Estimation of Nitrogen Concentration in Winter Wheat Leaves Based on a Novel Spectral Index and Machine Learning Model
Abstract
1. Introduction
2. Results
2.1. Correlation Analysis Between Spectral Parameters and Nitrogen Concentration in Winter Wheat Leaves
2.2. Construction of a Model for Estimating Nitrogen Concentration in Winter Wheat Leaves
3. Discussion
4. Materials and Methods
4.1. Research Area and Test Design
4.2. Data Collection and Preprocessing
4.2.1. Hyperspectral Data Acquisition
4.2.2. Leaf Nitrogen Concentration Acquisition
4.2.3. Spectral Data Preprocessing
4.3. Selection and Construction of Spectral Parameters
- (1)
- Empirical Spectral Indices (SIs): Seven well-established indices (e.g., DDI, RDVI) with proven correlations to crop physiological and growth parameters were selected, calculated strictly according to references (Table 4).
- (2)
- Two-Dimensional Optimal Spectral Indices (2D-OSI): Optimal two-band combinations (Rᵢ, Rⱼ) were identified via a bivariate correlation-matrix approach, calculated strictly according to references (Table 5).
- (3)
- Three-Dimensional Optimal Spectral Indices (3D-OSI): The 3D-OSI is an extension of the 2D-OSI that introduces an additional dimension to better capture complex relationships among multiple spectral bands (Rᵢ, Rⱼ, Rk). By explicitly modeling interactions among bands, 3D indices represent a broader range of spectral information and improve the sensitivity and accuracy of remote-sensing models, the formula used is “inspired” by common formulas such as NDSI (Table 6).
4.4. Model Methods
- (1)
- RF: Model convergence was assessed using out-of-bag (OOB) error. The number of trees was set to 100, and node splitting was based on the Gini impurity criterion [8].
- (2)
- ELM: A sigmoid activation function was used in the hidden layer. Input-to-hidden weights (aᵢ) and biases (bᵢ) were randomly initialized in the range [–1, 1]. Monte Carlo simulations (n = 50) determined that 1000 hidden-layer neurons balanced accuracy and computational efficiency [38].
- (3)
- BPNN: A single hidden layer with hyperbolic tangent (TANSIG) transfer functions was trained using the Levenberg–Marquardt algorithm (TrainLM). A grid search—varying hidden-layer neuron count from 15 to 120 in steps of 15—identified 15 neurons as optimal, yielding rapid convergence (R2 > 0.90) [23].
4.5. Sample Set Division and Model Evaluation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhu, G.; Zhao, C.; Zhou, L.; Li, Z.; Zhu, H. Winter wheat yield prediction at a county scale using time series variation features of remote sensing spectra and machine learning. Eur. J. Agron. 2025, 170, 127751. [Google Scholar] [CrossRef]
- Adil, M.; Wang, Z.; Chen, Y.; Lu, H.; Lu, S.; Bashir, S.; Gul, I.; Li, H.; Han, Z.; Feng, W. Long-term impacts of agronomic practices on winter wheat yield, water use efficiency, and nitrogen use efficiency in global dryland regions: A meta-analysis. Soil Tillage Res. 2025, 253, 106653. [Google Scholar] [CrossRef]
- Li, H.; Liu, N.; Shao, L.; Liu, X.; Sun, H.; Chen, S.; Zhang, X. Changes in root growth and water uptake contribute to the yield and water productivity improvement in winter wheat during the past three decades: A case study in the North China plain. Agric. Water Manag. 2025, 313, 109482. [Google Scholar] [CrossRef]
- Gu, H.; Wang, Y.; Peruzzo, L.; Li, B.; Lu, Y.; Liu, X. Linking winter wheat (Triticum aestivum L.) root traits and root water uptake with electrical resistivity tomography. Agric. Water Manag. 2025, 307, 109247. [Google Scholar] [CrossRef]
- Yuan, M.; Shangguan, X.; Wang, X.; Wei, S.; Li, B.; Liu, Z.; Zong, R.; Fan, Y.; Li, Q. Subsoiling tillage increases water-use efficiency of winter wheat by improving soil hydraulic properties associated with pore structure in the North China plain. Crop J. 2025, 13, 1291–1300. [Google Scholar] [CrossRef]
- Feng, W.; Zhang, H.; Zhang, Y.; Qi, S.; Heng, Y.; Guo, B.; Ma, D.; Guo, T. Remote detection of canopy leaf nitrogen concentration in winter wheat by using water resistance vegetation indices from in-situ hyperspectral data. Field Crops Res. 2016, 198, 238–246. [Google Scholar] [CrossRef]
- Duan, D.; Zhao, C.; Li, Z.; Yang, G.; Yang, W. Estimating total leaf nitrogen concentration in winter wheat by canopy hyperspectral data and nitrogen vertical distribution. J. Integr. Agric. 2019, 18, 1562–1570. [Google Scholar] [CrossRef]
- Tang, Z.; Wang, X.; Xiang, Y.; Liang, J.; Guo, J.; Li, W.; Lu, J.; Du, R.; Li, Z.; Zhang, F. Application of hyperspectral technology for leaf function monitoring and nitrogen nutrient diagnosis in soybean (Glycine max L.) Production systems on the loess plateau of China. Eur. J. Agron. 2024, 154, 127098. [Google Scholar] [CrossRef]
- Huang, S.; Ma, C.; Qiu, X.; Du, J.; Yu, L.; Liu, C.; Yang, W.; Sun, X. Role of leaf nitrogen allocation under heterogeneous light in supporting photosynthetic compensation via optimizing carbon assimilation. Plant Physiol. Biochem. 2025, 226, 110053. [Google Scholar] [CrossRef]
- Tang, Z.; Cai, Y.; Xiang, Y.; Lu, J.; Sun, T.; Shi, H.; Liu, X.; Zhang, X.; Li, Z.; Zhang, F. Nitrogen nutritional diagnosis of summer maize (Zea mays L.) based on a hyperspectral data collaborative approach-evaluation of the estimation potential of three-dimensional spectral indices. Comput. Electron. Agric. 2025, 229, 109713. [Google Scholar] [CrossRef]
- Yang, T.; Zhao, J.; Hong, M.; Ma, M.; Ma, S.; Yuan, Y. Optimizing water and nitrogen supply can regulate the dynamics of dry matter accumulation in maize, thereby promoting dry matter accumulation and increasing yield. Field Crop Res. 2025, 326, 109837. [Google Scholar] [CrossRef]
- Zhang, Y.; Tang, Y.; Wang, Z.; Feng, S.; Wang, F.; Hu, Y. Optimizing nitrogen and irrigation application for drip irrigated sweet potato with plastic film mulching in eastern China. Agric. Water Manag. 2024, 302, 108997. [Google Scholar] [CrossRef]
- Pei, S.; Zeng, H.; Dai, Y.; Bai, W.; Fan, J. Nitrogen nutrition diagnosis for cotton under mulched drip irrigation using unmanned aerial vehicle multispectral images. J. Integr. Agric. 2023, 22, 2536–2552. [Google Scholar] [CrossRef]
- Li, C.; Yang, B.; Zhang, G.; Xu, L.; Jiao, Y.; Cai, T.; Zhou, L. Collaboration of hyperspectral data and generative adversarial networks for improved nitrogen nutrition diagnosis and nitrogen requirement estimation in winter wheat. Smart Agric. Technol. 2025, 12, 101112. [Google Scholar] [CrossRef]
- He, L.; Zhang, H.; Zhang, Y.; Song, X.; Feng, W.; Kang, G.; Wang, C.; Guo, T. Estimating canopy leaf nitrogen concentration in winter wheat based on multi-angular hyperspectral remote sensing. Eur. J. Agron. 2016, 73, 170–185. [Google Scholar] [CrossRef]
- Zhang, W.; Li, Z.; Pu, Y.; Zhang, Y.; Tang, Z.; Fu, J.; Xu, W.; Xiang, Y.; Zhang, F. Estimation of the leaf area index of winter rapeseed based on hyperspectral and machine learning. Sustainability 2023, 15, 12930. [Google Scholar] [CrossRef]
- Chen, X.; Li, F.; Chang, Q.; Miao, Y.; Yu, K. Improving winter wheat plant nitrogen concentration prediction by combining proximal hyperspectral sensing and weather information with machine learning. Comput. Electron. Agric. 2025, 232, 110072. [Google Scholar] [CrossRef]
- Guo, B.; Feng, Y.; Ma, C.; Zhang, J.; Song, X.; Wang, M.; Sheng, D.; Feng, W.; Jiao, N. Suitability of different multivariate analysis methods for monitoring leaf n accumulation in winter wheat using in situ hyperspectral data. Comput. Electron. Agric. 2022, 198, 107115. [Google Scholar] [CrossRef]
- Wang, D.; Li, R.; Liu, T.; Liu, S.; Sun, C.; Guo, W. Combining vegetation, color, and texture indices with hyperspectral parameters using machine-learning methods to estimate nitrogen concentration in rice stems and leaves. Field Crops Res. 2023, 304, 109175. [Google Scholar] [CrossRef]
- Wan, L.; Zhou, W.; He, Y.; Wanger, T.C.; Cen, H. Combining transfer learning and hyperspectral reflectance analysis to assess leaf nitrogen concentration across different plant species datasets. Remote Sens. Environ. 2022, 269, 112826. [Google Scholar] [CrossRef]
- Sun, T.; Li, Z.; Wang, Z.; Liu, Y.; Zhu, Z.; Zhao, Y.; Xie, W.; Cui, S.; Chen, G.; Yang, W.; et al. Monitoring of nitrogen concentration in soybean leaves at multiple spatial vertical scales based on spectral parameters. Plants 2024, 13, 140. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Jákli, B.; Lu, P.; Ren, T.; Ming, J.; Liu, S.; Wang, S.; Lu, J. Assessing leaf nitrogen concentration of winter oilseed rape with canopy hyperspectral technique considering a non-uniform vertical nitrogen distribution. Ind. Crops Prod. 2018, 116, 1–14. [Google Scholar] [CrossRef]
- Tang, Z.; Guo, J.; Xiang, Y.; Lu, X.; Wang, Q.; Wang, H.; Cheng, M.; Wang, H.; Wang, X.; An, J.; et al. Estimation of leaf area index and above-ground biomass of winter wheat based on optimal spectral index. Agronomy 2022, 12, 1729. [Google Scholar] [CrossRef]
- Geng, J.; Lv, J.; Pei, J.; Liao, C.; Tan, Q.; Wang, T.; Fang, H.; Wang, L. Prediction of soil organic carbon in black soil based on a synergistic scheme from hyperspectral data: Combining fractional-order derivatives and three-dimensional spectral indices. Comput. Electron. Agric. 2024, 220, 108905. [Google Scholar] [CrossRef]
- Zhu, G.; Wang, Q.; Zhang, S.; Guo, T.; Liu, S.; Lu, J. A meta-analysis of crop leaf nitrogen, phosphorus and potassium content estimation based on hyperspectral and multispectral remote sensing techniques. Field Crops Res. 2025, 329, 109961. [Google Scholar] [CrossRef]
- Rawat, K.S.; Jeyakumar, L.; Singh, S.K.; Tripathi, V.K. Appraisal of groundwater with special reference to nitrate using statistical index approach. Groundwater Sustain. Dev. 2019, 8, 49–58. [Google Scholar] [CrossRef]
- Sun, Y.; Qin, Q.; Zhang, Y.; Ren, H.; Han, G.; Zhang, Z.; Zhang, T.; Wang, B. A leaf chlorophyll vegetation index with reduced LAI effect based on sentinel-2 multispectral red-edge information. Comput. Electron. Agric. 2025, 236, 110500. [Google Scholar] [CrossRef]
- Wen, C.; Zhang, X.; Chen, W.; Li, J.; Ding, L.; Yang, S. The effect of temperature on carbon, nitrogen elements, and chlorophyll-a content in harmful algal blooms and their role in marine carbon and nitrogen cycles. Mar. Environ. Res. 2025, 205, 106978. [Google Scholar] [CrossRef]
- Abukassem, I.; Bero, M.A. Spectral response of radiochromic gel detector in the near-ultraviolet region (200–400 nm). Radiat. Meas. 2016, 87, 43–48. [Google Scholar] [CrossRef]
- Fei, S.; Dai, X.; Wu, Q.; Zhong, Y.; Guo, T.; Pu, X.; Du, W.; Yan, Z. Thermo-optic metasurface with multispectral ultraviolet-to near-infrared plasmon-induced near-perfect absorptions. Phys. Lett. A 2025, 555, 130803. [Google Scholar] [CrossRef]
- Tan, W.; Qin, X.; Liu, J.; Michalski, J.; He, H.; Yao, Y.; Yang, M.; Huang, J.; Lin, X.; Zhang, C.; et al. Visible/near infrared reflectance (VNIR) spectral features of ion-exchangeable rare earth elements hosted by clay minerals: Potential use for exploration of regolith-hosted REE deposits. Appl. Clay Sci. 2021, 215, 106320. [Google Scholar] [CrossRef]
- Wang, J.; Tang, Y.; Yang, Q.; Zhao, K.; Li, X.; Wang, Y.; Zhu, Y.; Zhu, Q.; Yu, F.; Wang, C. Enhanced photocatalytic nitrogen fixation via pt-induced active hydrogen supply over pt@NM-101(fe). Appl. Catal. B Environ. Energy 2025, 373, 125364. [Google Scholar] [CrossRef]
- Thiengo, C.C.; Galindo, F.S.; Rodak, B.W.; Bernardes, J.V.S.; Da Rocha, L.O.; Gaziola, S.A.; Azevedo, R.A.; Burak, D.L.; Olivares, F.L.; Lavres, J. Harnessing plant growth-promoting bacteria (Herbaspirillum seropedicae) from an optimal mineral nitrogen supply: A study on improving nitrogen use efficiency in Marandu palisadegrass. Plant Physiol. Biochem. 2025, 220, 109497. [Google Scholar] [CrossRef]
- Zhang, R.; Yang, P.; Xu, S.; Li, L.; Guo, T.; Han, D.; Liu, J. The relationship between the ratio of far-red to red leaf SIF and leaf chlorophyll content: Theoretical derivation and experimental validation. Remote Sens. Environ. 2025, 324, 114762. [Google Scholar] [CrossRef]
- Zhao, F.; Ma, W.; Zhao, J.; Guo, Y.; Tariq, M.; Li, J. Global retrieval of the spectrum of terrestrial chlorophyll fluorescence: First results with TROPOMI. Remote Sens. Environ. 2024, 300, 113903. [Google Scholar] [CrossRef]
- Chen, X.; Li, F.; Shi, B.; Chang, Q. Estimation of winter wheat plant nitrogen concentration from UAV hyperspectral remote sensing combined with machine learning methods. Remote Sens. 2023, 15, 2831. [Google Scholar] [CrossRef]
- Zha, H.; Miao, Y.; Wang, T.; Li, Y.; Zhang, J.; Sun, W.; Feng, Z.; Kusnierek, K. Improving unmanned aerial vehicle remote sensing-based rice nitrogen nutrition index prediction with machine learning. Remote Sens. 2020, 12, 215. [Google Scholar] [CrossRef]
- Li, Z.; Wang, J.; Xiao, D.; Gu, Z.; Xie, H. Iron ore rock classification and mine remote sensing inversion based on spectroscopy and improved extreme learning machine. Infrared Phys. Technol. 2024, 140, 105400. [Google Scholar] [CrossRef]
- Zou, Z.; Yuan, D.; Wu, Q.; Xiao, Y.; Li, M.; Wang, Q.; Zhen, J.; Li, J.; Cui, Q.; Zhou, R.; et al. The comprehensive index for assessing the freshness of salmon using hyperspectral imaging technology combined with multisource data fusion method. J. Food Compos. Anal. 2025, 147, 108025. [Google Scholar] [CrossRef]
- Onwimol, D.; Chakranon, P.; Wonggasem, K.; Wongchaisuwat, P. Non-destructive assessment of hemp seed vigor using machine learning and deep learning models with hyperspectral imaging. J. Agric. Food Res. 2025, 21, 101836. [Google Scholar] [CrossRef]
- Werther, M.; Burggraaff, O.; Gurlin, D.; Saranathan, A.M.; Balasubramanian, S.V.; Giardino, C.; Braga, F.; Bresciani, M.; Pellegrino, A.; Pinardi, M.; et al. On the generalization ability of probabilistic neural networks for hyperspectral remote sensing of absorption properties across optically complex waters. Remote Sens. Environ. 2025, 328, 114820. [Google Scholar] [CrossRef]
- Aminu, R.; Cook, S.M.; Ljungberg, D.; Hensel, O.; Nasirahmadi, A. Improving the performance of machine learning algorithms for detection of individual pests and beneficial insects using feature selection techniques. Artif. Intell. Agric. 2025, 15, 377–394. [Google Scholar] [CrossRef]
- Zhong, L.; Guo, X.; Ding, M.; Ye, Y.; Jiang, Y.; Zhu, Q.; Li, J. SHAP values accurately explain the difference in modeling accuracy of convolution neural network between soil full-spectrum and feature-spectrum. Comput. Electron. Agric. 2024, 217, 108627. [Google Scholar] [CrossRef]
- Zhang, H.; Li, W.; Wang, G.; Song, F.; Wen, Z.; Zhang, H.; Tong, L.; Kang, S. Predicting stomatal conductance of chili peppers using TPE-optimized LightGBM and SHAP feature analysis based on UAVs’ hyperspectral, thermal infrared imagery, and meteorological data. Comput. Electron. Agric. 2025, 231, 110036. [Google Scholar] [CrossRef]
- Zhang, F.; Chen, M.; Xing, Y.; Wang, X. Appropriate nitrogen application under ridge-furrow plastic film mulching planting optimizes spring maize growth characteristics by improving soil quality in the Loess Plateau of China. Agric. Water Manag. 2025, 307, 109259. [Google Scholar] [CrossRef]
- Main, R.; Cho, M.A.; Mathieu, R.; O Kennedy, M.M.; Ramoelo, A.; Koch, S. An investigation into robust spectral indices for leaf chlorophyll estimation. ISPRS-J. Photogramm. Remote Sens. 2011, 66, 751–761. [Google Scholar] [CrossRef]
- Huete, A.R.; Liu, H.Q.; Batchily, K.; van Leeuwen, W. A comparison of vegetation indices over a global set of TM images for EOS-MODIS. Remote Sens. Environ. 1997, 59, 440–451. [Google Scholar] [CrossRef]
- Le Maire, G.; François, C.; Soudani, K.; Berveiller, D.; Pontailler, J.; Bréda, N.; Genet, H.; Davi, H.; Dufrêne, E. Calibration and validation of hyperspectral indices for the estimation of broadleaved forest leaf chlorophyll content, leaf mass per area, leaf area index and leaf canopy biomass. Remote Sens. Environ. 2008, 112, 3846–3864. [Google Scholar] [CrossRef]
- Haboudane, D.; Miller, J.R.; Pattey, E.; Zarco-Tejada, P.J.; Strachan, I.B. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sens. Environ. 2004, 90, 337–352. [Google Scholar] [CrossRef]
- Hunt, E.R., Jr.; Daughtry, C.S.T.; Eitel, J.U.; Long, D.S. Remote sensing leaf chlorophyll content using a visible band index. Agron. J. 2011, 103, 1090–1099. [Google Scholar] [CrossRef]
- Apan, A.; Held, A.; Phinn, S.; Markley, J. Formulation and assessment of narrow-band vegetation indices from EO1 hyperion imagery for discriminating sugarcane disease. In Proceedings of the of the Spatial Sciences Conference, Canberra, Australia, 22–27 September 2003. [Google Scholar]
- Gao, Z.; Yi, W. Prediction of projectile impact points and launch conditions based on extreme learning machine. Measurement 2025, 252, 117308. [Google Scholar] [CrossRef]
- Gao, Z.; Peña-Arancibia, J.L.; Ahmad, M.; Siyal, A.A. Three-dimensional soil salinity mapping with uncertainty using Bayesian hierarchical modelling, random forest regression and remote sensing data. Agric. Water Manag. 2025, 309, 109318. [Google Scholar] [CrossRef]
Spectral Indices | Correlation Coefficient |
---|---|
DDI | 0.617 * |
MNDSI | 0.481 * |
DDn | 0.674 * |
RDVI | 0.592 * |
CI | 0.437 * |
MTCI | 0.538 * |
Gitelson2 | 0.327 * |
Spectral Indices | Correlation Coefficient | Position of Wavelength (i,j)/(nm) |
---|---|---|
SASI | 0.628 * | (766, 761) |
NDSI | 0.629 * | (1206, 1307) |
TSI | 0.685 * | (360, 757) |
mSR | 0.647 * | (500, 505) |
mNDI | 0.658 * | (500, 505) |
RSI | 0.628 * | (1307, 1206) |
DSI | 0.545 * | (360, 757) |
Spectral Indices | Correlation Coefficient | Position of Wavelength (i,j)/(nm) |
---|---|---|
RTSI | 0.705 * | (783, 786, 750) |
DTSI | 0.721 * | (833, 755, 802) |
RDTSI | 0.569 * | (850, 792, 756) |
RATSI | 0.707 * | (741, 801, 765) |
Spectral Indices | Formula | Reference |
---|---|---|
DDI (Dynamic dark index) | [46] | |
MNDSI (Modified normalized difference vegetation index) | [47] | |
DDn (Double difference index) | [48] | |
RDVI (Renormalized difference vegetation index) | [49] | |
CI (Chlorophyll index) | 675 nm | [46] |
MTCI (MERIS terrestrial chlorophyll index) | [50] | |
Gitelson2 (Gitelson red-edge chlorophyll index 2) | [51] |
Spectral Indices | Formula | Reference |
---|---|---|
SASI (Soil-adjusted spectral index) | [16] | |
NDSI (Normalized difference spectral index) | [16] | |
TSI (Triangular spectral index) | [16] | |
mSR (Modified simple ratio) | [21] | |
mNDI (Modified normalized difference index) | [21] | |
RSI (Ratio spectral index) | [21] | |
DSI (Difference spectral index) | − | [21] |
Spectral Indices | Formula |
---|---|
RTSI (Ratio triple spectral index) | |
DTSI (Difference triple spectral index) | |
RDTSI (Reciprocal difference triple spectral index) | |
RATSI (Reciprocal additive triple spectral index) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, S.; Li, Z.; Tang, Z.; Zhang, W.; Sun, T.; Wu, Y.; Yang, W.; Chen, G.; Xiang, Y.; Zhang, F. Estimation of Nitrogen Concentration in Winter Wheat Leaves Based on a Novel Spectral Index and Machine Learning Model. Plants 2025, 14, 2772. https://doi.org/10.3390/plants14172772
Cui S, Li Z, Tang Z, Zhang W, Sun T, Wu Y, Yang W, Chen G, Xiang Y, Zhang F. Estimation of Nitrogen Concentration in Winter Wheat Leaves Based on a Novel Spectral Index and Machine Learning Model. Plants. 2025; 14(17):2772. https://doi.org/10.3390/plants14172772
Chicago/Turabian StyleCui, Shihao, Zhijun Li, Zijun Tang, Wei Zhang, Tao Sun, Yue Wu, Wanli Yang, Guofu Chen, Youzhen Xiang, and Fucang Zhang. 2025. "Estimation of Nitrogen Concentration in Winter Wheat Leaves Based on a Novel Spectral Index and Machine Learning Model" Plants 14, no. 17: 2772. https://doi.org/10.3390/plants14172772
APA StyleCui, S., Li, Z., Tang, Z., Zhang, W., Sun, T., Wu, Y., Yang, W., Chen, G., Xiang, Y., & Zhang, F. (2025). Estimation of Nitrogen Concentration in Winter Wheat Leaves Based on a Novel Spectral Index and Machine Learning Model. Plants, 14(17), 2772. https://doi.org/10.3390/plants14172772