Protective Role of GABA in Aromatic Rice Under Lead and Cadmium Toxicity: Physiological and Biochemical Insights
Abstract
1. Introduction
2. Results
2.1. Malondialdehyde (MDA), Electrolyte Leakage (EL), and H2O2
2.2. Chlorophyll Contents and Carotenoids
2.3. Proline, Protein, and GABA Contents
2.4. Antioxidant Enzyme Activities
2.5. GSH Contents and GS and NR Activities
2.6. Net Photosynthesis and Gas Exchange Characteristics
2.7. Grain Yield
2.8. Mineral Nutrients
2.9. Pb and Cd Accumulation in Different Plant Parts and Translocation Factor
2.10. Correlation Analysis
3. Discussion
4. Materials and Methods
4.1. Experimental Description
4.2. Sampling and Measurements
4.2.1. Determination of Oxidative Stress Indicators
4.2.2. Estimation of Photosynthetic Pigments and GABA, Proline, and Protein Contents
4.2.3. Estimation of Reduced Glutathione (GSH) and Enzymatic Antioxidants
4.2.4. Determination of Nitrogen-Metabolizing Enzymes
4.3. Measurements of Photosynthesis and Gas Exchange Parameters
4.4. Determination of Pb and Cd Contents, Elemental Analysis, and Translocation Factor
4.5. Determination of Grain Yield
4.6. Experimental Design and Statistical Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shi, J.; Zhao, D.; Ren, F.; Huang, L. Spatiotemporal variation of soil heavy metals in China: The pollution status and risk assessment. Sci. Total Environ. 2023, 871, 161768. [Google Scholar] [CrossRef]
- Jin, C.; Peng, L. Antimony’s environmental impact in China. Science 2024, 386, 280–281. [Google Scholar] [CrossRef]
- Ashraf, U.; Mahmood, M.H.-U.-R.; Hussain, S.; Abbas, F.; Anjum, S.A.; Tang, X. Lead (Pb) distribution and accumulation in different plant parts and its associations with grain Pb contents in fragrant rice. Chemosphere 2020, 248, 126003. [Google Scholar] [CrossRef]
- Saravanan, A.; Kumar, P.S.; Duc, P.A.; Rangasamy, G. Strategies for microbial bioremediation of environmental pollutants from industrial wastewater: A sustainable approach. Chemosphere 2022, 313, 137323. [Google Scholar] [CrossRef] [PubMed]
- Abtahi, M.; Fakhri, Y.; Conti, G.O.; Keramati, H.; Zandsalimi, Y.; Bahmani, Z.; Pouya, R.H.; Sarkhosh, M.; Moradi, B.; Amanidaz, N.; et al. Heavy metals (As, Cr, Pb, Cd and Ni) concentrations in rice (Oryza sativa) from Iran and associated risk assessment: A systematic review. Toxin Rev. 2017, 36, 331–341. [Google Scholar] [CrossRef]
- Sevik, H.; Ozel, H.B.; Cetin, M.; Özel, H.U.; Erdem, T. Determination of changes in heavy metal accumulation depending on plant species, plant organism, and traffic density in some landscape plants. Air Qual. Atmos. Health 2019, 12, 189–195. [Google Scholar] [CrossRef]
- Rahman, S.U.; Qin, A.; Zain, M.; Mushtaq, Z.; Mehmood, F.; Riaz, L.; Naveed, S.; Ansari, M.J.; Saeed, M.; Ahmad, I.; et al. Pb uptake, accumulation, and translocation in plants: Plant physiological, biochemical, and molecular response: A review. Heliyon 2024, 10, e27724. [Google Scholar] [CrossRef]
- Riaz, M.; Kamran, M.; Fang, Y.; Yang, G.; Rizwan, M.; Ali, S.; Zhou, Y.; Wang, Q.; Deng, L.; Wang, Y. Boron supply alleviates cadmium toxicity in rice (Oryza sativa L.) by enhancing cadmium adsorption on cell wall and triggering antioxidant defense system in roots. Chemosphere 2021, 266, 128938. [Google Scholar] [CrossRef]
- Chen, X.; Tao, H.; Wu, Y.; Xu, X. Effects of Cadmium on metabolism of photosynthetic pigment and photosynthetic system in Lactuca sativa L. revealed by physiological and proteomics analysis. Sci. Hortic. 2022, 305, 111371. [Google Scholar] [CrossRef]
- Srivastava, R.K.; Pandey, P.; Rajpoot, R.; Rani, A.; Dubey, R. Cadmium and lead interactive effects on oxidative stress and antioxidative responses in rice seedlings. Protoplasma 2014, 251, 1047–1065. [Google Scholar] [CrossRef]
- Srivastava, S.; Dubey, R. Manganese-excess induces oxidative stress, lowers the pool of antioxidants and elevates activities of key antioxidative enzymes in rice seedlings. Plant Growth Regul. 2011, 64, 1–16. [Google Scholar] [CrossRef]
- Ahmad, I.Z.; Ahmad, A.; Mabood, A.; Tabassum, H. Effects of different metal stresses on the antioxidant defense systems of medicinal plants. In Reactive Oxygen Species and Antioxidant Systems in Plants: Role and Regulation Under Abiotic Stress; Khan, M.I.R., Khan, N.A., Eds.; Springer: Singapore, 2017; pp. 215–256. [Google Scholar]
- Dabravolski, S.A.; Isayenkov, S.V. The role of the γ-aminobutyric acid (GABA) in plant salt stress tolerance. Horticulturae 2023, 9, 230. [Google Scholar] [CrossRef]
- Podlešáková, K.; Ugena, L.; Spíchal, L.; Doležal, K.; De Diego, N. Phytohormones and polyamines regulate plant stress responses by altering GABA pathway. New Biotechnol. 2019, 48, 53–65. [Google Scholar] [CrossRef]
- He, G.; Zhang, H.; Liu, S.; Li, H.; Huo, Y.; Guo, K.; Xu, Z.; Zhang, H. Exogenous γ-glutamic acid (GABA) induces proline and glutathione synthesis in alleviating Cd-induced photosynthetic inhibition and oxidative damage in tobacco leaves. J. Plant Interact. 2021, 16, 296–306. [Google Scholar] [CrossRef]
- Akçay, N.; Bor, M.; Karabudak, T.; Özdemir, F.; Türkan, İ. Contribution of Gamma amino butyric acid (GABA) to salt stress responses of Nicotiana sylvestris CMSII mutant and wild type plants. J. Plant Physiol. 2012, 169, 452–458. [Google Scholar] [CrossRef]
- Renault, H.; Roussel, V.; El Amrani, A.; Arzel, M.; Renault, D.; Bouchereau, A.; Deleu, C. The Arabidopsis pop2–1 mutant reveals the involvement of GABA transaminase in salt stress tolerance. BMC Plant Biol. 2010, 10, 20. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Khatri, A.; Swanger, S.A.; DiRaddo, J.O.; Yi, F.; Hansen, K.B.; Yuan, H.; Traynelis, S.F. Triheteromeric GluN1/GluN2A/GluN2C NMDARs with unique single-channel properties are the dominant receptor population in cerebellar granule cells. Neuron 2018, 99, 315–328.e5. [Google Scholar] [CrossRef] [PubMed]
- Wani, S.H.; Kumar, V.; Shriram, V.; Sah, S.K. Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants. Crop J. 2016, 4, 162–176. [Google Scholar] [CrossRef]
- Ghouri, F.; Shahid, M.J.; Liu, J.; Lai, M.; Sun, L.; Wu, J.; Liu, X.; Ali, S.; Shahid, M.Q. Polyploidy and zinc oxide nanoparticles alleviated Cd toxicity in rice by modulating oxidative stress and expression levels of sucrose and metal-transporter genes. J. Hazard. Mater. 2023, 448, 130991. [Google Scholar] [CrossRef] [PubMed]
- Song, H.; Xu, X.; Wang, H.; Wang, H.; Tao, Y. Exogenous γ-aminobutyric acid alleviates oxidative damage caused by aluminium and proton stresses on barley seedlings. J. Sci. Food Agric. 2010, 90, 1410–1416. [Google Scholar] [CrossRef]
- Shavrukov, Y.; Hirai, Y. Good and bad protons: Genetic aspects of acidity stress responses in plants. J. Exp. Bot. 2016, 67, 15–30. [Google Scholar] [CrossRef]
- Vijayakumari, K.; Puthur, J.T. γ-Aminobutyric acid (GABA) priming enhances the osmotic stress tolerance in Piper nigrum Linn. plants subjected to PEG-induced stress. Plant Growth Regul. 2016, 78, 57–67. [Google Scholar] [CrossRef]
- Li, Z.; Yu, J.; Peng, Y.; Huang, B. Metabolic pathways regulated by γ-aminobutyric acid (GABA) contributing to heat tolerance in creeping bentgrass (Agrostis stolonifera). Sci. Rep. 2016, 6, 30338. [Google Scholar] [CrossRef]
- Ali, B.; Xu, X.; Gill, R.A.; Yang, S.; Ali, S.; Tahir, M.; Zhou, W. Promotive role of 5-aminolevulinic acid on mineral nutrients and antioxidative defense system under lead toxicity in Brassica napus. Ind. Crops Prod. 2014, 52, 617–626. [Google Scholar] [CrossRef]
- Souri, Z.; Cardoso, A.A.; da-Silva, C.J.; de Oliveira, L.M.; Dari, B.; Sihi, D.; Karimi, N. Heavy metals and photosynthesis: Recent developments. In Photosynthesis, Productivity and Environmental Stress; Ahmad, P., Ahanger, M.A., Alyemeni, M.N., Alam, P., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2019; pp. 107–134. [Google Scholar]
- Makuch-Pietraś, I.; Grabek-Lejko, D.; Górka, A.; Kasprzyk, I. Antioxidant activities in relation to the transport of heavy metals from the soil to different parts of Betula pendula (Roth.). J. Biol. Eng. 2023, 17, 19. [Google Scholar] [CrossRef]
- Fryzova, R.; Pohanka, M.; Martinkova, P.; Cihlarova, H.; Brtnicky, M.; Hladky, J.; Kynicky, J. Oxidative stress and heavy metals in plants. Rev. Environ. Contam. Toxicol. 2018, 245, 129–156. [Google Scholar]
- Khan, Z.; Jan, R.; Asif, S.; Farooq, M.; Kim, K.M. Exogenous GABA enhances copper stress resilience in rice plants via antioxidant defense mechanisms, gene regulation, mineral uptake, and copper homeostasis. Antioxidants 2024, 13, 700. [Google Scholar] [CrossRef]
- Mishra, V.; Gahlowt, P.; Singh, S.; Dubey, N.K.; Singh, S.P.; Tripathi, D.K.; Singh, V.P. GABA: A key player of abiotic stress regulation. Plant Signal. Behav. 2023, 18, 2163343. [Google Scholar] [CrossRef] [PubMed]
- Hijaz, F.; Nehela, Y.; Killiny, N. Application of gamma-aminobutyric acid increased the level of phytohormones in Citrus sinensis. Planta 2018, 248, 909–918. [Google Scholar] [CrossRef] [PubMed]
- Nahvi, S.L.; Khurshid, A. Nitrogen metabolism enzymes: Structure, role, and regulation. In Advances in Plant Nitrogen Metabolism; Yousuf, P.Y., Shabir, P.A., Hakeem, K.R., Eds.; CRC Press: Boca Raton, FL, USA, 2022; pp. 226–236. [Google Scholar]
- Singh, P.; Singh, I.; Shah, K. Reduced activity of nitrate reductase under heavy metal cadmium stress in rice: An in silico answer. Front. Plant Sci. 2019, 9, 1948. [Google Scholar] [CrossRef] [PubMed]
- Fromm, H. GABA signaling in plants: Targeting the missing pieces of the puzzle. J. Exp. Bot. 2020, 71, 6238–6245. [Google Scholar] [CrossRef]
- Ashraf, U.; Mahmood, S.; Anjum, S.A.; Abbas, R.N.; Rasul, F.; Iqbal, J.; Mo, Z.; Tang, X. Exogenous gamma-aminobutyric acid application induced modulations in the performance of aromatic rice under lead toxicity. Front. Plant Sci. 2022, 13, 933694. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.A.; Guerinot, M.L. Mining iron: Iron uptake and transport in plants. FEBS Lett. 2007, 581, 2273–2280. [Google Scholar] [CrossRef]
- Arif, N.; Yadav, V.; Singh, S.; Singh, S.; Ahmad, P.; Mishra, R.K.; Sharma, S.; Tripathi, D.K.; Dubey, N.; Chauhan, D.K. Influence of high and low levels of plant-beneficial heavy metal ions on plant growth and development. Front. Environ. Sci. 2016, 4, 69. [Google Scholar] [CrossRef]
- Liu, J.; Li, K.; Xu, J.; Liang, J.; Lu, X.; Yang, J.; Zhu, Q. Interaction of Cd and five mineral nutrients for uptake and accumulation in different rice cultivars and genotypes. Field Crops Res. 2003, 83, 271–281. [Google Scholar] [CrossRef]
- Clemens, S. Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie 2006, 88, 1707–1719. [Google Scholar] [CrossRef] [PubMed]
- Ai, H.; Wu, D.; Li, C.; Hou, M. Advances in molecular mechanisms underlying cadmium uptake and translocation in rice. Front. Plant Sci. 2022, 13, 1003953. [Google Scholar] [CrossRef] [PubMed]
- Pourrut, B.; Shahid, M.; Dumat, C.; Winterton, P.; Pinelli, E. Lead uptake, toxicity, and detoxification in plants. Rev. Environ. Contam. Toxicol. 2011, 213, 113–136. [Google Scholar] [PubMed]
- Kumar, A.; Prasad, M.; Sytar, O. Lead toxicity, defense strategies and associated indicative biomarkers in Talinum triangulare grown hydroponically. Chemosphere 2012, 89, 1056–1065. [Google Scholar] [CrossRef]
- Yan, A.; Wang, Y.; Tan, S.N.; Yusof, M.L.M.; Ghosh, S.; Chen, Z. Phytoremediation: A promising approach for revegetation of heavy metal-polluted land. Front. Plant Sci. 2020, 11, 359. [Google Scholar] [CrossRef]
- Khan, Z.; Jan, R.; Asif, S.; Farooq, M.; Kim, K.-M. Mitigation of nickel toxicity in rice plants by exogenous γ-aminobutyric acid: Enhancement of growth, antioxidant defense, and metal homeostasis. Plant Stress 2025, 17, 100928. [Google Scholar] [CrossRef]
- Xie, W.; Kong, L.; Ma, L.; Ashraf, U.; Pan, S.; Duan, M.; Tian, H.; Wu, L.; Tang, X.; Mo, Z. Enhancement of 2-acetyl-1-pyrroline (2AP) concentration, total yield, and quality in fragrant rice through exogenous γ-aminobutyric acid (GABA) application. J. Cereal Sci. 2020, 91, 102900. [Google Scholar] [CrossRef]
- Nayyar, H.; Kaur, R.; Kaur, S.; Singh, R. γ-Aminobutyric acid (GABA) imparts partial protection from heat stress injury to rice seedlings by improving leaf turgor and upregulating osmoprotectants and antioxidants. J. Plant Growth Regul. 2014, 33, 408–419. [Google Scholar] [CrossRef]
- Hodges, D.M.; DeLong, J.M.; Forney, C.F.; Prange, R.K. Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 1999, 207, 604–611. [Google Scholar] [CrossRef]
- Velikova, V.; Yordanov, I.; Edreva, A. Oxidative stress and some antioxidant systems in acid rain-treated bean plants: Protective role of exogenous polyamines. Plant Sci. 2000, 151, 59–66. [Google Scholar] [CrossRef]
- Valentovic, P.; Luxova, M.; Kolarovic, L.; Gasparikova, O. Effect of osmotic stress on compatible solutes content, membrane stability and water relations in two maize cultivars. Plant Soil Environ. 2006, 52, 184. [Google Scholar] [CrossRef]
- Arnon, D.I. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol. 1949, 24, 1. [Google Scholar] [CrossRef]
- Yao, S.; Yang, T.; Zhao, L.; Xiong, S. The variation of γ-aminobutyric acid content in germinated brown rice among different cultivars. Sci. Agric. Sin. 2008, 41, 3974–3982. [Google Scholar]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Bates, L.S.; Waldren, R.A.; Teare, I. Rapid determination of free proline for water-stress studies. Plant Soil 1973, 39, 205–207. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, F.; Raziuddin, R.; Gong, H.; Yang, Z.; Lu, L.; Ye, Q.; Zhou, W. Effects of 5-aminolevulinic acid on oilseed rape seedling growth under herbicide toxicity stress. J. Plant Growth Regul. 2008, 27, 159–169. [Google Scholar] [CrossRef]
- Xia, X.J.; Wang, Y.J.; Zhou, Y.H.; Tao, Y.; Mao, W.H.; Shi, K.; Asami, T.; Chen, Z.; Yu, J.Q. Reactive oxygen species are involved in brassinosteroid-induced stress tolerance in cucumber. Plant Physiol. 2009, 150, 801–814. [Google Scholar] [CrossRef] [PubMed]
- Aebi, H. Catalase in vitro. In Methods in Enzymology; Packer, L., Ed.; Academic Press: Cambridge, UK, 1984; pp. 121–126. [Google Scholar]
- Wilson, K.; Walker, J. Principles and Techniques of Practical Biochemistry; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Yu, X.-Z.; Zhang, F.-Z. Activities of nitrate reductase and glutamine synthetase in rice seedlings during cyanide metabolism. J. Hazard. Mater. 2012, 225, 190–194. [Google Scholar] [CrossRef] [PubMed]
Pb | Cd | |||||||
---|---|---|---|---|---|---|---|---|
Roots | Stems | Leaves | Grains | Roots | Stems | Leaves | Grains | |
Control | 28.07 ± 0.40 d | 5.18 ± 0.49 d | 2.96 ± 0.53 c | 0.19 ± 0.01 c | 4.79 ± 0.62 e | 5.31 ± 0.15 d | 4.26 ± 0.45 e | 0.067 ± 0.00 d |
GABA | 27.09 ± 1.02 d | 4.43 ± 0.78 d | 2.52 ± 0.48 c | 0.18 ± 0.01 c | 4.47 ± 0.48 e | 4.86 ± 0.09 d | 4.82 ± 0.30 e | 0.053 ± 0.01 d |
Pb+GABA | 1715.14 ± 54.46 c | 96.77 ± 4.29 b | 70.88 ± 2.82 b | 1.66 ± 0.24 b | 4.40 ± 1.01 e | 4.28 ± 0.25 d | 5.10 ± 0.29 e | 0.062 ± 0.01 d |
Cd+GABA | 30.29 ± 0.93 d | 6.96 ± 0.24 d | 2.85 ± 0.38 c | 0.21 ± 0.01 c | 233.74 ± 3.61 bc | 23.90 ± 1.37 c | 13.82 ± 0.29 b | 0.610 ± 0.01 b |
Pb+Cd+GABA | 1738.02 ± 68.67 c | 74.10 ± 1.86 c | 65.69 ± 2.78 b | 1.63 ± 0.10 b | 227.31 ± 1.06 c | 20.35 ± 0.88 c | 12.45 ± 0.53 c | 0.488 ± 0.07 c |
Pb | 2559.15 ± 88.67 a | 112.04 ± 5.06 a | 109.54 ± 23.67 a | 3.13 ± 0.34 a | 31.55 ± 0.63 d | 6.44 ± 1.24 d | 4.20 ± 0.61 e | 0.053 ± 0.00 d |
Cd | 13.35 ± 1.63 d | 6.24 ± 0.91 d | 3.69 ± 0.18 c | 0.20 ± 0.02 c | 263.05 ± 3.72 a | 41.90 ± 2.99 a | 17.92 ± 0.18 a | 0.733 ± 0.04 a |
Pb+Cd | 1925.39 ± 25.49 b | 107.93 ± 4.05 a | 80.04 ± 2.19 b | 2.86 ± 0.24 a | 240.15 ± 5.08 b | 35.23 ± 1.24 b | 8.96 ± 0.15 d | 0.534 ± 0.07 bc |
Pb | Cd | |||||
---|---|---|---|---|---|---|
Roots–Stems | Stems–Leaves | Leaves–Grains | Roots–Stems | Stems–Leaves | Leaves–Grains | |
Control | 0.1845 | 0.5714 | 0.0642 | 1.1086 | 0.8023 | 0.0157 |
GABA | 0.1635 | 0.5688 | 0.0714 | 1.0872 | 0.9918 | 0.0110 |
Pb+GABA | 0.0564 | 0.7325 | 0.0234 | 0.9727 | 1.1916 | 0.0122 |
Cd+GABA | 0.2298 | 0.4095 | 0.0737 | 0.1023 | 0.5782 | 0.0441 |
Pb+Cd+GABA | 0.0426 | 0.8865 | 0.0248 | 0.0895 | 0.6118 | 0.0392 |
Pb | 0.0438 | 0.9777 | 0.0286 | 0.2041 | 0.6522 | 0.0126 |
Cd | 0.4674 | 0.5913 | 0.0542 | 0.1593 | 0.4277 | 0.0409 |
Pb+Cd | 0.0561 | 0.7416 | 0.0357 | 0.1467 | 0.2543 | 0.0596 |
Means | 0.1555 | 0.6849 | 0.0470 | 0.4838 | 0.6887 | 0.0294 |
Treatments | Description |
---|---|
Ck (control) | no Pb, Cd or GABA |
GABA | 1 mM L−1 GABA is applied (no Pb or Cd) |
Pb+GABA | 1 mM L−1 GABA is applied with 800 mg kg−1 of Pb |
Cd+GABA | 1 mM L−1 GABA is applied with 75 mg kg−1 of Cd |
Pb+Cd+GABA | 1 mM L−1 GABA is applied with combined Pb+Cd, i.e., 800 and 75 mg kg−1 |
Pb | only Pb (800 mg kg−1 of soil) is applied (no GABA) |
Cd | only Cd (75 mg kg−1 of soil) is applied (no GABA) |
Pb+Cd | both Pb and Cd are applied together (no GABA) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ashraf, U.; Anjum, S.A.; Rasul, F.; Farooq, M.A.; Abrar, M.; Abbas, F.; Jin, C.; Hassan, W.; Tang, X.; Khan, Z. Protective Role of GABA in Aromatic Rice Under Lead and Cadmium Toxicity: Physiological and Biochemical Insights. Plants 2025, 14, 2561. https://doi.org/10.3390/plants14162561
Ashraf U, Anjum SA, Rasul F, Farooq MA, Abrar M, Abbas F, Jin C, Hassan W, Tang X, Khan Z. Protective Role of GABA in Aromatic Rice Under Lead and Cadmium Toxicity: Physiological and Biochemical Insights. Plants. 2025; 14(16):2561. https://doi.org/10.3390/plants14162561
Chicago/Turabian StyleAshraf, Umair, Shakeel Ahmad Anjum, Fahd Rasul, Muhammad Ansar Farooq, Muhammad Abrar, Farhat Abbas, Chuan Jin, Waseem Hassan, Xiangru Tang, and Zaid Khan. 2025. "Protective Role of GABA in Aromatic Rice Under Lead and Cadmium Toxicity: Physiological and Biochemical Insights" Plants 14, no. 16: 2561. https://doi.org/10.3390/plants14162561
APA StyleAshraf, U., Anjum, S. A., Rasul, F., Farooq, M. A., Abrar, M., Abbas, F., Jin, C., Hassan, W., Tang, X., & Khan, Z. (2025). Protective Role of GABA in Aromatic Rice Under Lead and Cadmium Toxicity: Physiological and Biochemical Insights. Plants, 14(16), 2561. https://doi.org/10.3390/plants14162561