Genome-Wide Characterization of SNAC Gene Family in Ten Cotton Species and Function Analysis of GhSNAC3D Under Cold Stress
Abstract
1. Introduction
2. Results
2.1. Characterization and Physicochemical Properties of SNAC Genes in Cotton
2.2. Chromosomal Mapping of the SNAC Gene Family
2.3. Evolutionary Analysis of SNACs Coupled with Investigation of Conserved Motifs, Conserved Domains, and Gene Structures
2.4. Profiling of Cis-Acting Motifs Within the SNAC Genes Promoter
2.5. Collinearity Analysis of the SNAC Gene Family
2.6. SNAC Genes Expression Pattern Analysis
2.7. Subcellular Localization of the GhSNAC3D
2.8. GhSNAC3D Silenced Cotton Plants Showed High Sensitivity to Cold Stress
3. Discussion
4. Materials and Methods
4.1. Plant Materials and Experimental Treatments
4.2. Characterization of Members of the SNAC Family
4.3. Phylogenetic Investigation
4.4. Chromosomal Distribution of SNAC Gene
4.5. Genomic Architecture, Conserved Motifs, and Protein Domains Analyses
4.6. Investigation of Cis-Acting Elements in the Promoter Region Upstream of the Land Cotton SNAC Gene
4.7. Collinearity Analysis
4.8. GhSNAC Expression Pattern Analysis
4.9. Quantitative Reverse Transcription Polymerase Chain Reaction (RT-qPCR) Analysis
4.10. Subcellular Localization
4.11. Construction and Transformation of Cotton Vectors
4.12. Data Statistics
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wen, X.; Chen, Z.; Yang, Z.; Wang, M.; Jin, S.; Wang, G.; Zhang, L.; Wang, L.; Li, J.; Saeed, S.; et al. A comprehensive overview of cotton genomics, biotechnology and molecular biological studies. Sci. China Life Sci. 2023, 66, 2214–2256. [Google Scholar] [CrossRef] [PubMed]
- Feng, L.; Wan, S.; Zhang, Y.; Dong, H. Xinjiang cotton: Achieving super-high yield through efficient utilization of light, heat, water, and fertilizer by three generations of cultivation technology systems. Field Crops Res. 2024, 312, 109401. [Google Scholar] [CrossRef]
- Li, Y.; Zhu, J.; Xu, J.; Zhang, X.; Xie, Z.; Li, Z. Effect of cold stress on photosynthetic physiological characteristics and molecular mechanism analysis in cold-resistant cotton (ZM36) seedlings. Front. Plant Sci. 2024, 15, 1396666. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.; Wang, Z.; Zhang, Y.; Tan, S.; Masangano, M.; Kang, M.; Cao, X.; Huang, P.; Gao, Y.; Pei, X.; et al. Gene expression modules during the emergence stage of upland cotton under low-temperature stress and identification of the GhSPX9 cold-tolerance gene. Plant Physiol. Biochem. 2025, 218, 109320. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, R.; Zhang, S.; Ge, C.; Liu, S.; Ma, H.; Pang, C.; Shen, Q. Integrating physiological and transcriptomic analyses explored the regulatory mechanism of cold tolerance at seedling emergence stage in upland cotton (Gossypium hirsutum L.). Plant Physiol. Biochem. 2024, 217, 109297. [Google Scholar] [CrossRef]
- Tingting, W.; Jie, Z.; Yuqing, H.; Yanchao, X.; Khan, A.; Pu, L.; Yuhong, W.; Kunbo, W.; Fang, L.; Xiaoyan, C.; et al. GhGTG1 enhances cold stress tolerance by improving sensitivity to ABA in cotton and Arabidopsis. Environ. Exp. Bot. 2023, 208, 105256. [Google Scholar] [CrossRef]
- Wang, S.; Shi, M.; Fan, Y.; Jiang, P.; Chen, S.; Li, Y.; Huang, L.; Zhao, J. Assessing the impacts of climate changes and human activities on cotton distribution in Xinjiang. Front. Sustain. Food Syst. 2025, 9, 1534544. [Google Scholar] [CrossRef]
- Zhu, J.; Lou, H.; Yan, C.; Zhang, W.; Li, Z. Exogenous Melatonin Enhances Cold Tolerance by Regulating the Expression of Photosynthetic Performance, Antioxidant System, and Related Genes in Cotton. Plants 2024, 13, 2010. [Google Scholar] [CrossRef]
- Dev, W.; Sultana, F.; Li, H.; Hu, D.; Peng, Z.; He, S.; Zhang, H.; Waqas, M.; Geng, X.; Du, X. Molecular mechanisms of cold stress response in cotton: Transcriptional reprogramming and genetic strategies for tolerance. Plant Sci. 2025, 352, 112390. [Google Scholar] [CrossRef]
- Wang, L.; Jiang, Y.; Hao, Y.; Yu, L.; Zhao, S.; Wu, H.; Long, X.; Zhang, Z.; Zhao, T.; Geng, S.; et al. Integrated transcriptomics and metabolomics analyses reveal jasmonic acid metabolic pathways for improving the chilling tolerance in cotton seedlings. Plant Physiol. Biochem. 2025, 224, 109935. [Google Scholar] [CrossRef]
- Gusain, S.; Joshi, S.; Joshi, R. Sensing, signalling, and regulatory mechanism of cold-stress tolerance in plants. Plant Physiol. Biochem. 2023, 197, 107646. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, J.; Sarwar, R.; Zhang, W.; Geng, R.; Zhu, K.-M.; Tan, X.-L. Research progress on the physiological response and molecular mechanism of cold response in plants. Front. Plant Sci. 2024, 15, 1334913. [Google Scholar] [CrossRef]
- Song, J.; Lin, R.; Tang, M.; Wang, L.; Fan, P.; Xia, X.; Yu, J.; Zhou, Y. SlMPK1-and SlMPK2-mediated SlBBX17 phosphorylation positively regulates CBF-dependent cold tolerance in tomato. New Phytol. 2023, 239, 1887–1902. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.; Wang, M.; Zhu, C.; Wu, S.; Li, J.; Yu, J.; Hu, Z. A transcriptional regulation of ERF15 contributes to ABA-mediated cold tolerance in tomato. Plant Cell Environ. 2024, 47, 1334–1347. [Google Scholar] [CrossRef] [PubMed]
- Ooka, H.; Satoh, K.; Doi, K.; Nagata, T.; Otomo, Y.; Murakami, K.; Matsubara, K.; Osato, N.; Kawai, J.; Carninci, P.; et al. Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana. DNA Res. 2003, 10, 239–247. [Google Scholar] [CrossRef]
- Duval, M.; Hsieh, T.F.; Kim, S.Y.; Thomas, T.L. Molecular characterization of AtNAM: A member of the Arabidopsis NAC domain superfamily. Plant Mol. Biol. 2002, 50, 237–248. [Google Scholar] [CrossRef]
- Valoroso, M.C.; Lucibelli, F.; Aceto, S. Orchid NAC Transcription Factors: A Focused Analysis of CUPULIFORMIS Genes. Genes 2022, 13, 2293. [Google Scholar] [CrossRef] [PubMed]
- Ko, J.-H.; Yang, S.H.; Park, A.H.; Lerouxel, O.; Han, K.-H. ANAC012, a member of the plant-specific NAC transcription factor family, negatively regulates xylary fiber development in Arabidopsis thaliana. Plant J. 2007, 50, 1035–1048. [Google Scholar] [CrossRef]
- Nikovics, K.; Blein, T.; Peaucelle, A.; Ishida, T.; Morin, H.; Aida, M.; Laufs, P. The Balance between the MIR164A and CUC2 Genes Controls Leaf Margin Serration in Arabidopsis. Plant Cell 2006, 18, 2929–2945, Erratum in Plant Cell 2025, 37, koaf123. [Google Scholar] [CrossRef]
- Xie, C.; Ding, Z. NAC1 Maintains Root Meristem Activity by Repressing the Transcription of E2Fa in Arabidopsis. Int. J. Mol. Sci. 2022, 23, 12258. [Google Scholar] [CrossRef]
- Jeong, J.S.; Kim, Y.S.; Baek, K.H.; Jung, H.; Ha, S.-H.; Do Choi, Y.; Kim, M.; Reuzeau, C.; Kim, J.-K. Root-Specific Expression of OsNAC10 Improves Drought Tolerance and Grain Yield in Rice under Field Drought Conditions. Plant Physiol. 2010, 153, 185–197. [Google Scholar] [CrossRef]
- Hu, H.; Dai, M.; Yao, J.; Xiao, B.; Li, X.; Zhang, Q.; Xiong, L. Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc. Natl. Acad. Sci. USA 2006, 103, 12987–12992. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Wang, Y.; Lv, B.; Li, J.; Luo, L.; Lu, S.; Zhang, X.; Ma, H.; Ming, F. The NAC Family Transcription Factor OsNAP Confers Abiotic Stress Response Through the ABA Pathway. Plant Cell Physiol. 2014, 55, 604–619. [Google Scholar] [CrossRef]
- So, H.-A.; Lee, J.-H. NAC Transcription Factors from Soybean (Glycine max L.) Differentially Regulated by Abiotic Stress. J. Plant Biol. 2019, 62, 147–160. [Google Scholar] [CrossRef]
- He, K.; Zhao, X.; Chi, X.; Wang, Y.; Jia, C.; Zhang, H.; Zhou, G.; Hu, R. A novel Miscanthus NAC transcription factor MlNAC10 enhances drought and salinity tolerance in transgenic Arabidopsis. J. Plant Physiol. 2019, 233, 84–93. [Google Scholar] [CrossRef]
- Al-Abdallat, A.M.; Ali-Sheikh-Omar, M.A.; Alnemer, L.M. Overexpression of two ATNAC3-related genes improves drought and salt tolerance in tomato (Solanum lycopersicum L.). Plant Cell Tissue Organ Cult. 2015, 120, 989–1001. [Google Scholar] [CrossRef]
- Ohtani, M.; Nishikubo, N.; Xu, B.; Yamaguchi, M.; Mitsuda, N.; Goue, N.; Shi, F.; Ohme-Takagi, M.; Demura, T. A NAC domain protein family contributing to the regulation of wood formation in poplar. Plant J. 2011, 67, 499–512. [Google Scholar] [CrossRef]
- Xu, H.; Yu, J.; You, L.; Xiao, S.; Nie, S.; Li, T.; Ye, G.; Lin, D. Drought Resistance Evaluation of Casuarina equisetifolia Half-Sib Families at the Seedling Stage and the Response of Five NAC Genes to Drought Stress. Forests 2022, 13, 2037. [Google Scholar] [CrossRef]
- Yan, H.; Han, J.; Jin, S.; Han, Z.; Si, Z.; Yan, S.; Xuan, L.; Yu, G.; Guan, X.; Fang, L.; et al. Post-polyploidization centromere evolution in cotton. Nat. Genet. 2025, 57, 1021–1030. [Google Scholar] [CrossRef] [PubMed]
- Gao, R.; Chen, L.; Chen, F.; Ma, H. Genome-wide identification of SHMT family genes in alfalfa (Medicago sativa) and its functional analyses under various abiotic stresses. BMC Genom. 2024, 25, 781. [Google Scholar] [CrossRef]
- Liu, J.; Geng, Z.; Zhao, G.; Li, M.; An, Z.; Zhang, H.; Wang, Y. Genome-wide analysis of the FKBP gene family and the potential role of GhFKBP 13 in chloroplast biogenesis in upland cotton. BMC Genom. 2025, 26, 125. [Google Scholar] [CrossRef]
- Lu, F.; Lipka, A.E.; Glaubitz, J.; Elshire, R.; Cherney, J.H.; Casler, M.D.; Buckler, E.S.; Costich, D.E. Switchgrass Genomic Diversity, Ploidy, and Evolution: Novel Insights from a Network-Based SNP Discovery Protocol. PLoS Genet. 2013, 9, e1003215. [Google Scholar] [CrossRef]
- Bu, Q.; Jiang, H.; Li, C.-B.; Zhai, Q.; Zhang, J.; Wu, X.; Sun, J.; Xie, Q.; Li, C. Role of the Arabidopsis thaliana NAC transcription factors ANAC019 and ANAC055 in regulating jasmonic acid-signaled defense responses. Cell Res. 2008, 18, 756–767. [Google Scholar] [CrossRef]
- Garcia-Morales, S.; Carlos Gomez-Merino, F.; Iris Trejo-Tellez, L. NAC transcription factor expression, amino acid concentration and growth of elite rice cultivars upon salt stress. Acta Physiol. Plant 2014, 36, 1927–1936. [Google Scholar] [CrossRef]
- Ding, N.; Zhao, Y.; Wang, W.; Liu, X.; Shi, W.; Zhang, D.; Chen, J.; Ma, S.; Sun, Q.; Wang, T.; et al. Transcriptome analysis in contrasting maize inbred lines and functional analysis of five maize NAC genes under drought stress treatment. Front. Plant Sci. 2023, 13, 1097719. [Google Scholar] [CrossRef] [PubMed]
- Valdivia, E.R.; Teresa Herrera, M.; Gianzo, C.; Fidalgo, J.; Revilla, G.; Zarra, I.; Sampedro, J. Regulation of secondary wall synthesis and cell death by NAC transcription factors in the monocot Brachypodium distachyon. J. Exp. Bot. 2013, 64, 1333–1343. [Google Scholar] [CrossRef] [PubMed]
- Diao, P.; Chen, C.; Zhang, Y.; Meng, Q.; Lv, W.; Ma, N. The role of NAC transcription factor in plant cold response. Plant Signal. Behav. 2020, 15, 1785668. [Google Scholar] [CrossRef]
- Zhu, G.; Chen, G.; Zhu, J.; Zhu, Y.; Lu, X.; Li, X.; Hu, Y.; Yan, Y. Molecular Characterization and Expression Profiling of NAC Transcription Factors in Brachypodium distachyon L. PLoS ONE 2015, 10, e0139794. [Google Scholar] [CrossRef] [PubMed]
- Su, H.; Zhang, S.; Yin, Y.; Zhu, D.; Han, L. Genome-wide analysis of NAM-ATAF1,2-CUC2 transcription factor family in Solanum lycopersicum. J. Plant Biochem. Biotechnol. 2015, 24, 176–183. [Google Scholar] [CrossRef]
- Su, H.; Zhang, S.; Yuan, X.; Chen, C.; Wang, X.-F.; Hao, Y.-J. Genome-wide analysis and identification of stress-responsive genes of the NAM-ATAF1,2-CUC2 transcription factor family in apple. Plant Physiol. Biochem. 2013, 71, 11–21. [Google Scholar] [CrossRef]
- Jensen, M.K.; Kjaersgaard, T.; Nielsen, M.M.; Galberg, P.; Petersen, K.; O’Shea, C.; Skriver, K. The Arabidopsis thaliana NAC transcription factor family: Structure-function relationships and determinants of ANAC019 stress signalling. Biochem. J. 2010, 426, 183–196. [Google Scholar] [CrossRef]
- Lu, X.; Zhang, X.; Duan, H.; Lian, C.; Liu, C.; Yin, W.; Xia, X. Three stress-responsive NAC transcription factors from Populus euphratica differentially regulate salt and drought tolerance in transgenic plants. Physiol. Plant. 2018, 162, 73–97. [Google Scholar] [CrossRef]
- Li, X.; Li, N.; Wen, D.; Yu, J.; Hong, J.; Wu, M.; Cheng, L.; Meng, S. Identification of Stress Responsive NAC Genes in Casuarina equisetifolia L. and Its Expression Analysis under Abiotic Stresses. Agronomy 2024, 14, 535. [Google Scholar] [CrossRef]
- An, F.; Yin, X.; Jueraiti, K.; Yang, Y.; Yan, Z.; Li, J.; Shan, D. Genome-Wide Identification, Characterization, and Expression Analysis of the NAC Transcription Factor Family in Sweet Cherry (Prunus avium L.). Plants 2025, 14, 1201. [Google Scholar] [CrossRef] [PubMed]
- Ling, L.; Li, M.; Chen, N.; Xie, X.; Han, Z.; Ren, G.; Yin, Y.; Jiang, H. Genome-Wide Identification of NAC Gene Family and Expression Analysis under Abiotic Stresses in Avena sativa. Genes 2023, 14, 1186. [Google Scholar] [CrossRef]
- Li, X.; Schmitz, R.J. Cis-regulatory dynamics in plant domestication. Trends Genet. 2025, 13, 59–69. [Google Scholar] [CrossRef] [PubMed]
- Wittkopp, P.J.; Kalay, G. Cis-regulatory elements: Molecular mechanisms and evolutionary processes underlying divergence. Nat. Rev. Genet. 2012, 13, 59–69. [Google Scholar] [CrossRef] [PubMed]
- Urda-García, B.; Sánchez-Valle, J.; Lepore, R.; Valencia, A. Patient stratification reveals the molecular basis of disease co-occurrences. Proc. Natl. Acad. Sci. USA 2025, 122, e2421060122. [Google Scholar] [CrossRef]
- Kikuchi, K.; Ueguchi-Tanaka, M.; Yoshida, K.T.; Nagato, Y.; Matsusoka, M.; Hirano, H.Y. Molecular analysis of the NAC gene family in rice. Mol. Gen. Genet. 2000, 262, 1047–1051. [Google Scholar] [CrossRef]
- Yang, Z.; Wang, J.; Huang, Y.; Wang, S.; Wei, L.; Liu, D.; Weng, Y.; Xiang, J.; Zhu, Q.; Yang, Z.; et al. CottonMD: A multi-omics database for cotton biological study. Nucleic Acids Res. 2023, 51, D1446–D1456. [Google Scholar] [CrossRef]
- Reiser, L.; Bakker, E.; Subramaniam, S.; Chen, X.; Sawant, S.; Khosa, K.; Prithvi, T.; Berardini, T.Z. The Arabidopsis Information Resource in 2024. Genetics 2024, 227, iyae027. [Google Scholar] [CrossRef]
- Chen, C.; Chen, H.; Zhang, Y.; Thomas, H.R.; Frank, M.H.; He, Y.; Xia, R. TBtools: An Integrative Toolkit Developed for Interactive Analyses of Big Biological Data. Mol. Plant 2020, 13, 1194–1202. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Chitsaz, F.; Derbyshire, M.K.; Gonzales, N.R.; Gwadz, M.; Lu, S.; Marchler, G.H.; Song, J.S.; Thanki, N.; Yamashita, R.A.; et al. The conserved domain database in 2023. Nucleic Acids Res. 2023, 51, D384–D388. [Google Scholar] [CrossRef]
- Blum, M.; Andreeva, A.; Florentino, L.C.; Chuguransky, S.R.; Grego, T.; Hobbs, E.; Pinto, B.L.; Orr, A.; Paysan-Lafosse, T.; Ponamareva, I.; et al. InterPro: The protein sequence classification resource in 2025. Nucleic Acids Res. 2025, 53, D444–D456. [Google Scholar] [CrossRef] [PubMed]
- Letunic, I.; Khedkar, S.; Bork, P. SMART: Recent updates, new developments and status in 2020. Nucleic Acids Res. 2021, 49, D458–D460. [Google Scholar] [CrossRef]
- Letunic, I.; Bork, P. Interactive Tree of Life (iTOL) v6: Recent updates to the phylogenetic tree display and annotation tool. Nucleic Acids Res. 2024, 52, W78–W82. [Google Scholar] [CrossRef]
- Chao, J.; Li, Z.; Sun, Y.; Aluko, O.O.; Wu, X.; Wang, Q.; Liu, G. MG2C: A user-friendly online tool for drawing genetic maps. Mol. Hortic. 2021, 1, 16. [Google Scholar] [CrossRef] [PubMed]
- Bailey, T.L.; Johnson, J.; Grant, C.E.; Noble, W.S. The MEME Suite. Nucleic Acids Res. 2015, 43, W39–W49. [Google Scholar] [CrossRef]
- Lescot, M.; Déhais, P.; Thijs, G.; Marchal, K.; Moreau, Y.; Van de Peer, Y.; Rouzé, P.; Rombauts, S. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res. 2002, 30, 325–327. [Google Scholar] [CrossRef]
- Zhang, T.; Hu, Y.; Jiang, W.; Fang, L.; Guan, X.; Chen, J.; Zhang, J.; Saski, C.A.; Scheffler, B.E.; Stelly, D.M.; et al. Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement. Nat. Biotechnol. 2015, 33, 531–537. [Google Scholar] [CrossRef]
- Fei, Z.; Ying, Z.; Xiang, G.; Jingru, W.; Yi, Z.; Baoshuan, S.; Xiao, Z. The GhNAC091-GhZAT12 module regulates cotton acclimation to excess light via ROS scavenging. New Crops 2025, 100085. [Google Scholar] [CrossRef]
- Wang, M.; Wang, Q.; Zhang, B. Evaluation and selection of reliable reference genes for gene expression under abiotic stress in cotton (Gossypium hirsutum L.). Gene 2013, 530, 44–50. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Fang, Y.; Zhang, K.; Zhai, Z.; Yang, Y.; He, M.; Cao, X. Applications of Virus-Induced Gene Silencing in Cotton. Plants 2024, 13, 272. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, J.; Meng, L.; Zhu, F.; Niu, J.; Zhang, G.; Wang, J.; Li, Z.; Wang, F.; Li, H. Genome-Wide Characterization of SNAC Gene Family in Ten Cotton Species and Function Analysis of GhSNAC3D Under Cold Stress. Plants 2025, 14, 2894. https://doi.org/10.3390/plants14182894
Fan J, Meng L, Zhu F, Niu J, Zhang G, Wang J, Li Z, Wang F, Li H. Genome-Wide Characterization of SNAC Gene Family in Ten Cotton Species and Function Analysis of GhSNAC3D Under Cold Stress. Plants. 2025; 14(18):2894. https://doi.org/10.3390/plants14182894
Chicago/Turabian StyleFan, Jiliang, Lu Meng, Faren Zhu, Jiahuan Niu, Ganggang Zhang, Junwei Wang, Zhonghui Li, Fei Wang, and Hongbin Li. 2025. "Genome-Wide Characterization of SNAC Gene Family in Ten Cotton Species and Function Analysis of GhSNAC3D Under Cold Stress" Plants 14, no. 18: 2894. https://doi.org/10.3390/plants14182894
APA StyleFan, J., Meng, L., Zhu, F., Niu, J., Zhang, G., Wang, J., Li, Z., Wang, F., & Li, H. (2025). Genome-Wide Characterization of SNAC Gene Family in Ten Cotton Species and Function Analysis of GhSNAC3D Under Cold Stress. Plants, 14(18), 2894. https://doi.org/10.3390/plants14182894