Evaluating the Capability of Epipremnum aureum and Its Associated Phylloplane Microbiome to Capture Indoor Particulate Matter Bound Lead
Abstract
1. Introduction
2. Results
2.1. PM and BC Concentrations in Leaf Wash Suspensions
2.2. Leaf Elemental Composition and Surface Particle Element Distribution
2.2.1. Leaf Elemental Composition by ICP
2.2.2. Leaf Surface Particle Element Distribution by SEM-EDX
2.3. Phylloplane Bacterial Diversity Assessment
3. Discussion
4. Materials and Methods
4.1. Sampling
4.2. Collection and Preparation of Phylloplane Samples
4.3. Gravimetric Quantification of PM Deposited on Leaves
4.4. Black Carbon Detection in Leaf Wash Suspensions
4.5. Leaf Elemental Composition and Surface Particle Element Distribution
4.6. Metabarcoding of the Bacterial Phylloplane
4.7. Leaf Microbiome Taxonomy Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- European Environment Agency (EEA). Exceedance of Air Quality Standards in Urban Areas. Available online: https://www.eea.europa.eu/data-and-maps/indicators/exceedance-of-air-quality-limit-3/assessment-3 (accessed on 28 September 2018).
- Ioannidou, E.; Papagiannis, S.; Manousakas, M.I.; Betsou, C.; Eleftheriadis, K.; Paatero, J.; Papadopoulou, L.; Ioannidou, A. Trace Elements Concentrations in Urban Air in Helsinki, Finland during a 44-Year Period. Atmosphere 2023, 14, 1430. [Google Scholar] [CrossRef]
- Goldstein, A.H.; Nazaroff, W.W.; Weschler, C.J.; Williams, J. How Do Indoor Environments Affect Air Pollution Exposure? Environ. Sci. Technol. 2021, 55, 100–108. [Google Scholar] [CrossRef]
- Kim, D.-H.; Jo, Y.M.; Son, Y.-S. Effects of Surrounding Environment and Student Activity on the Concentration of Particulate Matter in Elementary School Classrooms in South Korea. Atmos. Pollut. Res. 2024, 15, 102090. [Google Scholar] [CrossRef]
- Liu, J.; Chen, H.; Qiao, S.; Zhang, Y. Indoor/Outdoor Relationships of PM2.5-Associated Toxic Metals/Metalloids at a Rural Residence in North China: Sources and Probabilistic Health Risks. Atmos. Pollut. Res. 2023, 14, 101753. [Google Scholar] [CrossRef]
- Oh, H.R.; Park, D.S.R.; Ko, H.Y.; Seo, J.; Lee, M.; Choi, W. Comprehensive Analysis of PM2.5 Concentrations in the Seoul Metro Underground Stations: Relationships with Indoor Sources and Outdoor Air Quality. Asia-Pac. J. Atmos. Sci. 2025, 61, 1. [Google Scholar] [CrossRef]
- Vasile, V.; Catalina, T.; Dima, A.; Ion, M. Pollution Levels in Indoor School Environment—Case Studies. Atmosphere 2024, 15, 399. [Google Scholar] [CrossRef]
- Vega, E.; Wellens, A.; Namdeo, A.; Meza-Figueroa, D.; Ornelas, O.; Entwistle, J.; Bramwell, L. Spatial Variation of PM10 and PM2.5 in Residential Indoor Environments in Municipalities Across Mexico City. Atmosphere 2025, 16, 1039. [Google Scholar] [CrossRef]
- Lach, K.A.R.E.L.; Bernatikova, S.; Frishansova, L.; Klouda, K.A.R.E.L.; Micka, V. Study of Air Contamination by Heavy Metals at Firing Ranges. WIT Trans. Ecol. Environ 2018, 230, 29–39. [Google Scholar]
- Li, R.; Zhou, R.; Zhang, J. Function of PM2.5 in the Pathogenesis of Lung Cancer and Chronic Airway Inflammatory Diseases (Review). Oncol. Lett. 2018, 15, 7506–7514. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.; Yang, C.; Chen, J.; Chen, Y.; Chen, G.; Lin, Z.; Li, Z.; Chen, Y.; Yin, L.; Xu, L.; et al. Impact of low PM2.5 exposure on asthma admission: Age-specific differences and evidence from a low-pollution environment in China. Aerosol Air Qual. Res. 2024, 24, 230195. [Google Scholar] [CrossRef]
- Zhao, B.; Wang, S.; Ding, D.; Wu, W.; Chang, X.; Wang, J.; Xing, J.; Jang, C.; Fu, J.S.; Zhu, Y.; et al. Nonlinear Relationships between Air Pollutant Emissions and PM2.5-Related Health Impacts in the Beijing-Tianjin-Hebei Region. Sci. Total Environ. 2019, 661, 375–385. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.M.; Lee, S.; Kim, Y.J.; Lee, S.E.; Kim, Y.; Kang, D.; Kim, S.Y. Occupational Asthma Related to Indoor Air Pollution in a Worker at an Indoor Air Gun Shooting Range: A Case Report. Ann. Occup. Environ. Med. 2023, 35, e13. [Google Scholar] [CrossRef]
- Budaniya, M.; Rai, A.C. Effectiveness of Plants for Passive Removal of Particulate Matter Is Low in the Indoor Environment. Build. Environ. 2022, 222, 109384. [Google Scholar] [CrossRef]
- Lyu, L.; Fleck, R.; Matheson, S.; King, W.L.; Bauerle, T.L.; Torpy, F.R.; Irga, P.J. Phytoremediation of Indoor Air: Mechanisms of Pollutant Translocation and Biodegradation. Crit. Rev. Environ. Sci. Technol. 2025, 55, 676–707. [Google Scholar] [CrossRef]
- Bashir, I.; War, A.F.; Rafiq, I.; Reshi, Z.A.; Rashid, I.; Shouche, Y.S. Phyllosphere Microbiome: Diversity and Functions. Microbiol. Res. 2022, 254, 126888. [Google Scholar] [CrossRef]
- He, Z.; Guo, Q.; Wang, Z.; Li, X. Particulate Matter (PM) Adsorption and Leaf Characteristics of Ornamental Sweet Potato (Ipomoea batatas L.) Cultivars and Two Common Indoor Plants (Hedera helix L. and Epipremnum aureum Lindl. & Andre). Horticulturae 2022, 8, 26. [Google Scholar] [CrossRef]
- Imperato, V.; Kowalkowski, L.; Portillo-Estrada, M.; Gawronski, S.W.; Vangronsveld, J.; Thijs, S. Characterisation of the Carpinus betulus L. Phyllomicrobiome in Urban and Forest Areas. Front. Microbiol. 2019, 10, 1110. [Google Scholar] [CrossRef]
- Wang, M.; Cernava, T. The Phyllosphere Microbiome. Front. Plant Sci. 2023, 14, 1234843. [Google Scholar] [CrossRef] [PubMed]
- Vorholt, J.A. Microbial Life in the Phyllosphere. Nat. Rev. Microbiol. 2012, 10, 828–840. [Google Scholar] [CrossRef] [PubMed]
- Bao, L.; Cai, W.; Cao, J.; Zhang, X.; Liu, J.; Chen, H.; Wei, Y.; Zhuang, X.; Zhuang, G.; Bai, Z. Microbial Community Overlap between the Phyllosphere and Rhizosphere of Three Plants from Yongxing Island, South China Sea. Microbiol. Open 2020, 9, e1048. [Google Scholar] [CrossRef]
- Vogel, M.A.; Mason, O.U.; Miller, T.E. Host and Environmental Determinants of Microbial Community Structure in the Marine Phyllosphere. PLoS ONE 2020, 15, e0235441. [Google Scholar] [CrossRef]
- Laforest-Lapointe, I.; Messier, C.; Kembel, S.W. Host Species Identity, Site and Time Drive Temperate Tree Phyllosphere Bacterial Community Structure. Microbiome 2016, 4, 27. [Google Scholar] [CrossRef]
- Stevens, V.; Thijs, S.; Bongaerts, E.; Nawrot, T.; Marchal, W.; Van Hamme, J.; Vangronsveld, J. Ambient Air Pollution Shapes Bacterial and Fungal Ivy Leaf Communities. Microorganisms 2021, 9, 2088. [Google Scholar] [CrossRef]
- Durand, A.; Maillard, F.; Alvarez-Lopez, V.; Guinchard, S.; Bertheau, C.; Valot, B.; Blaudez, D.; Chalot, M. Bacterial Diversity Associated with Poplar Trees Grown on a Hg-Contaminated Site: Community Characterization and Isolation of Hg-Resistant Plant Growth-Promoting Bacteria. Sci. Total Environ. 2018, 622–623, 1165–1177. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.; Wang, Y.; Wang, Y.; Li, B.; Liu, Y.; Liu, X. Application of a coupled model of photosynthesis and stomatal conductance for estimating plant physiological response to pollution by fine particulate matter (PM2.5). Environ. Sci. Pollut. Res. 2018, 25, 19826–19835. [Google Scholar] [CrossRef] [PubMed]
- Bisht, D.S.; Tiwari, S.; Srivastava, A.K.; Srivastava, M.K. Assessment of air quality during 19th Common Wealth Games at Delhi, India. Nat. Hazards 2013, 66, 141–154. [Google Scholar] [CrossRef]
- Witters, K.; Plusquin, M.; Slenders, E.; Aslam, I.; Ameloot, M.; Roeffaers, M.B.J.; Vangronsveld, J.; Nawrot, T.S.; Bové, H. Monitoring indoor exposure to combustion-derived particles using plants. Environ. Pollut. 2020, 266, 115261. [Google Scholar] [CrossRef]
- Shah, G.; Bhatt, U.; Singh, H.; Chaudhary, H.D.; Soni, V. Phytotoxic effects of cigarette smoke on indoor plant Epipremnum aureum: In vivo analysis using chlorophyll a fluorescence transients. Front. Plant Sci. 2025, 16, 1595713. [Google Scholar] [CrossRef] [PubMed]
- Gajbhiye, T.; Pandey, S.K.; Kim, K.H. Foliar Uptake of Toxic Metals Bound to Airborne Particulate Matter in an Urban Environment. Aerosol Air Qual. Res. 2022, 22, 220050. [Google Scholar] [CrossRef]
- Santunione, G.; Barbieri, A.; Sgarbi, E. Analysis of particulate matter (PM) trapped by four different plant species in an urban forest: Quantification and characterization. Trees For. People 2024, 16, 100585. [Google Scholar] [CrossRef]
- Rastogi, G.; Sbodio, A.; Tech, J.J.; Suslow, T.V.; Coaker, G.L.; Leveau, J.H.J. Leaf microbiota in an agroecosystem: Spatiotemporal variation in bacterial community composition on field-grown lettuce. ISME J. 2012, 6, 1812–1822. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, W.; Liu, Y.; Zhu, W.; Yuan, Z.; Su, X.; Ding, C. Differences in phyllosphere microbiomes among different Populus spp. in the same habitat. Front. Plant Sci. 2023, 14, 1143878. [Google Scholar] [CrossRef]
- Grady, K.L.; Sorensen, J.W.; Stopnisek, N.; Guittar, J.; Shade, A. Assembly and seasonality of core phyllosphere microbiota on perennial biofuel crops. Nat. Commun. 2019, 10, 4135. [Google Scholar] [CrossRef]
- Pátek, M.; Grulich, M.; Nešvera, J. Stress response in Rhodococcus strains. Biotechnol. Adv. 2021, 53, 107698. [Google Scholar] [CrossRef] [PubMed]
- Ursprung, M. The Effect of Golden Pothos in Reducing the Level of Volatile Organic Compounds in a Simulated Spacecraft Cabin; NASA Technical Report; NASA: Washington, DC, USA, 2016; Report No. 20160005687. [Google Scholar]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 Years of Image Analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef] [PubMed]
- Alishahi, K.; Ehyaei, A.R.; Shojaie, A. A Generalized Benjamini-Hochberg Procedure for Multivariate Hypothesis Testing. arXiv 2016, arXiv:1606.02386. [Google Scholar] [CrossRef]
- Bové, H.; Steuwe, C.; Fron, E.; Slenders, E.; D’Haen, J.; Fujita, Y.; Uji-i, H.; vandeVen, M.; Roeffaers, M.; Ameloot, M. Biocompatible Label-Free Detection of Carbon Black Particles by Femtosecond Pulsed Laser Microscopy. Nano Lett. 2016, 16, 3173–3178. [Google Scholar] [CrossRef] [PubMed]
- Method 3050B; Acid Digestion of Sediments, Sludges, and Soils, Revision 2. USEPA (United States Environmental Protection Agency): Washington, DC, USA, 1996.
- Razali, N.M.; Wah, Y.B. Power Comparisons of Shapiro-Wilk, Kolmogorov-Smirnov, Lilliefors and Anderson-Darling Tests. J. Stat. Model. Anal. 2011, 2, 21–33. Available online: https://www.researchgate.net/publication/267205556 (accessed on 15 June 2025).
- Klindworth, A.; Pruesse, E.; Schweer, T.; Peplies, J.; Quast, C.; Horn, M.; Glöckner, F.O. Evaluation of General 16S Ribosomal RNA Gene PCR Primers for Classical and Next-Generation Sequencing-Based Diversity Studies. Nucleic Acids Res. 2013, 41, e1. [Google Scholar] [CrossRef]
- Cangioli, L.; Mancini, M.; Baldi, A.; Fagorzi, C.; Orlandini, S.; Vaccaro, F.; Mengoni, A. Effect of Site and Phenological Status on the Potato Bacterial Rhizomicrobiota. Microorganisms 2022, 10, 1743. [Google Scholar] [CrossRef] [PubMed]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-Resolution Sample Inference from Illumina Amplicon Data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing. Available online: https://www.r-project.org/ (accessed on 25 October 2024).
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; et al. The SILVA Ribosomal RNA Gene Database Project: Improved Data Processing and Web-Based Tools. Nucleic Acids Res. 2012, 41, D590–D596. [Google Scholar] [CrossRef] [PubMed]
- Wright, E.S.; Yilmaz, L.S.; Noguera, D.R. DECIPHER, a Search-Based Approach to Chimera Identification for 16S rRNA Sequences. Appl. Environ. Microbiol. 2012, 78, 717–725. [Google Scholar] [CrossRef]
- McMurdie, P.J.; Holmes, S. phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. PLoS ONE 2013, 8, e61217. [Google Scholar] [CrossRef]
RR | SR | |||||||
---|---|---|---|---|---|---|---|---|
T0 | T3 | T6 | T12 | T0 | T3 | T6 | T12 | |
Ca | 212.6 ± 84.3 | 192.1 ± 19.8 | 491.0 ± 294.3 | 219.2 ± 50.3 S | 240.9 ± 60.4 | 354.5 ± 144.4 | 333.2 ± 138.7 | 472.1 ± 152.6 S |
Cd | 0.01 ± 0.01 S | 0.02 ± 0.002 | n.d. 1 | 0.01 ± 0.003 S | n.d. S | 0.02 ± 0.003 | n.d. | 0.02 ± 0.003 S |
Cu | 0.08 ± 0.046 | 0.09 ± 0.075 | 0.25 ± 0.15 | 0.16 ± 0.05 | 0.09 ± 0.03 | 0.18 ± 0.148 | 0.19 ± 0.10 | 0.16 ± 0.05 |
Fe | 1.63 ± 0.25 | 4.92 ± 2.27 | 4.59 ± 2.34 | 5.23 ± 0.42 | 1.59 ± 0.49 | 3.75 ± 1.68 | 3.88 ± 2.80 | 4.34 ± 1.39 |
K | 188.7 ± 47.7 | 198.0 ± 50.9 | 227.0 ± 13.6 | 222.7 ± 38.3 | 199.6 ± 26.7 | 225.7 ± 66.5 | 173.4 ± 59.4 | 228.7 ± 46.0 |
Mg | 34.4 ± 11.5 | 31.3 ± 5.76 S | 34.2 ± 10.6 | 41.0 ± 3.58 S | 38.8 ± 9.01 | 48.5 ± 12.0 S | 36.6 ± 14.1 | 67.9 ± 10.1 MS |
Mn | 6.91 ± 5.33 | 6.86 ± 2.75 | 7.71 ± 3.18 | 17.3 ± 2.88 M | 8.18 ± 3.93 | 13.5 ± 6.81 | 9.29 ± 2.95 | 16.3 ± 5.18 |
Na | 74.6 ± 34.1 | 87.4 ± 20.1 | 98.6 ± 40.9 | 158.8 ± 16.4 | 88.8 ± 33.1 | 104.2 ± 33.0 | 83.6 ± 32.9 | 136.5 ± 26.9 |
P | 28.8 ± 14.0 | 45.0 ± 11.2 S | 44.2 ± 6.6 | 59.5 ± 15.7 | 34.9 ± 7.4 | 72.0 ± 11.1 MS | 51.8 ± 20.7 | 73.5 ± 11.0 |
S | 13.9 ± 4.60 | 17.5 ± 3.30 | 18.6 ± 2.44 | 22.6 ± 3.90 | 16.1 ± 2.60 | 22.2 ± 7.34 | 16.5 ± 6.47 | 28.2 ± 5.92 |
Zn | 0.68 ± 0.35 | 1.06 ± 0.31 | 0.87 ± 0.40 | 1.23 ± 0.31 S | 0.98 ± 0.34 | 1.45 ± 0.64 | 1.02 ± 0.49 | 1.87 ± 0.71 MS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Much, D.G.; Saran, A.; Merini, L.J.; Vangronsveld, J.; Thijs, S. Evaluating the Capability of Epipremnum aureum and Its Associated Phylloplane Microbiome to Capture Indoor Particulate Matter Bound Lead. Plants 2025, 14, 2956. https://doi.org/10.3390/plants14192956
Much DG, Saran A, Merini LJ, Vangronsveld J, Thijs S. Evaluating the Capability of Epipremnum aureum and Its Associated Phylloplane Microbiome to Capture Indoor Particulate Matter Bound Lead. Plants. 2025; 14(19):2956. https://doi.org/10.3390/plants14192956
Chicago/Turabian StyleMuch, Diego G., Anabel Saran, Luciano J. Merini, Jaco Vangronsveld, and Sofie Thijs. 2025. "Evaluating the Capability of Epipremnum aureum and Its Associated Phylloplane Microbiome to Capture Indoor Particulate Matter Bound Lead" Plants 14, no. 19: 2956. https://doi.org/10.3390/plants14192956
APA StyleMuch, D. G., Saran, A., Merini, L. J., Vangronsveld, J., & Thijs, S. (2025). Evaluating the Capability of Epipremnum aureum and Its Associated Phylloplane Microbiome to Capture Indoor Particulate Matter Bound Lead. Plants, 14(19), 2956. https://doi.org/10.3390/plants14192956