Effects of Plant Density and Fertilization on Agronomic Traits and Yield of Flax (Linum usitatissimum L.)
Abstract
1. Introduction
2. Results
2.1. Agronomic Characteristics
2.2. Yield and Yield Components
3. Discussion
4. Materials and Methods
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ACs | Alternative crops |
ALA | Alpha-linolenic acid |
N | Nitrogen |
NBPT | Thiophosphoricriamide |
DCD | Dicyandiamide |
PGPM | Plant growth promoting microorganisms |
TSW | Thousand seeds weight |
NI | Nitrification inhibitor |
UI | Urease inhibitor |
D | Density |
HI | Harvest index |
P | Phosphorus |
K | Potassium |
CaCO3 | Calcium carbonate |
SOM | Soil organic matter |
References
- Mall, R.K.; Gupta, A.; Sonkar, G. Effect of Climate Change on Agricultural Crops. In Current Developments in Biotechnology and Bioengineering, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 23–46. [Google Scholar]
- Kernasiuk, Y. Global climate crisis and its impact on the development of the agricultural sector of the Ukrainian economy. Ekon. APK 2021, 28, 91–101. [Google Scholar] [CrossRef]
- Lehner, P.H.; Rosenberg, N.A. The climate crisis and agriculture. Env’t L. Rep. 2022, 52, 10096. [Google Scholar]
- Jovović, Z.; Velimirović, A.; Yaman, N. Climate and Crop Production Crisis. In Agriculture and Water Management Under Climate Change, 1st ed.; Çetin, Ö., Ed.; Springer Nature: Cham, Switzerland, 2025; pp. 1–28. [Google Scholar]
- Fghire, R.; Anaya, F.; Lamnai, K.; Faghire, M. Alternative Crops as a Solution to Food Security under Climate Changes. In Nutrition and Human Health: Effects and Environmental Impacts; Chatoui, H., Merzouki, M., Moummou, H., Tilaoui, M., Saadaoui, N., Brhich, A., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 87–98. [Google Scholar]
- Bilalis, D.; Roussis, I.; Fuentes, F.; Kakabouki, I.; Travlos, I. Organic agriculture and innovative crops under Mediterranean conditions. Not. Bot. Horti Agrobot. 2017, 45, 323–331. [Google Scholar] [CrossRef]
- Sauer, P.A.; Sullivan, P. Alternative Agronomic Crops, 2nd ed.; ATTRA: Fayetteville, AR, USA, 2000. [Google Scholar]
- Metz, B.; Davidson, O.R.; Bosch, P.R.; Dave, R.; Meyer, L.A. (Eds.) Climate Change 2007: Mitigation. In Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007. [Google Scholar]
- Isleib, J. Exploring Alternative Field Crops. Michigan State University Extension: East Lansing, MI, USA, 2012. Available online: https://www.canr.msu.edu/news/exploring_alternative_field_crops (accessed on 15 August 2025).
- Stavropoulos, P.; Mavroeidis, A.; Papadopoulos, G.; Roussis, I.; Bilalis, D.; Kakabouki, I. On the path towards a “Greener” EU: A Mini review on Flax (Linum usitatissimum L.) as a Case Study. Plants 2023, 12, 1102. [Google Scholar] [CrossRef] [PubMed]
- Sarfraz, H.; Ahmad, I.Z. A systematic review on the pharmacological potential of Linum usitatissimum L.: A significant nutraceutical plant. J. Herb. Med. 2023, 42, 100755. [Google Scholar] [CrossRef]
- Paliwal, S.; Tripathi, M.K.; Tiwari, S.; Tripathi, N.; Payasi, D.K.; Tiwari, P.N.; Singh, K.; Yadav, R.K.; Asati, R.; Chauhan, S. Molecular advances to combat different biotic and abiotic stresses in linseed (Linum usitatissimum L.): A comprehensive review. Genes 2023, 14, 1461. [Google Scholar] [CrossRef]
- Vaisey-Genser, M.; Morris, D.H. Introduction: History of the Cultivation and Uses of Flaxseed. In Flax: The Genus Linum; Muir, A.D., Westcott, N.D., Eds.; CRC Press: Boca Raton, FL, USA, 2003; pp. 13–33. [Google Scholar]
- Malik, K.; Ahmad, F.; Gunister, E.; Nakato, T.; Mouri, E.; Muhammad, M.B.; Ali, S. A review of flax fiber reinforced thermoset polymer composites: Structure and mechanical performance. J. Nat. Fibers 2022, 19, 9656–9680. [Google Scholar] [CrossRef]
- Das, S.C.; La Rosa, A.D.; Goutianos, S.; Grammatikos, S.A. Flax Fibers, Their Composites and Application. In Plant Fibers, Their Composites, and Applications; Woodhead Publishing: Cambridge, UK, 2022; pp. 209–232. [Google Scholar]
- Tang, Z.X.; Shi, L.E.; Wang, X.M.; Dai, G.W.; Cheng, L.A.; Wan, Z.X.; He, H.; Wu, Q.; Wang, Y.B.; Jin, X.Y.; et al. Whole flaxseed-based products and their health benefits. Food Sci. Technol. Res. 2020, 26, 561–578. [Google Scholar] [CrossRef]
- Nowak, W.; Jeziorek, M. The role of flaxseed in improving human health. Healthcare 2023, 11, 395. [Google Scholar] [CrossRef]
- Wang, N.; Liu, X.; Ma, Y.; Huang, X.; Song, L.; Guo, H.; Sun, X.; Sun, X.; Hai, D.; Zhao, P.; et al. Identification of polyphenol extracts from flaxseed and study on its bacteriostatic mechanism. Food Biosci. 2025, 58, 103618. [Google Scholar] [CrossRef]
- Shim, Y.Y.; Kim, J.H.; Cho, J.Y.; Reaney, M.J. Health benefits of flaxseed and its peptides (linusorbs). Crit. Rev. Food Sci. Nutr. 2024, 64, 1845–1864. [Google Scholar] [CrossRef] [PubMed]
- Kolodziejczyk, P.; Ozimek, L.; Kozłowska, J. The Application of Flax and Hemp Seeds in Food, Animal Feed and Cosmetics Production. In Handbook of Natural Fibres; Kozłowski, R.M., Ed.; Woodhead Publishing: Cambridge, UK, 2012; pp. 329–366. [Google Scholar]
- Yang, J.; Wen, C.; Duan, Y.; Deng, Q.; Peng, D.; Zhang, H.; Ma, H. The composition, extraction, analysis, bioactivities, bioavailability and applications in food system of flaxseed (Linum usitatissimum L.) oil: A review. Trends Food Sci. Technol. 2021, 118, 252–260. [Google Scholar] [CrossRef]
- Mueed, A.; Shibli, S.; Korma, S.A.; Madjirebaye, P.; Esatbeyoglu, T.; Deng, Z. Flaxseed bioactive compounds: Chemical composition, functional properties, food applications and health benefits-related gut microbes. Foods 2022, 11, 3307. [Google Scholar] [CrossRef]
- Al-Madhagy, S.; Ashmawy, N.S.; Mamdouh, A.; Eldahshan, O.A.; Farag, M.A. A comprehensive review of the health benefits of flaxseed oil in relation to its chemical composition and comparison with other omega-3-rich oils. Eur. J. Med. Res. 2023, 28, 240. [Google Scholar] [CrossRef]
- Noreen, S.; Tufail, T.; Bader Ul Ain, H.; Ali, A.; Aadil, R.M.; Nemat, A.; Manzoor, M.F. Antioxidant activity and phytochemical analysis of fennel seeds and flaxseed. Food Sci. Nutr. 2023, 11, 1309–1317. [Google Scholar] [CrossRef]
- Mavroeidis, A.; Roussis, I.; Kakabouki, I. The role of alternative crops in an upcoming global food crisis: A concise review. Foods 2022, 11, 3584. [Google Scholar] [CrossRef]
- Outzen, M.; Thomsen, S.T.; Andersen, R.; Jakobsen, L.S.; Jakobsen, M.U.; Nauta, M.; Ravn-Haren, G.; Sloth, J.J.; Pilegaard, K.; Poulsen, M. Evaluating the health impact of increased linseed consumption in the Danish population. Food Chem. Toxicol. 2024, 183, 114308. [Google Scholar] [CrossRef]
- Yuan, Q.; Xie, F.; Huang, W.; Hu, M.; Yan, Q.; Chen, Z.; Zheng, Y.; Liu, L. The review of alpha-linolenic acid: Sources, metabolism, and pharmacology. Phytother. Res. 2022, 36, 164–188. [Google Scholar] [CrossRef]
- Hussein, Z.E.H.; Silva, J.M.; Castro, M.C.; Borges, N.E.; Saqueti, B.H.F. Optimization of Almond Beverage Enriched with Omega-3 Fatty Acids by Adding Brown Flaxseeds (Linum usitatissimum L.) Using D-Optimal Mixing Diagram Method. Food Technol. Biotechnol. 2025, 63, 274–284. [Google Scholar] [CrossRef] [PubMed]
- Adorian, T.J.; Pianesso, D.; Bender, A.B.B.; Speroni, C.S.; Mombach, P.I.; Kowalski, É.A.; da Silva, L.P. Fractionation of linseed and obtaining ingredients rich in protein and fibers: Alternatives for animal feed. J. Sci. Food Agric. 2022, 102, 1514–1521. [Google Scholar] [CrossRef]
- Debnath, S. Flax Fibre Extraction to Textiles and Sustainability: A Holistic Approach. In Sustainable Fashion and Textiles in Latin America; Gardetti, M.A., Ed.; Springer: Singapore, 2021; pp. 73–85. [Google Scholar]
- Ye, X.P.; Xu, M.F.; Tang, Z.X.; Chen, H.J.; Wu, D.T.; Wang, Z.Y.; Songzhen, Y.X.; Hao, J.; Wu, L.M.; Shi, L.E. Flaxseed protein: Extraction, functionalities and applications. Food Sci. Technol. 2022, 42, e22021. [Google Scholar] [CrossRef]
- Rossini, F.; Casa, R. Influence of sowing and harvest time on fibre flax (Linum usitatissimum L.) in the Mediterranean environment. J. Agron. Crop Sci. 2003, 189, 191–196. [Google Scholar] [CrossRef]
- Lloveras, J.; Santiveri, F.; Gorchs, G. Hemp and flax biomass and fiber production and linseed yield in irrigated Mediterranean conditions. J. Ind. Hemp 2006, 11, 3–15. [Google Scholar] [CrossRef]
- Bilalis, D.; Karkanis, A.; Pantelia, A.; Patsiali, S.; Konstantas, A.; Efthimiadou, A. Weed populations are affected by tillage systems and fertilization practices in organic flax (Linum usitatissimum L.) crop. Aust. J. Crop Sci. 2012, 6, 157–163. [Google Scholar]
- Kakabouki, I.; Mavroeidis, A.; Tataridas, A.; Roussis, I.; Katsenios, N.; Efthimiadou, A.; Tigka, E.; Karydogianni, S.; Zisi, C.; Folina, A.; et al. Reintroducing flax (Linum usitatissimum L.) to the Mediterranean Basin: The importance of nitrogen fertilization. Plants 2021, 10, 1758. [Google Scholar] [CrossRef]
- El-Gedwy, E.S.M. Effect of nitrogen fertilizer rates and plant density on straw, fiber yield and anatomical manifestations of some flax cultivars. Ann. Agric. Sci. Moshtohor 2020, 58, 700–855. [Google Scholar] [CrossRef]
- Heller, K.; Sheng, Q.C.; Guan, F.; Alexopoulou, E.; Hua, L.S.; Wu, G.W.; Jankauskiene, Z.; Fu, W.Y. A comparative study between Europe and China in crop management of two types of flax: Linseed and fibre flax. Ind. Crops Prod. 2015, 68, 24–31. [Google Scholar] [CrossRef]
- Arslanoglu, Ş.F.; Sert, S.; Şahin, H.A.; Aytaç, S.; El Sabagh, A. Yield and yield criteria of flax fiber (Linum usititassimum L.) as influenced by different plant densities. Sustainability 2022, 14, 4710. [Google Scholar] [CrossRef]
- Dey, P.; Mahapatra, B.S.; Negi, M.S.; Singh, S.P.; Paul, J.; Pramanick, B. Seeding density and nutrient management practice influence yield; quality and nutrient use efficiency of flax grown under sub-tropical humid Himalayan tarai. Ind. Crops Prod. 2022, 178, 114616. [Google Scholar] [CrossRef]
- Wu, B.; Cui, Z.; Ma, L.; Li, X.; Wang, H.; Wang, Y.; Yan, B.; Dong, H.; Gao, Y. Effects of planting density—Potassium interaction on the coordination among the lignin synthesis, stem lodging resistance, and grain yield in oil flax. Agronomy 2023, 13, 2556. [Google Scholar] [CrossRef]
- Scarton, V.D.B.; Carvalho, I.R.; Bandeira, W.J.A.; Pradebon, L.C.; Sangiovo, J.P.; Loro, M.V.; Huth, C. Optimum sowing density arrangement to maximize linseed agronomic performance. Rev. Delos. 2023, 16, 2927–2940. [Google Scholar] [CrossRef]
- Al-Obady, R.F.; Shaker, A.T. Effect of sowing dates and compound fertilizer NPK on growth and yield of flax (Linum usitatissimum L.). Basrah J. Agric. Sci. 2022, 35, 185–198. [Google Scholar] [CrossRef]
- Li, Y.; Wu, B.; Gao, Y.; Wu, L.; Zhao, X.; Wu, L.; Zhou, H.; Tang, J. Combination of organic and inorganic fertilizers to counteract climate change effects on cultivation of oilseed flax (Linum usitatissimum L.) using the APSIM model in arid and semiarid environments. Agronomy 2023, 13, 2995. [Google Scholar] [CrossRef]
- Li, X.; Gao, Y.; Cui, Z.; Zhang, T.; Chen, S.; Xiang, S.; Jia, L.; Yan, B.; Wang, Y.; Guo, L.; et al. Optimized nitrogen and potassium fertilizers application increases stem lodging resistance and grain yield of oil flax by enhancing lignin biosynthesis. J. Integr. Agric. 2024, in press. [Google Scholar] [CrossRef]
- Cui, Z.; Yan, B.; Gao, Y.; Wu, B.; Wang, Y.; Wang, H.; Xu, P.; Zhao, B.; Cao, Z.; Zhang, Y.; et al. Agronomic cultivation measures on productivity of oilseed flax: A review. Oppor. Chall. Sustain. 2022, 7, 53–62. [Google Scholar] [CrossRef]
- Afshar, R.K.; Lin, R.; Mohammed, Y.A.; Chen, C. Agronomic effects of urease and nitrification inhibitors on ammonia volatilization and nitrogen utilization in a dryland farming system: Field and laboratory investigation. J. Clean. Prod. 2018, 172, 4130–4139. [Google Scholar] [CrossRef]
- Skorupka, M.; Nosalewicz, A. Ammonia volatilization from fertilizer urea—A new challenge for agriculture and industry in view of growing global demand for food and energy crops. Agriculture 2021, 11, 822. [Google Scholar] [CrossRef]
- Swify, S.; Mažeika, R.; Baltrusaitis, J.; Drapanauskaitė, D.; Barčauskaitė, K. Modified urea fertilizers and their effects on improving nitrogen use efficiency (NUE). Sustainability 2023, 16, 188. [Google Scholar] [CrossRef]
- Karagöz, İ. Fertilization and fertilizer types. In Applied Soil Chemistry; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2021; pp. 123–148. [Google Scholar]
- Xia, M.; Mao, C.; Gu, A.; Tountas, A.A.; Qiu, C.; Wood, T.E.; Li, Y.F.; Ulmer, U.; Xu, Y.; Viasus, J.C.; et al. Solar urea: Towards a sustainable fertilizer industry. Angew. Chem. 2022, 134, e202110158. [Google Scholar] [CrossRef]
- Motasim, A.M.; Samsuri, A.W.; Nabayi, A.; Akter, A.; Haque, M.A.; Abdul Sukor, A.S.; Adibah, A.M. Urea application in soil: Processes, losses, and alternatives—A review. Discov. Agric. 2024, 2, 42. [Google Scholar] [CrossRef]
- Gastal, F.; Lemaire, G.; Durand, J.L.; Louarn, G. Quantifying Crop Responses to Nitrogen and Avenues to Improve Nitrogen-Use Efficiency. In Crop Physiology; Sadras, V.O., Calderini, D.F., Eds.; Academic Press: London, UK, 2015; pp. 161–206. [Google Scholar]
- Srivastavaa, N.; Agnihotrib, N. Excessive use of urea is responsible for nitrogen pollution in India: A systematic review. Biopsectra 2022, 17, 83–88. [Google Scholar]
- Masjedi, S.K.; Kazemi, A.; Moeinnadini, M.; Khaki, E.; Olsen, S.I. Urea production: An absolute environmental sustainability assessment. Sci. Total Environ. 2024, 908, 168225. [Google Scholar] [CrossRef]
- Byrne, M.P.; Tobin, J.T.; Forrestal, P.J.; Danaher, M.; Nkwonta, C.G.; Richards, K.; Cummins, E.; Hogan, S.A.; O’Callaghan, T.F. Urease and nitrification inhibitors—As mitigation tools for greenhouse gas emissions in sustainable dairy systems: A review. Sustainability 2020, 12, 6018. [Google Scholar] [CrossRef]
- Torralbo, F.; Boardman, D.; Houx, J.H., III; Fritschi, F.B. Distinct enhanced efficiency urea fertilizers differentially influence ammonia volatilization losses and maize yield. Plant Soil 2022, 475, 551–563. [Google Scholar] [CrossRef]
- Snyder, C.S. Enhanced nitrogen fertiliser technologies support the ‘4R’concept to optimise crop production and minimise environmental losses. Soil Res. 2017, 55, 463–472. [Google Scholar] [CrossRef]
- Klimczyk, M.; Siczek, A.; Schimmelpfennig, L. Improving the efficiency of urea-based fertilization leading to reduction in ammonia emission. Sci. Total Environ. 2021, 771, 145483. [Google Scholar] [CrossRef]
- Mureșan, C.; Russu, F.; Ghețe, A.; Popescu, M.; Urdă, C.; Cindea, M.D.; Ionescu, N.; Duda, M.M.; Bartha, S. The Influence of Green Manures on Production and Quality of Flax Seeds. Rom. Agric. Res. 2021, 38, 292–299. [Google Scholar] [CrossRef]
- Fallah, M.; Hadi, H.; Amirnia, R.; Hasanzadeh Gorttapeh, A. Effect of green manure residues and fertilizer sources on agro-physiological characteristics of flax seed in irrigation termination at flowering stage. J. Crop Improv. 2021, 23, 141–154. [Google Scholar]
- Xu, P.; Gao, Y.; Cui, Z.; Wu, B.; Yan, B.; Wang, Y.; Wen, M.; Wang, H.; Ma, X.; Wen, Z. Application of organic fertilizers optimizes water consumption characteristics and improves seed yield of oilseed flax in semi-arid areas of the Loess Plateau. Agronomy 2023, 13, 1755. [Google Scholar] [CrossRef]
- Ma, X.; Gao, Y.; Wu, B.; Ma, X.; Wang, Y.; Yan, B.; Cui, Z.; Wen, M.; Zhang, X.; Wang, H. Organic Manure Significantly Promotes the Growth of Oilseed Flax and Improves Its Grain Yield in Dry Areas of the Loess Plateau of China. Agronomy 2023, 13, 2304. [Google Scholar] [CrossRef]
- Ma, X.; Gao, Y.; Ma, X.; Wu, B.; Yan, B.; Li, Y.; Wang, Y.; Xu, P.; Wen, M.; Wang, H.; et al. Effect of Different Types of Organic Manure on Oil and Fatty Acid Accumulation and Desaturase Gene Expression of Oilseed Flax in the Dry Areas of the Loess Plateau of China. Agronomy 2024, 14, 381. [Google Scholar] [CrossRef]
- Omer, A.M.; Osman, M.S.; Badawy, A.A. Inoculation with Azospirillum brasilense and/or Pseudomonas geniculata reinforces flax (Linum usitatissimum) growth by improving physiological activities under saline soil conditions. Bot. Stud. 2022, 63, 15. [Google Scholar] [CrossRef]
- Dmitrevskaya, I.I.; Grigoryeva, M.V.; Belopukhov, S.L.; Zharkikh, O.A.; Seregina, I.I.; Osipova, A.V. Influence of new phytoregulators on oilseed flax growth, development, yielding capacity, and product quality. Braz. J. Biol. 2022, 82, e264870. [Google Scholar] [CrossRef]
- Mourouzidou, S.; Ntinas, G.K.; Tsaballa, A.; Monokrousos, N. Introducing the power of plant growth promoting microorganisms in soilless systems: A promising alternative for sustainable agriculture. Sustainability 2023, 15, 5959. [Google Scholar] [CrossRef]
- Del Valle, M.; Cámara, M.; Torija, M.E. Chemical characterization of tomato pomace. J. Sci. Food Agric. 2006, 86, 1232–1236. [Google Scholar] [CrossRef]
- Achmon, Y.; Harrold, D.R.; Claypool, J.T.; Stapleton, J.J.; VanderGheynst, J.S.; Simmons, C.W. Assessment of tomato and wine processing solid wastes as soil amendments for biosolarization. Waste Manag. 2016, 48, 156–164. [Google Scholar] [CrossRef] [PubMed]
- Kakabouki, I.; Roussis, I.; Krokida, M.; Mavroeidis, A.; Stavropoulos, P.; Karydogianni, S.; Beslemes, D.; Tigka, E. Comparative Study Effect of Different Urea Fertilizers and Tomato Pomace Composts on the Performance and Quality Traits of Processing Tomato (Lycopersicon esculentum Mill.). Plants 2024, 13, 1852. [Google Scholar] [CrossRef] [PubMed]
- Khaveh, M.T.; Alahdadi, I.; Hoseinzadeh, B.E. Effect of slow-release nitrogen fertilizer on morphologic traits of corn (Zea mays L.). J. Bus. Econ. Stat. 2015, 6, 546–559. [Google Scholar]
- Kakabouki, I.; Efthimiadou, A.; Folina, A.; Zisi, C.; Karydogianni, S. Effect of different tomato pomace compost as organic fertilizer in sweet maize crop. Commun. Soil. Sci. Plant Anal. 2020, 51, 2858–2872. [Google Scholar] [CrossRef]
- Abdulazeez, S.D.; Salih, R.F. Growth and yield of linseed (Linum usitatissimum L.) enhanced through adding organic and inorganic fertilizers. J. Med. Ind. Plants 2025, 3, 80–89. [Google Scholar] [CrossRef]
- Wu, Q.; Wang, Y.-H.; Ding, Y.-F.; Tao, W.-K.; Gao, S.; Li, Q.-X.; Li, W.-W.; Liu, Z.-H.; Li, G.-H. Effects of different types of slow-and controlled-release fertilizers on rice yield. Integr. Agric. 2021, 20, 1503–1514. [Google Scholar]
- Soethe, G.; Feiden, A.; Bassegio, D.; Santos, R.F.; de Souza, S.N.M.; Secco, D. Sources and rates of nitrogen in the cultivation of flax. Afr. J. Agric. Res. 2013, 8, 2249–2254. [Google Scholar] [CrossRef]
- Abdel-Kader, E.M.A.; Mousa, A.M.A. Effect of nitrogen fertilizer on some flax varieties under two different location conditions. J. Plant Prod. 2019, 10, 37–44. [Google Scholar] [CrossRef]
- Rajanna, B.; Gangaprasad, S.; Shanker, G.I.; Dushyantha, K.B.M.; Girjesh, G.K.; Sathish, K.M. Genetic variability, heritability, and genetic advance of yield components and oil quality parameters in linseed (Linum usitatissimum L.). Int. J. Chem. Stud. 2020, 8, 1768–1771. [Google Scholar] [CrossRef]
- Cheng, B.; Wang, J.; Zhang, H.-M.; Liu, H.; A, B.-y.-s.; Ge, N.; Liu, J.-F.; Feng, T. Biology organic fertilizer affects the quality and yield of flax under different irrigation regumes. Pak. J. Agric. Sci. 2023, 60, 429–436. [Google Scholar] [CrossRef]
- Kakabouki, I.; Folina, A.; Efthimiadou, A.; Karydogianni, S.; Zisi, C.; Kouneli, V.; Kapsalis, N.C.; Katsenios, N.; Travlos, I. Evaluation of processing tomato pomace after composting on soil properties, yield, and quality of processing tomato in Greece. Agronomy 2021, 11, 88. [Google Scholar] [CrossRef]
- Ghafoor, I.; Habib-ur-Rahman, M.; Ali, M.; Afzal, M.; Ahmed, W.; Gaiser, T.; Ghaffar, A. Slow-release nitrogen fertilizers enhance growth, yield, NUE in wheat crop and reduce nitrogen losses under an arid environment. Environ. Sci. Pollut. Res. Int. 2021, 28, 43528–43543. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.B.; Yasir, T.A.; Aman, M. Growth and yield comparison of different linseed (Linum usitatissimum L.) genotypes planted at different row spacing. J. Agric. Biol. 2005, 7, 515–517. [Google Scholar]
- Chen, J.; Ye, C.L.; Li, J.J.; Luo, J.J.; Yan, X.C.; Wang, W.; Wang, L. Effect of seeding rate+ fertilization amount on the growth, yield and harvest index of flax under water stress. J. Agric. Sci. Technol. 2022, 22, 139–148. [Google Scholar]
- Angelopoulou, F.; Tsiplakou, E.; Bilalis, D. Tillage intensity and compost application effects on organically grown camelina productivity, seed and oil quality. Not. Bot. Horti Agrobot. 2020, 48, 2153–2166. [Google Scholar] [CrossRef]
- Mitra, S.; Adhikary, B.; Islam, S.; Nag, S.K.; Alam, N.M.; Mazumdar, S.P.; Kumar, M.; Kumar Singh, A.; Datta, D.; Souvar Kar, C.; et al. Changes in seed yield and oil quality of flax (Linum usitatissimum L.) for industrial use in response to nitrogen and potassium fertilization. Arch. Agron. Soil Sci. 2023, 69, 3619–3636. [Google Scholar] [CrossRef]
- El-Seidy, E.S.; Abou-Zied, T.; Hassan, A.; Assar, E.M. Effect of plant densities and genotypes on flax agronomic traits. 2-seed yield, oil yield, fiber yield and its components. J. Prod. Dev. 2009, 14, 129–145. [Google Scholar] [CrossRef]
- Jogić, V.; Džafić, S.; Nikitović, J. Effects of fertilization on the fatty acid content of oil flax. Int. J. Adv. Agric. Sci. Technol. 2018, 5, 21–27. [Google Scholar]
Height (cm) | Dry Weight (g plant−1) | Number of Capsules | ||||
---|---|---|---|---|---|---|
Density | ||||||
Fertilization | D1 | D2 | D1 | D2 | D1 | D2 |
C | 56.18 ± 0.28 a | 56.14 ± 0.66 a | 1.14 ± 0.1 a | 1.69 ± 0.13 a | 13.11 ± 0.91 a | 15.38 ± 1.19 a |
I | 64.26 ± 0.35 c | 64.47 ± 0.18 c | 1.38 ± 0.15 ab | 2.43 ± 0.11 bc | 16.95 ± 0.52 b | 19.48 ± 0.33 b |
O | 62.61 ± 0.17 b | 61.53 ± 0.37 b | 1.36 ± 0.11 ab | 2.1 ± 0.21 b | 15.58 ± 0.32 b | 17.72 ± 0.57 ab |
U | 64.86 ± 0.11 c | 64.52 ± 0.31 c | 1.48 ± 0.07 b | 2.64 ± 0.08 c | 16.14 ± 0.9 b | 18.94 ± 1.33 b |
FYEAR | 0.01 ns | 1.49 ns | 2.43 ns | |||
FDENSITY | 1.4 ns | 99.50 *** | 14.84 ** | |||
FFERTILIZATION | 222.13 *** | 9.93 *** | 7.53 ** | |||
FY×D | 0 ns | 2.86 ns | 0.05 ns | |||
FY×F | 0.16 ns | 0.94 ns | 0.05 ns | |||
FD×F | 1.11 ns | 2.56 ns | 0.05 ns | |||
FY×D×F | 0.07 ns | 0.89 ns | 0.04 ns |
Dry Weight (g plant−1) | Number of Capsules | Thousand Seeds Weight (g) | ||||
---|---|---|---|---|---|---|
Density | ||||||
Fertilization | D1 | D2 | D1 | D2 | D1 | D2 |
C | 1.14 ± 0.1 a | 1.69 ± 0.13 b | 13.11 ± 0.91 ns | 15.38 ± 1.19ns | 4.99 ± 0.14a | 5.72 ± 0.31b |
I | 1.38 ± 0.15 a | 2.43 ± 0.11 b | 16.95 ± 0.52 a | 19.48 ± 0.33b | 7.03 ± 0.19ns | 7.28 ± 0.15ns |
O | 1.36 ± 0.11 a | 2.1 ± 0.21 b | 15.58 ± 0.32 a | 17.72 ± 0.57b | 6.42 ± 0.37ns | 6.83 ± 0.08ns |
U | 1.48 ± 0.07 a | 2.64 ± 0.08 b | 16.14 ± 0.9 ns | 18.94 ± 1.33ns | 6 ± 0.13ns | 6.23 ± 0.08ns |
FYEAR | 1.49 ns | 2.43 ns | 0.76 ns | |||
FDENSITY | 99.50 *** | 14.84 ** | 6.67 * | |||
FFERTILIZATION | 9.93 *** | 7.53 ** | 23.57 *** | |||
FY×D | 2.86 ns | 0.05 ns | 0.04 ns | |||
FY×F | 0.94 ns | 0.05 ns | 0.04 ns | |||
FD×F | 2.56 ns | 0.05 ns | 0.55 ns | |||
FY×D×F | 0.89 ns | 0.04 ns | 0.06 ns |
Seeds per Capsule | Thousand Seeds Weight (g) | |||
---|---|---|---|---|
Density | ||||
Fertilization | D1 | D2 | D1 | D2 |
C | 9.29 ± 0.24 ns | 9.31 ± 0.15 ns | 4.99 ± 0.14 a | 5.72 ± 0.31 a |
I | 9.78 ± 0.11 ns | 9.85 ± 0.11 ns | 7.03 ± 0.19 c | 7.28 ± 0.15 b |
O | 9.38 ± 0.15 ns | 9.43 ± 0.15 ns | 6.42 ± 0.37 bc | 6.83 ± 0.08 b |
U | 9.71 ± 0.17 ns | 9.87 ± 0.45 ns | 6 ± 0.13 b | 6.23 ± 0.08 a |
FYEAR | 0.23 ns | 0.76 ns | ||
FDENSITY | 0.21 ns | 6.67 * | ||
FFERTILIZATION | 2.50 ns | 23.57 *** | ||
FY×D | 0.37 ns | 0.04 ns | ||
FY×F | 0.13 ns | 0.04 ns | ||
FD×F | 0.04 ns | 0.55 ns | ||
FY×D×F | 0.24 ns | 0.06 ns |
Oil Content (%) | ||
---|---|---|
Density | ||
Fertilization | D1 | D2 |
C | 26.51 ± 1 a | 27.4 ± 0.94 a |
I | 38.18 ± 0.71 b | 39.2 ± 0.58 b |
O | 37.39 ± 0.29 b | 38.18 ± 0.76 b |
U | 39.23 ± 0.95 b | 38.71 ± 0.64 b |
FYEAR | 0.12 ns | |
FDENSITY | 0.87 ns | |
FFERTILIZATION | 97.08 *** | |
FY×D | 0.10 ns | |
FY×F | 0.31 ns | |
FD×F | 0.37 ns | |
FY×D×F | 0.11 ns |
Height | Dry Weight | Number of Capsules | Seeds per Capsule | TSW | Yield | HI | Oil Content | Oil Yield | |
---|---|---|---|---|---|---|---|---|---|
Height | 0.30 ** | 0.39 *** | 0.27 ** | 0.52 *** | 0.37 *** | 0.37 *** | 0.82 *** | 0.75 *** | |
Dry weight | 0.39 *** | 0.12 ns | 0.33 *** | 0.02 ns | 0.35 *** | 0.34 *** | 0.23 * | ||
Number of capsules | 0.04 ns | 0.31 ** | 0.10 ns | 0.35 *** | 0.40 *** | 0.33 ** | |||
Seeds per capsule | 0.15 ns | 0.16 ns | 0.02 ns | 0.24 * | 0.27 * | ||||
TSW | 0.19 ns | 0.45 *** | 0.58 *** | 0.49 *** | |||||
Yield | 0.27 ** | 0.19 * | 0.81 *** | ||||||
HI | 0.36 *** | 0.41 *** | |||||||
Oil content | 0.72 *** | ||||||||
Oil yield |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stavropoulos, P.; Mavroeidis, A.; Folina, A.; Roussis, I.; Kallergi, S.; Karydogianni, S.; Papadopoulos, G.; Kakabouki, I. Effects of Plant Density and Fertilization on Agronomic Traits and Yield of Flax (Linum usitatissimum L.). Plants 2025, 14, 2891. https://doi.org/10.3390/plants14182891
Stavropoulos P, Mavroeidis A, Folina A, Roussis I, Kallergi S, Karydogianni S, Papadopoulos G, Kakabouki I. Effects of Plant Density and Fertilization on Agronomic Traits and Yield of Flax (Linum usitatissimum L.). Plants. 2025; 14(18):2891. https://doi.org/10.3390/plants14182891
Chicago/Turabian StyleStavropoulos, Panteleimon, Antonios Mavroeidis, Antigolena Folina, Ioannis Roussis, Stavroula Kallergi, Stella Karydogianni, George Papadopoulos, and Ioanna Kakabouki. 2025. "Effects of Plant Density and Fertilization on Agronomic Traits and Yield of Flax (Linum usitatissimum L.)" Plants 14, no. 18: 2891. https://doi.org/10.3390/plants14182891
APA StyleStavropoulos, P., Mavroeidis, A., Folina, A., Roussis, I., Kallergi, S., Karydogianni, S., Papadopoulos, G., & Kakabouki, I. (2025). Effects of Plant Density and Fertilization on Agronomic Traits and Yield of Flax (Linum usitatissimum L.). Plants, 14(18), 2891. https://doi.org/10.3390/plants14182891