Radial Variation in Wood Anatomy of Cercis glabra and Its Application Potential: An Anatomy-Guided Approach to Sustainable Resource Utilization
Abstract
1. Introduction
2. Results
2.1. Wood Anatomy of Cercis glabra
2.2. Radial Variation in Wood Anatomy of Cercis glabra
2.2.1. Cell Wall Percentage and Tissue Proportions
2.2.2. Vessel Characteristics
2.2.3. Fiber Characteristics
2.2.4. Ray Characteristics
2.2.5. Axial Parenchyma Cell Diameter (AD)
3. Discussion
3.1. Ecological Adaptability and Functional Correlation
3.2. Mechanism of Wood Maturity Revealed by Radial Variation
3.3. Application of Wood Properties and Genetic Improvement Potential
4. Materials and Methods
4.1. Experimental Materials
4.2. Anatomic Measurement
4.3. Statistical Analyses
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CA | Cambial Age |
CP | Cell Wall Percentage |
FP | Fiber Proportion |
VP | Vessel Proportion |
RP | Ray Proportion |
AP | Axial Parenchyma Proportion |
VD | Vessel Density |
SVP | Percentage of Solitary Vessels to All Vessels |
CVP | Percentage of Cluster Vessels to All Vessels |
MVP | Percentage of Multiple Vessels to All Vessels |
VRD | Vessel Lumen Radial Diameter |
VTD | Vessel Lumen Tangential Diameter |
FD | Fiber Lumen Diameter |
W/L | Ratio of Fiber Wall Thickness to Fiber Lumen Diameter |
RH | Ray Height |
RW | Ray Width |
RD | Ray Cell Lumen Diameter |
RL | Ray Cell Length |
AD | Axial Parenchyma Cell Lumen Diameter |
References
- Xiang, M.; Duan, Y.; Xiang, Q. Textual research and taxonomic treatment of the name Cercis gigantea Cheng et Keng f. J. Nanjing For. Univ. 2018, 43, 204–206. [Google Scholar]
- Wang, Y.-H.; Wang, H.; Yi, T.-S.; Wang, Y.-H. The complete chloroplast genomes of Adenolobus garipensis and Cercis glabra (Cercidoideae, Fabaceae). Conserv. Genet. Resour. 2017, 9, 635–638. [Google Scholar] [CrossRef]
- Zhai, H. Effects on Soil Fertility Quality of Different Vegetation Types in Western Hunan Province. Master’s Thesis, Hunan Agricultural University, Changsha, China, 2010. [Google Scholar]
- Zhai, H.; Zhai, X. Rare ecological economic tree. Cercis Glabra. For. China 2010, 60, 51. [Google Scholar]
- Zhang, Y.; Yan, C.; Zhao, L.; Tan, J.; Wang, C.; Liang, Y. Analysis of potential suitable areas variation of Cercis glabra under different climate scenarios based on MaxEnt model. J. Henan Agric. Sci. 2025, 54, 160–169. [Google Scholar]
- Wang, X. Four seasons of spring: Planting a road and stunning a city. China Flowers Hortic. 2018, 18, 26–28. [Google Scholar]
- Shu, P.; Li, Y.; Luo, Y.; Cai, S.; Fei, Y.; Yi, W.; Yang, Y.; Wei, X.; Zhang, Y.; Tu, T.; et al. Isolation, characterization and antioxidant, yyrosinase inhibitory activities of constituents from the flowers of Cercis glabra ‘Spring-1’. Rec. Nat. Prod. 2021, 15, 254–260. [Google Scholar] [CrossRef]
- Wang, M.; Jinghan, Z.; Jingke, Z.; Liangliang, Z.; Luo, J. Chemical structure of tannins in Cercis chinensis and Cercis glabra and their antioxidant activity. Chem. Ind. For. Prod. 2022, 42, 84–90. [Google Scholar]
- Pan, J.; Wu, Y. Precious native tree species Cercis gigantea and its cultivation techniques. Anhui Agric. Sci. Bull. 2012, 18, 105. [Google Scholar]
- Jokanović, D.; Ćirković-Mitrović, T.; Jokanović, V.N.; Lozjanin, R.; Ištok, I. Wood fibre characteristics of pedunculate oak (Quercus robur L.) growing in different ecological conditions. Drv. Ind. 2022, 73, 317–325. [Google Scholar] [CrossRef]
- Kawai, K.; Minagi, K.; Nakamura, T.; Saiki, S.-T.; Yazaki, K.; Ishida, A. Parenchyma underlies the interspecific variation of xylem hydraulics and carbon storage across 15 woody species on a subtropical island in Japan. Tree Physiol. 2021, 42, 337–350. [Google Scholar] [CrossRef]
- Savero, A.M.; Kim, J.-H.; Purusatama, B.D.; Prasetia, D.; Wahyudi, I.; Iswanto, A.H.; Lee, S.-H.; Kim, N.-H. Radial variation of wood anatomical characteristics and maturation ages of six Korean oak species. Forests 2024, 15, 433. [Google Scholar] [CrossRef]
- Elizabeth, V.; Hidayati, F. Cell dimension and proportion of Acacia aulacocarpa wood in axial and radial directions from Gunung Kidul, Yogyakarta. Indones. J. Agric. Sci. 2025, 30, 359–367. [Google Scholar] [CrossRef]
- Evans, J.W.; Senft, J.F.; Green, D.W. Juvenile wood effect in red alder: Analysis of physical and mechanical data to delineate juvenile and mature wood zones. For. Prod. J. 2000, 50, 75–87. [Google Scholar] [CrossRef]
- Vidaurre, G.; Lombardi, L.R.; Oliveira, J.T.d.S.; Arantes, M.D.C. Juvenile and mature wood and the properties of wood. Floresta Ambiente 2011, 18, 469–480. [Google Scholar] [CrossRef]
- Committee, I. IAWA List of microscopic features for hardwood identification. IAWA J. 1989, 10, 176–219. [Google Scholar] [CrossRef]
- Carlquist, S. Vessel grouping in dicotyledon wood: Significance and relationship to imperforate tracheary elements. Aliso 1984, 10, 505–525. [Google Scholar] [CrossRef]
- Fajardo, A.; Piper, F.I.; García-Cervigón, A.I. The intraspecific relationship between wood density, vessel diameter and other traits across environmental gradients. Funct. Ecol. 2022, 36, 1585–1598. [Google Scholar] [CrossRef]
- Segla, K.N.; Adjonou, K.; Habou, R.; Kokutse, A.D.; Mahamane, A.; Langbour, P.; Guibal, D.; Chaix, G.; Kokou, K. Environmental and ontogeny effects in wood fiber properties of Pterocarpus ericaneus (Poir.). Wood Mater. Sci. Eng. 2024, 19, 627–636. [Google Scholar] [CrossRef]
- Sano, Y.; Morris, H.; Shimada, H.; De Craene, L.P.R.; Jansen, S. Anatomical features associated with water transport in imperforate tracheary elements of vessel-bearing angiosperms. Ann. Bot-Lond. 2011, 107, 953–964. [Google Scholar] [CrossRef]
- Kaack, L.; Weber, M.; Isasa, E.; Karimi, Z.; Li, S.; Pereira, L.; Trabi, C.; Ya, Z.; Schenk, H.; Schuldt, B.; et al. Pore constrictions in intervessel pit membranes reduce the risk of embolism spreading in angiosperm xylem. bioRxiv 2020, 345413. [Google Scholar] [CrossRef]
- Micco, V.; Balzano, A.; Wheeler, E.; Baas, P. Tyloses and gums: A review of structure, function and occurrence of vessel occlusions. IAWA J. 2016, 37, 186–205. [Google Scholar] [CrossRef]
- Oskolski, A.A.; Stepanova, A.V.; Boatwright, J.S.; Tilney, P.M.; Van Wyk, B.E. A survey of wood anatomical characters in the tribe Crotalarieae (Fabaceae). S. Afr. J. Bot. 2014, 94, 155–165. [Google Scholar] [CrossRef]
- Zhang, G.; Mao, Z.; Fortunel, C.; Martínez-Vilalta, J.; Viennois, G.; Maillard, P.; Stokes, A. Parenchyma fractions drive the storage capacity of nonstructural carbohydrates across a broad range of tree species. Am. J. Bot. 2022, 109, 535–549. [Google Scholar] [CrossRef] [PubMed]
- Morris, H.; Brodersen, C.; Schwarze, F.W.M.R.; Jansen, S. The parenchyma of secondary xylem and its critical role in tree defense against fungal decay in relation to the CODIT model. Front. Plant Sci. 2016, 7, 1665. [Google Scholar] [CrossRef]
- Leal, S.; Sousa, V.B.; Pereira, H. Within and between-tree variation in the biometry of wood rays and fibres in cork oak (Quercus suber_L.). Wood Sci. Technol. 2006, 40, 585–597. [Google Scholar] [CrossRef]
- Bingxin, G.; Huangfei, L.; Bin, X. Study on the influence of wood ray morphological characteristics on the tensile strength of wood parallel to grain. Ind. Crops Prod. 2024, 221, 119258. [Google Scholar] [CrossRef]
- Schume, H.; Grabner, M.; Eckmüllner, O. The influence of an altered groundwater regime on vessel properties of hybrid poplar. Trees-Struct. Funct. 2004, 18, 184–194. [Google Scholar] [CrossRef]
- Giagli, K.; Gričar, J.; Vavrčík, H.; Menšík, L.; Gryc, V. The effects of drought on wood formation in Fagus sylavatica during two contrasting years. IAWA J. 2016, 37, 332–348. [Google Scholar] [CrossRef]
- Tyree, M.T.; Zimmermann, M.H. Xylem Structure and the Ascent of Sap, 2nd ed.; Springer: Berlin, Germany, 2002. [Google Scholar]
- Guo, P.; Zhao, X.; Feng, Q.; Li, X. Suitability of an ornamental Tree, Sorbus alnifolia, as a source of industrial wood: Properties and the juvenile to mature transition. BioResources 2024, 19, 8654–8667. [Google Scholar] [CrossRef]
- Fei, B. Variability in fiber dimension, tissue proportion of Paliurus hemsleyanus Rehd. J. Northeast For. Univ. 1994, 22, 61–67. [Google Scholar] [CrossRef]
- Liu, D.; Song, W.; Zhao, B.; Wang, X.; An, Y.; Li, Z.; Wang, X. Comparison of tree-ring xylem anatomical parameters of three tree species under different moisture conditions in the Muling area, Heilongjiang Province of northeastern China. J. Beijing For. Univ. 2023, 45, 53–65. [Google Scholar] [CrossRef]
- Hu, J.-B.; Liu, Y.; Chang, S.-S.; Wu, Y.-Q.; Zhu, L.-F. Radial variation of the micro-fibrillar angle and tissue proportion of Eucalyptus urophylla × Eucalyptus grandis families. J. Cent. South Univ. For. 2008, 28, 31–34. [Google Scholar] [CrossRef]
- Rahman, M.M.; Fujiwara, S.; Kanagawa, Y. Variations in volume and dimensions of rays and their effect on wood properties of teak. Wood Fiber Sci. 2005, 37, 497–504. [Google Scholar] [CrossRef]
- Fonti, P.; Tabakova, M.A.; Kirdyanov, A.V.; Bryukhanova, M.V.; von Arx, G. Variability of ray anatomy of Larix gmelinii along a forest productivity gradient in Siberia. Trees-Struct. Funct. 2015, 29, 1165–1175. [Google Scholar] [CrossRef]
- Tang, S.; Sun, Z.; Ma, C. Radial variation of anatomical properties of Betula platyphylla wood in different slope directions of northern Hebei Province. J. Southwest For. Univ. 2018, 38, 157–165. [Google Scholar]
- Liu, Y.; Zhou, L.; Zhu, Y.; Liu, S. Anatomical features and its radial variations among different Catalpa bungei clones. Forests 2020, 11, 824. [Google Scholar] [CrossRef]
- Meng, Q.; Fu, F.; Wang, J.; He, T.; Jiang, X.; Zhang, Y.; Yin, Y.; Li, N.; Guo, J. Ray traits of juvenile wood and mature wood: Pinus massonia and Cunninghamia lanceolata. Forests 2021, 12, 1277. [Google Scholar] [CrossRef]
- Aritsara, A.; Razakandraibe, V.; Ramananantoandro, T.; Gleason, S.; Cao, K.-F. Increasing axial parenchyma fraction in the Malagasy Magnoliids facilitated the cooptimization of hydraulic efficiency and safety. New Phytol. 2020, 229, 1467–1480. [Google Scholar] [CrossRef]
- Couto, A.M.; Monteiro, T.C.; Trugilho, P.F.; Lima, J.T.; Silva, J.R.M.d.; Napoli, A.; Almeida, D.P.d. Influence of physical-anatomical wood variables on charcoal physical-mechanical properties. J. For. Res. 2023, 34, 531–538. [Google Scholar] [CrossRef]
- Walker, J.C.F. Primary Wood Processing: Principles and Practice, 2nd ed.; Springer: Dordrecht, The Netherlands, 2006; pp. 1–596. [Google Scholar]
- Yu, H.; Liu, Y.; Han, G.; Cui, Y. Comparison of image analysis and conventional methods for cellular tissue proportion measurement of wood. In Proceedings of the Information and Automation, 2009. ICIA’09, Zhuhai/Macau, China, 22–24 June 2009; pp. 133–137. [Google Scholar]
- Coneglian, A. Using segmented linear regression to identify juvenile and mature wood of Tectona grandis. Int. J. Curr. Res. 2016, 8, 42021–42024. [Google Scholar]
Characteristics | Minimum | Maximum | Average | SD | CV (%) |
---|---|---|---|---|---|
CP (%) | 41.16 | 53.67 | 48.36 | 2.61 | 5.40 |
VP (%) | 11.46 | 30.37 | 17.74 | 3.68 | 20.74 |
FP (%) | 32.26 | 58.72 | 47.96 | 4.29 | 8.94 |
AP (%) | 6.00 | 9.69 | 7.61 | 0.73 | 9.59 |
RP (%) | 9.54 | 26.84 | 16.67 | 3.46 | 20.76 |
VD | 49.11 | 176.85 | 103.2 | 25.95 | 25.15 |
SVP (%) | 25.0 | 59.18 | 44.60 | 6.48 | 14.53 |
CVP (%) | 34.01 | 66.67 | 49.89 | 6.75 | 13.53 |
MVP (%) | 2.70 | 8.70 | 5.35 | 1.24 | 23.18 |
VRD (µm) | 30.41 | 69.65 | 55.20 | 9.05 | 16.39 |
VTD (µm) | 28.40 | 60.51 | 46.63 | 6.95 | 14.90 |
FD (n/mm2) | 5.71 | 11.52 | 8.98 | 1.22 | 13.59 |
W/L | 0.22 | 0.54 | 0.38 | 0.07 | 18.42 |
RH (µm) | 114.32 | 281.85 | 189.55 | 37.40 | 19.73 |
RW (µm) | 15.35 | 38.57 | 26.46 | 4.37 | 16.52 |
RD (µm) | 5.92 | 13.17 | 9.31 | 1.47 | 15.79 |
RL (µm) | 23.47 | 67.66 | 48.34 | 8.93 | 18.47 |
AD (µm) | 2.87 | 7.20 | 5.02 | 0.86 | 17.13 |
Characteristics | Juvenile Wood | Mature Wood | p-Value |
---|---|---|---|
CP (%) | 47.29 ± 1.80 | 49.93 ± 0.26 | 0.000 |
VP (%) | 18.32 ± 2.14 | 16.99 ± 1.87 | 0.076 |
FP (%) | 42.26 ± 3.48 | 49.32 ± 2.83 | 0.000 |
AP (%) | — | — | — |
RP (%) | 17.98 ± 2.37 | 16.11 ± 1.38 | 0.009 |
VD | 102.59 ± 12.53 | 103.97 ± 17.19 | 0.794 |
SVP (%) | 45.80 ± 4.80 | 42.25 ± 2.47 | 0.013 |
CVP (%) | 48.14 ± 4.16 | 51.44 ± 2.81 | 0.013 |
MVP (%) | — | — | — |
VRD (µm) | — | — | — |
VTD (µm) | — | — | — |
FD (n/mm2) | 8.70 ± 0.65 | 9.31 ± 0.59 | 0.010 |
W/L | 0.43 ± 0.05 | 0.49 ± 0.04 | 0.028 |
RH (µm) | 208.90 ± 18.86 | 188.07 ± 9.87 | 0.000 |
RW (µm) | 26.36 ± 2.56 | 26.40 ± 2.58 | 0.961 |
RD (µm) | — | — | — |
RL (µm) | 47.70 ± 3.56 | 51.82 ± 5.16 | 0.013 |
AD (µm) | — | — | — |
Characteristics | CP | FP | VP | AP | RP | VD | SVP | CVP | MVP | VRD | VTD | FD | W/L | RH | RW | RL | RD |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
FP | 0.65 ** | ||||||||||||||||
VP | −0.5 ** | −0.66 * | |||||||||||||||
AP | 0.26 | 0.22 | −0.12 | ||||||||||||||
RP | −0.6 ** | −0.4 ** | 0.15 | −0.04 | |||||||||||||
VD | −0.11 | −0.15 | 0.24 | 0.08 | 0.21 | ||||||||||||
SVP | −0.7 ** | −0.5 ** | 0.51 ** | −0.17 | 0.59 ** | 0.46 ** | |||||||||||
CVP | 0.61 ** | 0.53 ** | −0.5 * | 0.07 | −0.5 * | −0.6 * | −0.9 ** | ||||||||||
MVP | 0.32 | 0.19 | 0.04 | 0.33 | −0.29 | 0.30 | −0.03 | −0.09 | |||||||||
VRD | 0.03 | 0.004 | 0.18 | 0.004 | −0.11 | 0.24 | 0.10 | −0.12 | 0.39 * | ||||||||
VTD | 0.17 | 0.06 | −0.06 | 0.12 | −0.19 | 0.27 | −0.21 | 0.21 | 0.30 | 0.64 ** | |||||||
FD | 0.57 ** | 0.29 | −0.23 | 0.14 | −0.44 * | −0.38 * | −0.7 ** | 0.64 ** | 0.15 | −0.05 | 0.19 | ||||||
W/L | −0.27 | −0.28 | 0.11 | −0.20 | 0.42 * | 0.58 ** | 0.59 ** | −0.6 ** | −0.21 | −0.05 | −0.22 | −0.6 * | |||||
RH | −0.6 ** | −0.4 ** | 0.26 | −0.18 | 0.45 ** | 0.25 | 0.61 ** | −0.5 * | −0.38 * | −0.14 | −0.27 | −0.6 ** | 0.57 ** | ||||
RW | −0.14 | −0.12 | 0.02 | −0.15 | 0.21 | 0.30 | 0.36 * | −0.20 | −0.06 | 0.12 | 0.04 | −0.40 | 0.34 | 0.48 * | |||
RL | 0.41 * | 0.19 | −0.27 | 0.12 | 0.02 | 0.52 * | −0.12 | 0.02 | 0.21 | 0.23 | 0.37 * | 0.02 | 0.24 | −0.23 | 0.40 * | ||
RD | 0.49 ** | 0.36 * | −0.18 | 0.001 | −0.42 * | 0.06 | −0.38 * | 0.38 * | 0.14 | 0.16 | 0.38 * | 0.36 * | −0.17 | −0.32 | 0.23 | 0.43 * | |
AD | −0.10 | −0.14 | 0.35 | −0.1 | 0.13 | 0.03 | 0.18 | −0.29 | 0.11 | −0.03 | −0.19 | −0.02 | 0.04 | −0.07 | −0.43 * | −0.19 | −4.35 |
Tree Age | Diameter at Breast Height (cm) | Height (m) | Height of the Lowest Branch (m) |
---|---|---|---|
23 ± 4.7 | 26.4 ± 7.0 | 22 ± 3.3 | 15.2 ± 3.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, P.; Zhao, X.; Wang, D.; Zhang, Y.; Xie, P.; Zhao, T.; Zhao, X.; Lou, X. Radial Variation in Wood Anatomy of Cercis glabra and Its Application Potential: An Anatomy-Guided Approach to Sustainable Resource Utilization. Plants 2025, 14, 2769. https://doi.org/10.3390/plants14172769
Guo P, Zhao X, Wang D, Zhang Y, Xie P, Zhao T, Zhao X, Lou X. Radial Variation in Wood Anatomy of Cercis glabra and Its Application Potential: An Anatomy-Guided Approach to Sustainable Resource Utilization. Plants. 2025; 14(17):2769. https://doi.org/10.3390/plants14172769
Chicago/Turabian StyleGuo, Pingping, Xiping Zhao, Dongfang Wang, Yuying Zhang, Puxin Xie, Tifeng Zhao, Xinyi Zhao, and Xinyi Lou. 2025. "Radial Variation in Wood Anatomy of Cercis glabra and Its Application Potential: An Anatomy-Guided Approach to Sustainable Resource Utilization" Plants 14, no. 17: 2769. https://doi.org/10.3390/plants14172769
APA StyleGuo, P., Zhao, X., Wang, D., Zhang, Y., Xie, P., Zhao, T., Zhao, X., & Lou, X. (2025). Radial Variation in Wood Anatomy of Cercis glabra and Its Application Potential: An Anatomy-Guided Approach to Sustainable Resource Utilization. Plants, 14(17), 2769. https://doi.org/10.3390/plants14172769