | Reduced TNF-α, MPO, NF-κB; increased IL-10 and antioxidants. | [47] | |
Calycosin | In vivo | MCAO-induced stroke | Rat | 5–20 mg/kg | Reduced infarct size, IL-6, IL-18 via HMGB1/TLR4/NF-κB inhibition. | [51] |
In vivo | Pulmonary fibrosis (bleomycin) | Mouse | 7–14 mg/kg p.o. | Reduced inflammation, collagen deposition via Nrf2/HO-1. | [52,53] | |
In vivo | Atopic dermatitis | Mouse | Topical | Reduced IL-4, IL-5, IL-13; increased Tregs (FOXP3+). | [54] | |
In vivo | Gastrectomy-induced injury | Rat | 20–80 mg/kg p.o. | Reduced TNF-α, IL-6; improved tight junctions. | [55] | |
In vivo | Post-MI heart failure | Rat | 80 mg/kg p.o. | Reduced TNF-α, IL-6, fibrosis; inhibited PI3K/AKT and NF-κB. | [56] | |
In vitro & in vivo | Osteoarthritis | Rat, chondrocytes | 100–400 µM in vitro; 40 mg/kg i.p. | Reduced IL-1β, TNF-α, MMPs; protected cartilage. | [58] | |
Medicarpin | In vitro | HeLa cells | Human | 50–100 µM | Activated NRF2; increased antioxidant gene expression. | [60] |
In vivo | Ethanol/HCl-induced gastric ulcer | Mouse | 10 mg/kg p.o. | Reduced oxidative stress, MPO activity; prostaglandin-dependent. | [61] | |
In vitro | Antiproliferative | T24, EJ-1 cells | 50–100 µM | Upregulated pro-apoptotic proteins (BAK1, Bcl2-L-11, caspase-3); indirect anti-inflammatory effects. | [62] | |
In vivo | Chemoprevention | Rat | 6 mg/kg BFRP; No genotoxicity up to 2000 mg/kg | Reduced preneoplastic lesions; modulation of intestinal inflammatory microenvironment. | [63] | |
Vestitol | In vivo | Peritonitis model | Mouse | 10 mg/kg i.p. | Reduced neutrophil migration; modulated cytokines. | [9] |
In vitro | LPS-macrophages | Murine | 0.55 µM | Reduced NO, IL-6, TNF-α; increased IL-10; NF-κB inhibition. | [67] | |
Neovestitol | In vivo | Peritonitis, arthritis models | Mouse | 10 mg/kg i.p. | Reduced neutrophil infiltration, IL-6; NO-dependent. | [9,66]. |
In vitro | LPS-macrophages | Murine | 0.3–30 µM | Reduced ICAM-1, IL-6; preserved IL-17/Th17. | [66] | |
Isoliquiritigenin | In vitro | LPS-macrophages | Murine | 10–20 µM | Inhibited NF-κB, MAPK; reduced TNF-α, IL-1β, IL-6. | [74] |
In vitro | Diabetic nephropathy model | Murine cells | 10–20 µM | Reduced inflammatory, fibrogenic, and apoptotic markers via SIRT1 activation, MAPK/p38 suppression, and Nrf2/HO-1 upregulation. | [75] | |
In vivo | Multiple sclerosis model | Mouse | 50–200 mg/kg | Modulated immune cells; neuroprotective. | [76] | |
In vivo | DMH-induced preneoplastic colorectal lesions | Rat | Isoliquiritigenin-rich extract | Reduced preneoplastic lesions by 41.6%. | [63] | |
In vitro | Pancreatic cancer cells | Human | 12.5–25 µM | Induced apoptosis through autophagy blockade mediated by p38 MAPK; synergistic with chemotherapies. | [77] | |
Liquiritigenin | In vivo | Collagen-induced arthritis | Mouse | 100–300 mg/kg | Reduced TNF-α, IL-6 via NF-κB inhibition. | [78] |
In vitro | IL-1β-stimulated chondrocytes | Human | 20–40 µM | Reduced MMPs; protected cartilage. | [79] | |
In vivo | Rheumatoid arthritis with cardiac involvement | Mouse | 20 mg/kg | Improved joint and cardiac function; downregulated pro-inflammatory cytokines, MMP-3/MMP-13, and TGF-β1/Smad2/3 signaling. | [80] | |
In vitro | Dendritic and T cells | Human | 10–50 µM | Increased cAMP via adenylyl cyclase modulation; suppressed pro-inflammatory cytokines and shifted T-cell polarization. | [81] | |
In vivo | Alzheimer’s disease model | Mouse | 30 mg/kg | Shifted microglia to M2 phenotype; reduced NLRP3 and cleaved caspase-1; improved cognition. | [82] | |
In vivo | Arsenic trioxide-induced liver injury | Mouse | 20–40 mg/kg | Reduced oxidative stress and inflammation via mTOR-mediated autophagy activation. | [83] | |
Guttiferone E | In vivo | Colon carcinogenesis (DMH) | Rat | 12–48 mg/kg p.o. | Reduced COX-2, PCNA expression. | [88] |
In vivo | NSCLC xenograft | Mouse | 10 mg/kg i.p. | Reduced mTOR, SIRT1, COX-2; tumor and inflammation inhibition. | [89] | |
Oblongifolin B | - | - | - | - | No specific anti-inflammatory study detailed. | - |
β-amyrin | In vivo | CCl4-induced hepatic fibrosis | Mouse | 25, 50 mg/kg oral, 3×/week for 6 weeks | Reduced TNF-α, IL-1β, IL-6; attenuated collagen deposition and fibrotic markers; modulated apoptosis-related proteins. | [91] |
In vitro | LPS/IFN-γ-stimulated microglial cells | Murine | 12, 25, 50 µM | Suppressed pro-inflammatory cytokines and enzymes; promoted M2 polarization; no cytotoxicity. | [92] | |
In vivo | Nickel chloride-induced colon cancer | Rat | 2.5 mg/kg oral | Reduced inflammatory and oxidative markers; improved antioxidant enzymes; synergistic with β-sitosterol and epiafzelechin. | [93] | |
In vivo | Bleomycin-induced pulmonary fibrosis | Mouse | 20, 40, 80 mg/kg oral | Reduced pulmonary inflammation, oxidative stress, collagen deposition; improved lung function. | [94] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boeing, T.; Moresco, R.; de Souza, P. Phytochemicals from Brazilian Red Propolis: A Review of Their Anti-Inflammatory Potential. Plants 2025, 14, 2961. https://doi.org/10.3390/plants14192961
Boeing T, Moresco R, de Souza P. Phytochemicals from Brazilian Red Propolis: A Review of Their Anti-Inflammatory Potential. Plants. 2025; 14(19):2961. https://doi.org/10.3390/plants14192961
Chicago/Turabian StyleBoeing, Thaise, Rodolfo Moresco, and Priscila de Souza. 2025. "Phytochemicals from Brazilian Red Propolis: A Review of Their Anti-Inflammatory Potential" Plants 14, no. 19: 2961. https://doi.org/10.3390/plants14192961
APA StyleBoeing, T., Moresco, R., & de Souza, P. (2025). Phytochemicals from Brazilian Red Propolis: A Review of Their Anti-Inflammatory Potential. Plants, 14(19), 2961. https://doi.org/10.3390/plants14192961