Reconstructing Net Primary Productivity in Northern Greater Khingan Range Using Tree Rings
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area Overview
2.2. Tree Ring Sample Collection and Chronology Construction
2.3. Acquisition of Modeling Data
2.3.1. MODIS NPP Data
2.3.2. Meteorological Data
2.4. Statistical Methods
3. Results and Analysis
3.1. Statistics of Chronology Characteristic Values
3.2. Statistics of NPP Changes in the Study Area
3.3. Effects of Climate Factors on Larix gmelinii Radial Growth and Regional NPP Changes
3.4. NPP Reconstruction and Accuracy Validation
3.5. Historical NPP Variation Trends in the Study Area
3.6. Spatiotemporal Characteristics of Reconstructed NPP Series
3.6.1. Mutation Characteristics of Reconstructed NPP Series
3.6.2. Periodic Variations of Reconstructed NPP Series
3.6.3. Spatial Correlation of Reconstructed NPP Series
4. Discussion
4.1. Mutation Characteristics and Limitations of Reconstructed NPP
4.2. Dominant Factors for Larix gmelinii Radial Growth and Regional NPP Changes in the Study Area
4.3. Analysis of NPP Variation Characteristics in the Study Area
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Wang, X.; Chen, Z.; Fang, K.; Xu, T.; Yu, L. Tree rings: Decoding forest carbon-climate nexus. J. For. Res. 2025, 36, 69. [Google Scholar] [CrossRef]
- Zhu, Q.; Zhao, J.; Zhu, Z.; Zhang, H.; Zhang, Z.; Guo, X.; Bi, Y.; Sun, L. Remotely sensed estimation of net primary productivity (NPP) and its spatial and temporal variations in the Greater Khingan Mountain region, China. Sustainability 2017, 9, 1213. [Google Scholar] [CrossRef]
- Bennett, A.C.; McDowell, N.G.; Allen, C.D.; Anderson-Teixeira, K.J. Larger trees suffer most during drought in forests worldwide. Nat. Plants 2015, 1, 15139. [Google Scholar] [CrossRef]
- Castagneri, D.; Vacchiano, G.; Hacket-Pain, A.; DeRose, R.J.; Klein, T.; Bottero, A. Meta-analysis reveals different competition effects on tree growth resistance and resilience to drought. Ecosystems 2022, 25, 30–43. [Google Scholar] [CrossRef]
- Spelsberg, S.; Büntgen, U.; Homfeld, I.K.; Kunz, M.; Martinez del Castillo, E.; Tejedor, E.; Torbenson, M.; Ziaco, E.; Esper, J. Climate signal age effects in Pinus uncinata tree-ring density data from the Spanish Pyrenees. Trees 2025, 39, 23. [Google Scholar] [CrossRef]
- Shishov, V.V.; Arzac, A.; Popkova, M.I.; Yang, B.; He, M.; Vaganov, E.A. Experimental and theoretical analysis of tree-ring growth in cold climates. In Boreal Forests in the Face of Climate Change: Sustainable Management; Springer: Berlin/Heidelberg, Germany, 2023; pp. 295–321. [Google Scholar]
- Dietrich, V.; Skiadaresis, G.; Schnabel, F.; Leban, J.-M.; Potvin, C.; Bauhus, J.; Schwarz, J.A. Identifying the impact of climate extremes on radial growth in young tropical trees: A comparison of inventory and tree-ring based estimates. Dendrochronologia 2024, 86, 126237. [Google Scholar] [CrossRef]
- Zhang, G.; Bréda, N.; Steil, N.; Gaertner, P.A.; Levillain, J.; Ruelle, J.; Massonnet, C. Analysing resilience of European beech tree to recurrent extreme drought events through ring growth, wood anatomy and stable isotopes. J. Ecol. 2025, 113, 955–973. [Google Scholar] [CrossRef]
- Hartmann, H.; Bastos, A.; Das, A.J.; Esquivel-Muelbert, A.; Hammond, W.M.; Martínez-Vilalta, J.; McDowell, N.G.; Powers, J.S.; Pugh, T.A.; Ruthrof, K.X. Climate change risks to global forest health: Emergence of unexpected events of elevated tree mortality worldwide. Annu. Rev. Plant Biol. 2022, 73, 673–702. [Google Scholar] [CrossRef] [PubMed]
- Buermann, W.; Beaulieu, C.; Parida, B.; Medvigy, D.; Collatz, G.J.; Sheffield, J.; Sarmiento, J.L. Climate-driven shifts in continental net primary production implicated as a driver of a recent abrupt increase in the land carbon sink. Biogeosciences 2016, 13, 1597–1607. [Google Scholar] [CrossRef]
- Jiang, C.; Xu, H.; Tong, Y.; Li, J. Anomalous warm temperatures recorded using tree rings in the headwater of the Jinsha river during the Little ice Age. Forests 2024, 15, 972. [Google Scholar] [CrossRef]
- Charlet de Sauvage, J.; Saurer, M.; Treydte, K.; Lévesque, M. Decoupling of Tree-Ring Cellulose δ18O and δ2H Highlighted by Their Contrasting Relationships to Climate and Tree Intrinsic Variables. Plant Cell Environ. 2025, 48, 1903–1918. [Google Scholar] [CrossRef] [PubMed]
- Brehm, N.; Bayliss, A.; Christl, M.; Synal, H.-A.; Adolphi, F.; Beer, J.; Kromer, B.; Muscheler, R.; Solanki, S.K.; Usoskin, I. Eleven-year solar cycles over the last millennium revealed by radiocarbon in tree rings. Nat. Geosci. 2021, 14, 10–15. [Google Scholar] [CrossRef]
- Saurer, M.; Voelker, S. Intrinsic water-use efficiency derived from stable carbon isotopes of tree-rings. In Stable Isotopes in Tree Rings: Inferring Physiological, Climatic and Environmental Responses; Springer International Publishing: Cham, Switzerland, 2022; pp. 481–498. [Google Scholar]
- Huang, R.; Xu, C.; Grießinger, J.; Feng, X.; Zhu, H.; Bräuning, A. Rising utilization of stable isotopes in tree rings for climate change and forest ecology. J. For. Res. 2024, 35, 13. [Google Scholar] [CrossRef]
- Lu, W.; Wu, B.; Yu, X.; Jia, G.; Gao, Y.; Wang, L.; Lu, A. Tree-Ring δ13C and Intrinsic Water-Use Efficiency Reveal Physiological Responses to Climate Change in Semi-Arid Areas of North China. Forests 2024, 15, 1272. [Google Scholar] [CrossRef]
- Correa-Díaz, A.; Villanueva-Díaz, J.; Gómez-Guerrero, A.; Martínez-Bautista, H.; Castruita-Esparza, L.; Horwath, W.; Silva, L. A comprehensive resilience assessment of Mexican tree species and their relationship with drought events over the last century. Glob. Change Biol. 2023, 29, 3652–3666. [Google Scholar] [CrossRef] [PubMed]
- Vicente-Serrano, S.M.; Camarero, J.J.; Azorin-Molina, C. Diverse responses of forest growth to drought time-scales in the Northern Hemisphere. Glob. Ecol. Biogeogr. 2014, 23, 1019–1030. [Google Scholar] [CrossRef]
- Adams, H.D.; Zeppel, M.J.; Anderegg, W.R.; Hartmann, H.; Landhäusser, S.M.; Tissue, D.T.; Huxman, T.E.; Hudson, P.J.; Franz, T.E.; Allen, C.D. A multi-species synthesis of physiological mechanisms in drought-induced tree mortality. Nat. Ecol. Evol. 2017, 1, 1285–1291. [Google Scholar] [CrossRef]
- Navarro-Cerrillo, R.M.; Cachinero-Vivar, A.M.; Ruiz-Gómez, F.J.; Camarero, J.J.; González-Pérez, J.A.; Pérez-Priego, Ó. Planted or natural pine forests, which one will better recover after drought? Insights from tree growth and stable C and H isotopes. Forests 2023, 14, 573. [Google Scholar] [CrossRef]
- Wu, G.; Xu, G.; Wang, B.; Liu, X.; Chen, T.; Kang, H. Post-drought moisture condition determines tree growth recovery after extreme drought events in the Tianshan Mountains, northwestern China. Ecol. Indic. 2023, 151, 110275. [Google Scholar] [CrossRef]
- Kastridis, A.; Kamperidou, V.; Stathis, D. Dendroclimatological Analysis of Fir (A. borisii-regis) in Greece in the frame of Climate Change Investigation. Forests 2022, 13, 879. [Google Scholar] [CrossRef]
- Koulelis, P.; Fassouli, V.; Petrakis, P.; Ioannidis, K.; Alexandris, S. The impact of selected climatic factors on the growth of Greek fir on Mount Giona in mainland Greece based on tree ring analysis. Austrian J. For. Sci. 2022, 139, 1–30. [Google Scholar]
- Asad, F.; Adil, M.; Shaid, S.; Ahmed, M. Dendrochronological study of Abies pindrow (Royle ex D. Don) Royle (fir) as aspect of tree growth and climate change analysis in Hindu Kush, northern Pakistan. Pak. J. Bot. 2024, 56, 1973–1981. [Google Scholar] [CrossRef]
- Ols, C.; Klesse, S.; Girardin, M.P.; Evans, M.E.; DeRose, R.J.; Trouet, V. Detrending climate data prior to climate–growth analyses in dendroecology: A common best practice? Dendrochronologia 2023, 79, 126094. [Google Scholar] [CrossRef]
- Wang, T.; Bao, A.; Xu, W.; Zheng, G.; Nzabarinda, V.; Yu, T.; Huang, X.; Long, G.; Naibi, S. Dynamics of forest net primary productivity based on tree ring reconstruction in the Tianshan Mountains. Ecol. Indic. 2023, 146, 109713. [Google Scholar] [CrossRef]
- Li, H.; Speer, J.H.; Thapa, I. Reconstructing and mapping annual net primary productivity (NPP) since 1940 using tree rings in Southern Indiana, US. J. Geophys. Res. Biogeosci. 2024, 129, e2023JG007929. [Google Scholar] [CrossRef]
- Du, B.; Wang, Z.; Li, X.; Zhang, X.; Wang, X.; Zhang, D. Adaptation of tree species in the Greater Khingan Range under climate change: Ecological strategy differences between Larix gmelinii and Quercus mongolica. Forests 2024, 15, 283. [Google Scholar] [CrossRef]
- Shi, F.; Liu, M.; Qiu, J.; Zhang, Y.; Su, H.; Mao, X.; Li, X.; Fan, J.; Chen, J.; Lv, Y. Assessing land cover and ecological quality changes in the Forest-Steppe Ecotone of the Greater Khingan Mountains, Northeast China, from Landsat and MODIS observations from 2000 to 2018. Remote Sens. 2022, 14, 725. [Google Scholar] [CrossRef]
- Chen, R.; Liu, J.; Zhang, W.; Wang, F. Effects of climate on the radial growth of Larix gmelinii under different competition intensities in the Greater Khingan Mountains. Appl. Ecol. Environ. Res. 2023, 21, 2075–2089. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, D.; Zhang, T.; Li, X.; Wang, X.; Luo, T.; Zhong, S.; Song, K. Reconstructing the Temperature and Precipitation Changes in the Northern Part of the Greater Khingan Mountains over the Past 210 Years Using Tree Ring Width Data. Forests 2024, 15, 1450. [Google Scholar] [CrossRef]
- Zhong, S.; Wang, Z.; Zhang, D.; Luo, T.; Wang, X.; Mi, T. Simulation of Radial Growth of Mongolian Pine (Pinus sylvestris var. mongolica) and Dahurian Larch (Larix gmelinii) Using the Vaganov–Shashkin Model in the Greater Khingan Range, Northeast China. Forests 2024, 15, 243. [Google Scholar] [CrossRef]
- Sun, J.; Shan, W.; Zhang, C. Effects of permafrost stability changes on vegetation dynamics in the middle part of the Greater Khingan Mountains. Environ. Res. Commun. 2025, 7, 015018. [Google Scholar] [CrossRef]
- Puchałka, R.; Prislan, P.; Klisz, M.; Koprowski, M.; Gričar, J. Tree-ring formation dynamics in Fagus sylvatica and Quercus petraea in a dry and a wet year. Dendrobiology 2024, 91, 1–15. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhou, P. Decline in net primary productivity caused by severe droughts: Evidence from the Pearl River basin in China. Hydrol. Res. 2021, 52, 1559–1576. [Google Scholar] [CrossRef]
- Cui, A.; Lu, H.; Hou, J.; Xu, D.; Fan, B.; Ji, K. Net primary productivity response to precipitation varied with different ecosystems in the Tibetan Plateau over the past two millennia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2024, 649, 112343. [Google Scholar] [CrossRef]
- Li, F.; Liao, S.; Fu, X.; Liu, T. NPP-VIIRS Nighttime Lights Illustrate the Post-Earthquake Damage and Subsequent Economic Recovery in Hatay Province, Turkey. ISPRS Int. J. Geo-Inf. 2025, 14, 149. [Google Scholar] [CrossRef]
- Kastridis, A.; Koutsianitis, D.; Stathis, D. The Effect of Hydrometeorological Factors on Tree Growth (Abies borisii-regis Mattf.) in Mountainous Watersheds (Central Greece). Forests 2025, 16, 750. [Google Scholar] [CrossRef]
- Brichta, J.; Šimůnek, V.; Bílek, L.; Vacek, Z.; Gallo, J.; Drozdowski, S.; Bravo-Fernández, J.A.; Mason, B.; Roig Gomez, S.; Hájek, V. Effects of climate change on scots pine (Pinus sylvestris L.) growth across Europe: Decrease of tree-ring fluctuation and amplification of climate stress. Forests 2024, 15, 91. [Google Scholar] [CrossRef]
- Edvardsson, J.; Helama, S.; Rundgren, M.; Nielsen, A.B. The integrated use of dendrochronological data and paleoecological records from northwest European peatlands and lakes for understanding long-term ecological and climatic changes—A review. Front. Ecol. Evol. 2022, 10, 781882. [Google Scholar] [CrossRef]
- Wilson, R.; Anchukaitis, K.; Briffa, K.R.; Büntgen, U.; Cook, E.; D’Arrigo, R.; Davi, N.; Esper, J.; Frank, D.; Gunnarson, B. Last millennium northern hemisphere summer temperatures from tree rings: Part I: The long term context. Quat. Sci. Rev. 2016, 134, 1–18. [Google Scholar] [CrossRef]
- Felton, A.J.; Knapp, A.K.; Smith, M.D. Precipitation–productivity relationships and the duration of precipitation anomalies: An underappreciated dimension of climate change. Glob. Change Biol. 2021, 27, 1127–1140. [Google Scholar] [CrossRef]
- Jump, A.S.; Ruiz-Benito, P.; Greenwood, S.; Allen, C.D.; Kitzberger, T.; Fensham, R.; Martínez-Vilalta, J.; Lloret, F. Structural overshoot of tree growth with climate variability and the global spectrum of drought-induced forest dieback. Glob. Change Biol. 2017, 23, 3742–3757. [Google Scholar] [CrossRef]
- Wang, M.; Peng, S.; Lu, Z.; Xu, X.; Felton, A.; Chen, A. Increasing constraint of aridity on tree intrinsic water use efficiency. Nat. Commun. 2025, 16, 7560. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, J.; Skiadaresis, G.; Kohler, M.; Kunz, J.; Schnabel, F.; Vitali, V.; Bauhus, J. Quantifying growth responses of trees to drought—A critique of commonly used resilience indices and recommendations for future studies. Curr. For. Rep. 2020, 6, 185–200. [Google Scholar] [CrossRef]
- Luo, T.; Wang, Z.; Zhang, D.; Li, X.; Wang, X. Response of radial growth of Dahurian larch (Larix gmelinii) to climate factors at different altitudes in the northern part of the Greater Khingan Mountains. Front. For. Glob. Change 2024, 7, 1434773. [Google Scholar] [CrossRef]
- Ryan, M.G. Tree responses to drought. Tree Physiol. 2011, 31, 237–239. [Google Scholar] [CrossRef]
- Eilmann, B.; Rigling, A. Tree-growth analyses to estimate tree species’ drought tolerance. Tree Physiol. 2012, 32, 178–187. [Google Scholar] [CrossRef]
- Lévesque, M.; Walthert, L.; Weber, P. Soil nutrients influence growth response of temperate tree species to drought. J. Ecol. 2016, 104, 377–387. [Google Scholar] [CrossRef]
- Altmanova, N.; Fibich, P.; Doležal, J.; Bažant, V.; Černý, T.; Molina, J.G.A.; Enoki, T.; Hara, T.; Hoshizaki, K.; Ida, H. Spatial heterogeneity of tree-growth responses to climate across temperate forests in Northeast Asia. Agric. For. Meteorol. 2025, 362, 110355. [Google Scholar] [CrossRef]
- Li, J.; Wang, Z.; Lai, C. Severe drought events inducing large decrease of net primary productivity in mainland China during 1982–2015. Sci. Total Environ. 2020, 703, 135541. [Google Scholar] [CrossRef]
- Babst, F.; Bouriaud, O.; Poulter, B.; Trouet, V.; Girardin, M.P.; Frank, D.C. Twentieth century redistribution in climatic drivers of global tree growth. Sci. Adv. 2019, 5, eaat4313. [Google Scholar] [CrossRef]
- Li, H.; Zhang, H.; Li, Q.; Zhao, J.; Guo, X.; Ying, H.; Deng, G.; Rihan, W.; Wang, S. Vegetation productivity dynamics in response to climate change and human activities under different topography and land cover in Northeast China. Remote Sens. 2021, 13, 975. [Google Scholar] [CrossRef]
- Jia, G.; Dong, Y.; Zhang, S.; He, X.; Zheng, H.; Guo, Y.; Shen, G.; Chen, W. Spatiotemporal changes of ecosystem service trade-offs under the influence of forest conservation project in Northeast China. Front. Ecol. Evol. 2022, 10, 978145. [Google Scholar] [CrossRef]
- Ge, W.; Deng, L.; Wang, F.; Han, J. Quantifying the contributions of human activities and climate change to vegetation net primary productivity dynamics in China from 2001 to 2016. Sci. Total Environ. 2021, 773, 145648. [Google Scholar] [CrossRef] [PubMed]
- Cailleret, M.; Jansen, S.; Robert, E.M.; Desoto, L.; Aakala, T.; Antos, J.A.; Beikircher, B.; Bigler, C.; Bugmann, H.; Caccianiga, M. A synthesis of radial growth patterns preceding tree mortality. Glob. Change Biol. 2017, 23, 1675–1690. [Google Scholar] [CrossRef] [PubMed]
Year | Number of Cores | Average Series Length | Characteristic Values of Standard Chronology | Statistical Indicators of Common Interval | ||||||
---|---|---|---|---|---|---|---|---|---|---|
MS | SD | AC | SNR | EPS | VF | Overall Sample Representativeness | Inter-Tree Correlation Coefficient | |||
1855–2021 | 72 | 166 | 0.1823 | 0.1835 | 0.3460 | 32.917 | 0.967 | 43.03% | 0.973 | 0.43 |
R2 | MSE | RMSE | MAE | F | DW | |
---|---|---|---|---|---|---|
ERF | 0.62 | 825.27 | 28.73 | 15.17 | 22.57 | 1.25 |
XG | 0.78 | 472.49 | 21.74 | 10.13 | 57.25 | 0.83 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Hua, Y.; Zhang, Q.; Wang, F. Reconstructing Net Primary Productivity in Northern Greater Khingan Range Using Tree Rings. Plants 2025, 14, 2768. https://doi.org/10.3390/plants14172768
Yang Y, Hua Y, Zhang Q, Wang F. Reconstructing Net Primary Productivity in Northern Greater Khingan Range Using Tree Rings. Plants. 2025; 14(17):2768. https://doi.org/10.3390/plants14172768
Chicago/Turabian StyleYang, Yuhang, Yongchun Hua, Qiuliang Zhang, and Fei Wang. 2025. "Reconstructing Net Primary Productivity in Northern Greater Khingan Range Using Tree Rings" Plants 14, no. 17: 2768. https://doi.org/10.3390/plants14172768
APA StyleYang, Y., Hua, Y., Zhang, Q., & Wang, F. (2025). Reconstructing Net Primary Productivity in Northern Greater Khingan Range Using Tree Rings. Plants, 14(17), 2768. https://doi.org/10.3390/plants14172768