Antifungal Potential of Piper-Derived Essential Oils and Key Constituents on Moniliophthora roreri, the Causal Agent of Moniliasis in Cacao (Theobroma cacao L.)
Abstract
1. Introduction
2. Results and Discussion
2.1. Screening of Antifungal Activity of Piper EOs Against M. roreri
2.2. Chemical Characterization of EOs with Potential Activity Against M. roreri
2.3. Antifungal Potential of Selected Chemical Constituents Against M. roreri
3. Materials and Methods
3.1. General Experimental Procedures
3.2. Screening of Antifungal Activity of Piper EOs Against M. roreri
3.2.1. Plant Material
3.2.2. EOs Extraction
3.2.3. Fungal Strain
3.2.4. In Vitro Antifungal Evaluation of the EOs Using a Vapor-Phase Diffusion Assay Against M. roreri
3.2.5. Statistical Analysis
3.3. Chemical Characterization of EOs with Potential Activity Against M. roreri
3.3.1. Sample Preparation
3.3.2. GC–MS Analysis
3.3.3. Tentative Identification of EO Constituents
3.4. In Vitro Antifungal Evaluation of Selected Chemical Constituents Using a Vapor-Phase Diffusion Assay Against M. roreri
3.4.1. Chemicals
3.4.2. In Vitro Antifungal Evaluation of the VCs Using a Vapor-Phase Diffusion Assay
3.4.3. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ANOVA | A one-way analysis of variance |
APT | Attached Proton Test |
CDCl3 | Deuterated chloroform |
13C-NMR | Carbon Nuclear Magnetic Resonance |
d | Doublet |
DCM | Dichloromethane |
EI | Electron impact |
EO | Essential oil |
EOs | Essential oils |
eV | Electron volt |
ExpLRI | Experimental Linear Retention Index |
FC | Flash chromatography |
g | Grams |
CG | Gas chromatography |
GC–MS | Gas chromatography with mass spectrometry |
GCMS-TQ | Gas chromatography–mass spectrometry with triple quadrupole |
Hz | Hertz |
1H-NMR | Proton Nuclear Magnetic Resonance |
IC50 | Median inhibitory concentration |
i.d | Internal diameter |
J | Coupling constant |
L | Liter |
m | Multiplet |
m | Meters |
mg | Milligrams |
MGI | Mycelial growth inhibition |
MHz | Megahertz |
min | Minutes |
mL | Milliliter |
mm | Millimeter |
m/z | Mass/charge |
nm | Nanometers |
NMR | Nuclear Magnetic Resonance |
p | p value |
ppm | Parts per million |
q | Quartet |
rt | Retention time |
Ref | Reference |
REF LRI | Reference linear retention index |
s | Singlet |
SD | Standard deviation |
UV | Ultraviolet |
VCs | Volatile compounds |
°C | Degree Celsius |
δ | Chemical shift |
δC | Carbon shift |
δH | Hydrogen shift |
µL | Microliter |
µm | Micrometer |
References
- Compañía Nacional de Chocolate S.A.S. La Moniliasis Del Cacao: Daños, Síntomas, Epidemiología y Manejo. Available online: https://www.agrosavia.co/media/11540/69317.pdf (accessed on 26 June 2025).
- Mahecha, Y.S.; Patiño, O.J.; Prieto, J.A. Chemical Constituents and Antifungal Properties of Piper ceanothifolium Kunth Against Phytopathogens Associated with Cocoa Crops. Plants 2025, 14, 934. [Google Scholar] [CrossRef] [PubMed]
- Espinoza, F.; Amaya, D.; Pinto, C.M.; Villavicencio, M.; Sosa Del Castillo, D.; Pérez, S. Multiple Introductions of Moniliophthora roreri from the Amazon to the Pacific Region in Ecuador and Shared High Azoxystrobin Sensitivity. Agronomy 2022, 12, 1119. [Google Scholar] [CrossRef]
- Perez, L. Moniliophthora roreri H.C. Evans et al. and Moniliophthora perniciosa (Stahel) Aime: Impact, Symptoms, Diagnosis, Epidemiology and Management. Rev. Prot. Veg. 2018, 33, 1–13. [Google Scholar]
- Contreras, L.Y.S. Identificación Molecular de Aislamientos de Moniliophthora roreri En Huertos de Cacao de Norte de Santander, Colombia. Acta Agron. 2016, 65, 51–57. [Google Scholar] [CrossRef]
- Yu, J. Chemical Composition of Essential Oils and Their Potential Applications in Postharvest Storage of Cereal Grains. Molecules 2025, 30, 683. [Google Scholar] [CrossRef]
- Plasencia-Vázquez, A.H.; Vilchez-Ponce, C.R.; Ferrer-Sánchez, Y.; Veloz-Portillo, C.E.; Plasencia-Vázquez, A.H.; Vilchez-Ponce, C.R.; Ferrer-Sánchez, Y.; Veloz-Portillo, C.E. Efecto Del Cambio Climático Sobre La Distribución Potencial Del Hongo Moniliophthora roreri y El Cultivo de Cacao (Theobroma cacao) En Ecuador Continental. Terra Latinoam. 2022, 40, 1–14.e1151. [Google Scholar] [CrossRef]
- Tirado, P.; Lopera, A.; Ríos, L.A. Estrategias de Control de Moniliophthora roreri y Moniliophthora perniciosa En Theobroma cacao L.: Revisión Sistemática. Cienc. Tecnol. Agropecu. 2016, 17, 417–430. [Google Scholar] [CrossRef]
- Gómez, H.; Lopez, M.; Garrido, E.; Solís, J.; Zamarripa, A.; Avendaño, C.; Mendoza, A. La Moniliasis (Moniliophthora roreri Cif & Par) Del Cacao: Búsqueda de Estrategias Del Manejo. Available online: https://www.researchgate.net/publication/257066495_LA_MONILIASIS_Moniliophthora_roreri_Cif_Par_DEL_CACAO_BUSQUEDA_DE_ESTRATEGIAS_DE_MANEJO (accessed on 31 May 2025).
- Chitiva, L.C.; Ladino, C.; Cuca, L.E.; Prieto, J.A.; Patiño, O.J. Antifungal Activity of Chemical Constituents from Piper pesaresanum C. DC. and Derivatives against Phytopathogen Fungi of Cocoa. Molecules 2021, 26, 3256. [Google Scholar] [CrossRef]
- Fungicide Resistence Action Committee Fungal Control Agents Sorted by Cross-Resistance Pattern and Mode of Action (Including Coding for FRAC Groups on Product Labels). Available online: https://cpb-us-w2.wpmucdn.com/u.osu.edu/dist/b/28945/files/2020/02/frac-code-list-2020-final.pdf (accessed on 26 June 2025).
- Kumar, S.; Singh, V.; Chakdar, H.; Choudhary, P. Harmful Effects of Fungicides: Current Status. Int. J. Agric. Environ. Biotechnol. 2018, 11, 1011–1019. [Google Scholar]
- Deresa, E.M.; Diriba, T.F. Phytochemicals as Alternative Fungicides for Controlling Plant Diseases: A Comprehensive Review of Their Efficacy, Commercial Representatives, Advantages, Challenges for Adoption, and Possible Solutions. Heliyon 2023, 9, e13810. [Google Scholar] [CrossRef]
- Butu, M.; Rodino, S.; Butu, A. Biopesticide Formulations—Current Challenges and Future Perspectives. In Biopesticides: Volume 2: Advances in Bio-Inoculants; Elsevier: Amsterdam, The Netherlands, 2022; pp. 19–29. [Google Scholar] [CrossRef]
- Zhang, P.; Duan, C.B.; Jin, B.; Ali, A.S.; Han, X.; Zhang, H.; Zhang, M.Z.; Zhang, W.H.; Gu, Y.C. Recent Advances in the Natural Products-Based Lead Discovery for New Agrochemicals. Adv. Agrochem. 2023, 2, 324–339. [Google Scholar] [CrossRef]
- Li, H.; Qiao, S.; Zhang, S. Essential Oils in Grain Storage: A Comprehensive Review of Insecticidal and Antimicrobial Constituents, Mechanisms, and Applications for Grain Security. J. Stored Prod. Res. 2025, 111, 102537. [Google Scholar] [CrossRef]
- Gupta, I.; Singh, R.; Muthusamy, S.; Sharma, M.; Grewal, K.; Singh, H.P.; Batish, D.R. Plant Essential Oils as Biopesticides: Applications, Mechanisms, Innovations, and Constraints. Plants 2023, 12, 2916. [Google Scholar] [CrossRef] [PubMed]
- Ayllón-Gutiérrez, R.; Díaz-Rubio, L.; Montaño-Soto, M.; Haro-Vázquez, M.d.P.; Córdova-Guerrero, I. Applications of Plant Essential Oils in Pest Control and Their Encapsulation for Controlled Release: A Review. Agriculture 2024, 14, 1766. [Google Scholar] [CrossRef]
- Jyotsna, B.; Patil, S.; Prakash, Y.S.; Rathnagiri, P.; Kavi Kishor, P.B.; Jalaja, N. Essential Oils from Plant Resources as Potent Insecticides and Repellents: Current Status and Future Perspectives. Biocatal. Agric. Biotechnol. 2024, 61, 103395. [Google Scholar] [CrossRef]
- Petrović, E.; Vrandečić, K.; Ćosić, J.; Siber, T.; Godena, S. Antifungal Efficacy of Essential Oils and Their Predominant Components Against Olive Fungal Pathogens. Agriculture 2025, 15, 340. [Google Scholar] [CrossRef]
- Başer, K.H.; Buchbauer, G. Handbook of Essential Oils: Science, Technology, and Applications, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2015; pp. 1–1095. [Google Scholar] [CrossRef]
- Alam, A.; Tripathi, A.; Sharma, V.; Sharma, N. Essential Oils: A Novel Consumer and Eco-Friendly Approach to Combat Postharvest Phytopathogens. J. Adv. Biol. Biotechnol. 2017, 11, 1–16. [Google Scholar] [CrossRef]
- Jiménez, M.F.; Carrasco, H.; Olea, A.; Silva, E. Natural Compounds: A Sustainable Alternative to the Phytopathogens Control. J. Chil. Chem. Soc. 2019, 64, 4459–4465. [Google Scholar] [CrossRef]
- Sil, A.; Pramanik, K.; Samantaray, P.; Mondal, M.F.; Yadav, V. Essential Oils: A Boon towards Eco-Friendly Management of Phytopathogenic Fungi. J. Entomol. Zool. Stud. 2020, 8, 1884–1891. [Google Scholar]
- Seepe, H.A.; Nxumalo, W.; Amoo, S.O. Natural Products from Medicinal Plants against Phytopathogenic Fusarium Species: Current Research Endeavours, Challenges and Prospects. Molecules 2021, 26, 6539. [Google Scholar] [CrossRef]
- Scalvenzi, L.; Yaguache-Camacho, B.; Cabrera-Martínez, P.; Guerrini, A. Actividad Antifúngica in Vitro de Aceites Esenciales de Ocotea quixos (Lam.) Kosterm. Y Piper aduncum L. Bioagro 2016, 28, 39–46. [Google Scholar]
- Gómez-López, A.; Martínez-Bolaños, L.; Ortiz-Gil, G.; Martínez-Bolaños, M.; Avendaño-Arrazate, C.H.; Hernández-Meneses, E. Bioaceites Esenciales Inhiben a Moniliophthora roreri (Cif. y Par.) Evans et al., Causante de La Moniliasis En El Cultivo Del Cacao. Acta Agríc. Pecu. 2020, 6, E0061016. [Google Scholar] [CrossRef]
- Ramos, P.; Rodríguez, W.; Castrillón, B.; Ramos, F.; Suárez, J. Potential Use of Siparuna Guianensis Essential Oil for the Control of Moniliophthora roreri in Cacao. Acta Agron. 2022, 71, 178–185. [Google Scholar] [CrossRef]
- Lozada, B.S.; Herrera, L.V.; Perea, J.A.; Stashenko, E.; Escobar, P. Efecto in Vitro de Aceites Esenciales de Tres Especies de Lippia Sobre Moniliophthora roreri (Cif. y Par.) Evans et al., Agente Causante de La Moniliasis Del Cacao (Theobroma cacao L.). Acta Agron. 2012, 61, 102–110. [Google Scholar]
- Pansera, M.R.; Silvestre, W.P.; Gonzatti, F.; Pauletti, G.F.; Sartori, V.C. Chemical Composition and Antifungal Activity of the Essential Oils from Native Species of the ‘Campos de Cima Da Serra’ Region, South Brazil. J. Essent. Oil Res. 2021, 33, 488–501. [Google Scholar] [CrossRef]
- da Silva, H.A.; Yamaguchi, L.F.; Young, M.C.M.; Ramos, C.S.; Amorim, A.M.A.; Kato, M.J.; Batista, R. Antifungal Piperamides from Piper mollicomum Kunth (Piperaceae). Eclet. Quim. 2021, 43, 33–38. [Google Scholar] [CrossRef]
- Xu, W.-H.; Li, X.-C. Antifungal Compounds from Piper Species. Curr. Bioact. Compd. 2011, 7, 262–267. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, L.; Mesia, L.R.; Ceferino, H.; Mesia, W.R.; Andrés, M.F.; Díaz, C.E.; Gonzalez, A. Antifungal and Herbicidal Potential of Piper Essential Oils from the Peruvian Amazonia. Plants 2022, 11, 1793. [Google Scholar] [CrossRef] [PubMed]
- Huaman, C.J.; Cabezas, O.E. Matico Oil (Piper aduncum) in the Control of Moniliophthora roreri Causal Agent of Cocoa Moniliasis. Peruv. Agric. Res. 2019, 1, 53–57. [Google Scholar] [CrossRef]
- Sendoya, P. Evaluación de la Actividad Antimicrobiana in Vitro de Aceites Esenciales de Piper cumanense Kunth Frente a Moniliophthora rorero (Cif.) H.C. Evans, Stalpers, Samson & Benny. Bachelor’s Thesis, Universidad de Ibagué, Ibagué, Colombia, 2023. [Google Scholar]
- Martinez, A.P.G.; Ortíz, S.P.S.; Rodríguez, L.C.G.; Álvarez, L.N.C.; Beltrán, G.M.P.; Motta, D.M.; Moyano, E.M. Potential Use of Piper peltatum Essential Oil for the Control of Moniliophthora roreri in Cacao Plants Cultivated in the Colombian Amazon Region. Res. Sq. 2025; preprint. [Google Scholar] [CrossRef]
- Sanabria, N. Evaluaciónde La Actividad Antifúngica de Extractos Del Género Piper Contra Moniliophthora perniciosa, Agente Causal de Escoba de Bruja En El Cacao. Bachelor’s Thesis, Pontificia Universidad Javeriana, Bogotá, Colombia, 2019. [Google Scholar]
- Hountondji, F.C.C.; Hanna, R.; Sabelis, M.W. Does Methyl Salicylate, a Component of Herbivore-Induced Plant Odour, Promote Sporulation of the Mite-Pathogenic Fungus Neozygites tanajoae? Exp. Appl. Acarol. 2006, 39, 63–74. [Google Scholar] [CrossRef]
- Simas, D.; de Amorim, S.; Goulart, F.; Alviano, C.; Alviano, D.; da Silva, A. Citrus Species Essential Oils and Their Components Can Inhibit or Stimulate Fungal Growth in Fruit. Ind. Crops Prod. 2017, 98, 108–115. [Google Scholar] [CrossRef]
- Kuate, J.; Foko, J.; Ndindeng, S.; Jazet, P.; Fouré, E.; Damesse, F.; Bella, M.; Ducelier, D. Effect of Essential Oils from Citrus Varieties on in Vitro Growth and Sporulation of Phaeoramularia Angolensis Causing Citrus Leaf and Fruit Spot Disease. Eur. J. Plant Pathol. 2006, 114, 151–161. [Google Scholar] [CrossRef]
- Kadoglidou, K.; Lagopodi, A.; Karamanoli, K.; Vokou, D.; Bardas, G.A.; Menexes, G.; Constantinidou, H.I.A. Inhibitory and Stimulatory Effects of Essential Oils and Individual Monoterpenoids on Growth and Sporulation of Four Soil-Borne Fungal Isolates of Aspergillus Terreus, Fusarium oxysporum, Penicillium Expansum, and Verticillium Dahliae. Eur. J. Plant Pathol. 2011, 130, 297–309. [Google Scholar] [CrossRef]
- Silva, J.K.R.D.; Silva, J.R.A.; Nascimento, S.B.; Luz, S.F.M.D.; Meireles, E.N.; Alves, C.N.; Ramos, A.R.; Maia, J.G.S. Antifungal Activity and Computational Study of Constituents from Piper Divaricatum Essential Oil against Fusarium Infection in Black Pepper. Molecules 2014, 19, 17926–17942. [Google Scholar] [CrossRef] [PubMed]
- Mariana, D.; Silva, M.H.; Bastos, C.N. Atividade Antifúngica de Óleos Essenciais de Espécies de Piper Sobre Crinipellis perniciosa, Phytophthora palmivora e Phytophthora capsici. Fitopatol. Bras. 2007, 32, 143–145. [Google Scholar] [CrossRef]
- Rahman, A.; Al-Reza, S.M.; Kang, S.C. Antifungal Activity of Essential Oil and Extracts of Piper Chaba Hunter against Phytopathogenic Fungi. JAOCS J. Am. Oil Chem. Soc. 2011, 88, 573–579. [Google Scholar] [CrossRef]
- De Almeida, R.R.P.; Souto, R.N.P.; Bastos, C.N.; Da Silva, M.H.L.; Maia, J.G.S. Chemical Variation in Piper aduncum and Biological Properties of Its Dillapiole-Rich Essential Oil. Chem. Biodivers. 2009, 6, 1427–1434. [Google Scholar] [CrossRef]
- Potzernheim, M.C.L.; Bizzo, H.R.; Silva, J.P.; Vieira, R.F. Chemical Characterization of Essential Oil Constituents of Four Populations of Piper aduncum L. from Distrito Federal, Brazil. Biochem. Syst. Ecol. 2012, 42, 25–31. [Google Scholar] [CrossRef]
- François, T.; Dongmo, J.; Michel, P.; Lambert, S.M.; Ndifor, F.; Nangue, W.; Vyry, A.; Zollo, A.; Henri, P.; Chantal, M. Comparative Essential Oils Composition and Insecticidal Effect of Different Tissues of Piper capense L., Piper guineense Schum. et Thonn., Piper nigrum L. and Piper umbellatum L. Grown in Cameroon. Afr. J. Biotechnol. 2009, 8, 424–431. [Google Scholar]
- Salazar, L.C.; Ortiz-Reyes, A.; Rosero, D.M.; Lobo-Echeverri, T. Dillapiole in Piper holtonii as an Inhibitor of the Symbiotic Fungus Leucoagaricus gongylophorus of Leaf-Cutting Ants. J. Chem. Ecol. 2020, 46, 668–674. [Google Scholar] [CrossRef]
- Debonsi Navickiene, H.M.; de Morandim, A.A.; Alécio, A.C.; Regasini, L.O.; Cristina Bergamo, D.B.; Telascrea, M.; Cavalheiro, A.J.; Lopes, M.N.; da Bolzani Maysa Furlan, V.S.; Young, M.C.M.; et al. Composition and Antifungal Activity of Essential Oils from Piper aduncum, Piper arboreum and Piper tuberculatum. Quim. Nova 2006, 29, 467–470. [Google Scholar] [CrossRef]
- Celis, A.; Mendoza, C.; Pachón, M.; Cardona, J.; Delgado, W.; Cuca, L. Plant Extracts Used as Biocontrol with Emphasis on Piperaceae Family. A Review. Agron. Colomb. 2007, 26, 97–106. [Google Scholar]
- De Lima, C.H.M.; Camara, C.A.G.; Monteiro, V.B.; Santos, M.F.; Pontes, W.J.T.; Moraes, M.M.; Rodrigues, L.V.B. Bioactivity of Piper aduncum and Piper marginatum Essential Oils on Planococcus citri (RISSO, 1813) (Hemiptera: Pseudococcidae). Int. J. Trop. Insect Sci. 2024, 44, 2539–2548. [Google Scholar] [CrossRef]
- Monzote, L.; Scull, R.; Cos, P.; Setzer, W. Essential Oil from Piper aduncum: Chemical Analysis, Antimicrobial Assessment, and Literature Review. Medicines 2017, 4, 49. [Google Scholar] [CrossRef] [PubMed]
- Santos, P.C.; Fernandes, M. Organ- and Season-Dependent Variation in the Essential Oil Composition of Salvia officinalis L. Cultivated at Two Different Sites. J. Agric. Food Chem. 2001, 49, 2908–2916. [Google Scholar] [CrossRef]
- Masotti, V.; Juteau, F.; Bessière, J.M.; Viano, J. Seasonal and Phenological Variations of the Essential Oil from the Narrow Endemic Species Artemisia Molinieri and Its Biological Activities. J. Agric. Food Chem. 2003, 51, 7115–7121. [Google Scholar] [CrossRef]
- Guerrini, A.; Sacchetti, G.; Rossi, D.; Paganetto, G.; Muzzoli, M.; Andreotti, E.; Tognolini, M.; Maldonado, M.E.; Bruni, R. Bioactivities of Piper aduncum L. and Piper obliquum Ruiz & Pavon (Piperaceae) Essential Oils from Eastern Ecuador. Environ. Toxicol. Pharmacol. 2009, 27, 39–48. [Google Scholar] [CrossRef]
- Kelly Da Silva, J.K.R.; Pinto, L.C.; Burbano, R.M.R.; Montenegro, R.C.; Andrade, E.H.A.; Maia, J.G.S. Composition and Cytotoxic and Antioxidant Activities of the Oil of Piper aequale Vahl. Lipids Health Dis. 2016, 15, 174. [Google Scholar] [CrossRef]
- Caballero, K.; Olivero, J.; Pino, N.; Stashenko, E. Chemical Composition and Bioactivity of Piper auritum and P. multiplinervium Essential Oils against the Red Flour Beetle, Tribolium castaneum (Herbst). Plantas Med. Aromát. 2014, 13, 10–19. [Google Scholar]
- Prieto, J.A.; Patiño, W.R.; Patiño, O.J. Chemical Composition, Insecticidal and Repellent Activities of Essential Oils from Piper asperiusculum and Piper pertomentellum against Red flour Weevil. Rec. Nat. Prod. 2025, 19, 169–181. [Google Scholar] [CrossRef]
- Velandia, S.A.; Quintero, E.; Stashenko, E.E.; Ocazionez, R.E. Antiproliferative Activity of Essential Oils from Colombian Plants. Acta Biol. Colomb. 2018, 23, 189–198. [Google Scholar] [CrossRef]
- Muñoz-Acevedo, A.; González, M.C.; Alonso, J.E.; Flórez, K.C. The Repellent Capacity against Sitophilus zeamais (Coleoptera: Curculionidae) and In Vitro Inhibition of the Acetylcholinesterase Enzyme of 11 Essential Oils from Six Plants of the Caribbean Region of Colombia. Molecules 2024, 29, 1753. [Google Scholar] [CrossRef] [PubMed]
- Valarezo, E.; Benítez, L.; Palacio, C.; Aguilar, S.; Armijos, C.; Calva, J.; Ramírez, J. Volatile and Non-Volatile Metabolite Study of Endemic Ecuadorian Specie Piper lanceifolium Kunth. J. Essent. Oil Res. 2020, 33, 182–188. [Google Scholar] [CrossRef]
- Chacón, C.; Miranda-Granados, J.; Ruiz-Lau, N.; Lagunas-Rivera, S.; Ruíz-Valdiviezo, V.M.; Gutiérrez-Miceli, F.A. Actividad Antifúngica de Extractos de Hierba Santa (Piper auritum) y Jarilla (Baccharis glutinosa) Contra fusarium spp. Agrociencia 2020, 54, 531–538. [Google Scholar] [CrossRef]
- Duarte, Y.; Pino Pérez, O.; Martínez, B. Efecto de Cuatro Aceites Esenciales Sobre fusarium spp. Rev. Prot. Veg. 2013, 28, 232–235. [Google Scholar]
- Pineda, R.; Vizcaíno, S.; García, C.M.; Gil, J.H.; Durango, D.L. Chemical Composition and Antifungal Activity of Piper auritum Kunth and Piper holtonii C. DC. against Phytopatogenic fungi. Chil. J. Agric. Res. 2012, 72, 507–515. [Google Scholar] [CrossRef]
- Valente, V.M.M.; Jham, G.N.; Jardim, C.M.; Dhingra, O.D.; Ghiviriga, I. Major Antifungals in Nutmeg Essential Oil against Aspergillus flavus and A. Ochraceus. J. Food Res. 2014, 4, 51. [Google Scholar] [CrossRef]
- Fernando, A.; Senevirathne, W. Raw Material from Nutmeg Myristica Fragrans) as Effective Fungicide against Fusarium oxysporum and the Oleoresin Profile of Nutmeg. J. Appl. Life Sci. Int. 2019, 22, 1–10. [Google Scholar] [CrossRef]
- Berenbaum, M.; Neal, J.J. Synergism between Myristicin and Xanthotoxin, a Naturally Cooccurring Plant Toxicant. J. Chem. Ecol. 1985, 11, 1349–1358. [Google Scholar] [CrossRef]
- Razzaghi-Abyaneh, M.; Yoshinari, T.; Shams-Ghahfarokhi, M.; Rezaee, M.B.; Nagasawa, H.; Sakuda, S. Dillapiol and Apiol as Specific Inhibitors of the Biosynthesis of Aflatoxin G1 in Aspergillus parasiticus. Biosci. Biotechnol. Biochem. 2007, 71, 2329–2332. [Google Scholar] [CrossRef] [PubMed]
- Boulogne, I.; Petit, P.; Ozier-Lafontaine, H.; Desfontaines, L.; Loranger-Merciris, G. Insecticidal and Antifungal Chemicals Produced by Plants: A Review. Environ. Chem. Lett. 2012, 10, 325–347. [Google Scholar] [CrossRef]
- Herrera, O.; Saleh, A.; Mahmood, A.; Khalaf, M.; Calva, J.; Loyola, E.; Tataje, F.; Chávez, H.; Almeida-Galindo, J.S.; Chavez-Espinoza, J.H.; et al. The Essential Oil of Petroselinum crispum (Mill) Fuss Seeds from Peru: Phytotoxic Activity and In Silico Evaluation on the Target Enzyme of the Glyphosate Herbicide. Plants 2023, 12, 2288. [Google Scholar] [CrossRef] [PubMed]
- Andrés, M.F.; Rossa, G.E.; Cassel, E.; Vargas, R.M.F.; Santana, O.; Díaz, C.E.; González, A. Biocidal Effects of Piper hispidinervum (Piperaceae) Essential Oil and Synergism among Its Main Components. Food Chem. Toxicol. 2017, 109, 1086–1092. [Google Scholar] [CrossRef]
- Jop, B.; Wawrzyńczak, K.; Polaszek, K.; Synowiec, A. Analysis of the Sensitivity of Spring Wheat and White Mustard Seedlings to the Essential Oil of Parsley Seeds. Biol. Life Sci. Forum 2021, 3, 12. [Google Scholar] [CrossRef]
- Bailey, B.; Evans, H.; Phillips, W.; Ali, S.; Meinhardt, L. Moniliophthora roreri, Causal Agent of Cacao Frosty Pod Rot. Mol. Plant Pathol. 2018, 19, 1580–1594. [Google Scholar] [CrossRef]
- Phillips, W.; Aime, M.; Wilkinson, M. Biodiversity and Biogeography of the Cacao (Theobroma cacao) Pathogen Moniliophthora roreri in Tropical America. Plant Pathol. 2007, 56, 911–922. [Google Scholar] [CrossRef]
- Massoud, M.A.; Sayed, A.; Saad, A.K.; Soliman, E.; Yasseen El-Moghazy, A. Antifungal Activity of Some Essential Oils Applied as Fumigants against Two Stored Grains Fungi. J. Adv. Agric. Res. 2012, 17, 296–306. [Google Scholar]
- Hlebová, M.; Foltinová, D.; Vešelényiová, D.; Medo, J.; Šramková, Z.; Tančinová, D.; Mrkvová, M.; Hleba, L. The Vapor Phase of Selected Essential Oils and Their Antifungal Activity In Vitro and In Situ against Penicillium commune, a Common Contaminant of Cheese. Foods 2022, 11, 3517. [Google Scholar] [CrossRef]
- Prieto, J.A.; Patiño, O.J.; Delgado, W.A.; Moreno, J.P.; Cuca, L.E. Chemical Composition, Insecticidal and Antifungical Activities of Fruit Essential Oils of Three Colombian Zanthoxylum Species. Chil. J. Agric. Res. 2011, 71, 73–82. [Google Scholar] [CrossRef]
- Lin, H.J.; Lin, Y.L.; Huang, B.B.; Lin, Y.T.; Li, H.K.; Lu, W.J.; Lin, T.C.; Tsui, Y.C.; Lin, H.T.V. Solid- and Vapour-Phase Antifungal Activities of Six Essential Oils and Their Applications in Postharvest Fungal Control of Peach (Prunus persica L. Batsch). LWT 2022, 156, 113031. [Google Scholar] [CrossRef]
- Tančinová, D.; Mašková, Z.; Mendelová, A.; Foltinová, D.; Barboráková, Z.; Medo, J. Antifungal Activities of Essential Oils in Vapor Phase against Botrytis Cinerea and Their Potential to Control Postharvest Strawberry Gray Mold. Foods 2022, 11, 2945. [Google Scholar] [CrossRef]
- Mrvová, M.; Medo, J.; Lakatošová, J.; Barboráková, Z.; Golian, M.; Mašková, Z.; Tančinová, D. Vapor-Phase Essential Oils as Antifungal Agents against Penicillium olsonii Causing Postharvest Cherry Tomato Rot. Foods 2024, 13, 3202. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th ed.; Allured Publishing Corporation, Ed.; Carol Stream: Carol Stream, IL, USA, 2012; ISBN 978-1-932633-21-4. [Google Scholar]
- Pherobase Pherobase The Pherobase: Database of Pheromones and Semiochemicals|The World Largest Database of Behavioural Modifying Chemicals. Available online: https://www.pherobase.com/ (accessed on 26 June 2025).
- Ripoll-Aristizábal, D.C.; Patiño-Ladino, O.J.; Prieto-Rodríguez, J.A. Essential oils and phenylpropanoids from Piper: Bioactivity and enzyme inhibition in Sitophilus zeamais and Tribolium castaneum. J. Stored Prod. Res. 2025, 114, 102714. [Google Scholar] [CrossRef]
- Telci, I.; Demirtas, I.; Bayram, E.; Arabaci, O.; Kacar, O. Environmental variation on aroma components of pulegone/piperitone rich spearmint (Mentha spicata L.). Ind. Crops Prod. 2010, 32, 588–592. [Google Scholar] [CrossRef]
- Nagles Galeano, L. Study of the Insecticidal Action of Chemical Constituents Present in Essential Oils and Their Effect on Detoxifying Enzymes and Motor Function for Sitophilus zeamais; National University of Colombia: Bogotá, Colombia, 2021; Available online: https://repositorio.unal.edu.co/handle/unal/80633 (accessed on 23 May 2025).
- Ripoll, D. Insecticidal Potential of Essential Oils from Piper Species with High Phenylpropanoid Content for the Control of Sitophilus zeamais and Tribolium castaneum; National University of Colombia: Bogotá, Colombia, 2021; Available online: https://repositorio.unal.edu.co/handle/unal/87732 (accessed on 23 May 2025).
N° | Specie | IC50 (µL/L air) ± SD | Subsets * |
---|---|---|---|
A18 | P. holtoni | 0.58 ± 0.07 | A |
A2 | P. aduncum | 0.61 ± 0.16 | A |
A1 | P. aduncum | 0.62 ± 0.08 | A |
A29 | P statarium | 2.05 ± 0.15 | A |
A11 | P. divortans | 12.54 ± 0.11 | B |
A7 | P. auritum | 15.03 ± 0.85 | B |
A34 | P. tuberculatum | 22.71 ± 0.17 | C |
A10 | P. cumbricola | 35.45 ± 0.54 | D |
A30 | P. subflavum | 41.57 ± 0.62 | E |
A5 | P. asperísculum | 44.88 ± 2.04 | E |
A14 | P. eriopodon | 54.76 ± 1.54 | F |
A23 | P. marginatum var. niceforoi | 60.14 ± 0.80 | G |
A21 | P. marginatum | 61.87 ± 1.09 | G |
A31 | P. tenue | 82.73 ± 3.51 | H |
A17 | P. haughtii | 85.61 ± 1.41 | H-I |
A12 | P. elbancoanum | 89.17 ± 0.22 | I-J |
A3 | P. aequale | 90.20 ± 2.75 | J |
A4 | P. albomaculatum | 125.79 ± 0.86 | K |
A13 | P. elmetanum | 150.13 ± 2.94 | L |
A20 | P. lanceifolium | 184.27 ± 1.09 | M |
N° | Essential Oil | Majority Compounds (%) |
---|---|---|
A1 | P. aduncum | α-copaene (3.3%), caryophyllene (6.3%), germacrene D (7.0%), myristicin (22.9%), germacrene B (4.2%), dillapiole (29.5%). |
A2 | P. aduncum | Z-β-ocimene (3.7%), α-copaene (5.5%), caryophyllene (7.6%), germacrene D (7.0%), myristicin (5.6%), germacrene B (7.2%), viridiflorol (4.1%), dillapiole (23.3%), apiole (7.3%). |
A3 | P. aequale | β-pinene (3.1%), limonene (9.7%), safrole (3.8%), α-copaene (3.4%), β-elemene (4.4%), β -caryophyllene (10.8%), germacrene D (8.9%), germacrene B (11.0%), E-nerolidol (11.8%), spathulenol (4.2%). |
A4 | P. albomaculatum | γ-terpinene (3.8%), linalool (7.1%), α-copaene (6.4%), β-elemene (4.7%), caryophyllene (8.6%), alloaromadendrene (3.1%), selina-5,11-diene (6.9%), humulene (3.9%), germacrene D (5.6%), cadina-1(6),4-diene (5.1%), germacrene B (4.7%). |
A5 | P. asperiusculum | α-pinene (3.8%), α-phellandrene (4.4%), limonene (7.9%), piperitone (69.8%), isocaryophyllene (4.9%). |
A7 | P. auritum | γ-terpinene (5.1%), α-terpinolene (6.3%), camphor (10.1%), safrole (64.3%). |
A10 | P. cumbricola | p-cymene (3.0%), limonene (5.6%), γ-terpinene (3.8%), linalool (4.0%), E-p-menth-2-en-1-ol (4.4%), z-p-mentha-2-en-1-ol (4.2%), terpinen-4-ol (15.8%), piperitone (5.0%), isocaryophyllene (4.5%). |
A11 | P. divortans | sabinene (3.1%), limonene (3.0%), e-β-ocimene (3.0%), γ-terpinene (3.6%), piperitone (7.5%), α-copaene (4.3%), caryophyllene (8.2%), humulene (3.8%), germacrene D (5.1%), cadina-1(6),4-diene (4.7%), germacrene B (4.6%), viridiflorol (3.1%), dillapiole (7.3%), apiole (6.9%). |
A12 | P. elbancoanum | sabinene (3.2%), β-myrcene (3.3%), limonene (41.8%), safrole (6.1%), E-nerolidol (6.5%), spathulenol (4.6%), guaiol (7.6%). |
A13 | P. elmetanum | α-pinene (7.4%), o-cymene (17.6%), limonene (18.3%), cryptone (3.2%), geraniol (5.8%), 2-hydroxy-1,8-cineole (9.1%), caryophyllene oxide (4.4%). |
A14 | P. eriopodon | α-pinene (11.6%), β-pinene (11.4%), α-copaene (8.9%), caryophyllene (13.8%), alloaromadendrene (4.0%), cadina-1(6),4-diene (3.7%), eudesma-4(14),11-diene (5.0%), germacrene B (4.5%), apiole (3.8%). |
A17 | P. haughtii | γ-terpinene (5.7%), α-copaene (11.5%), germacrene D (14.0%), cadina-1(6),4-diene (6.3%), caryophyllene (12.6%), germacrene B (3.8%), E-nerolidol (4.4%), caryophyllene oxide (3.0%), apiole (3.0%). |
A18 | P. holtoni | α-pinene (3.1%), β-pinene (3.0%), caryophyllene (5.8%), germacrene D (11.0%), germacrene B (3.9%), spathulenol (3.0%), dillapiole (22.0%), apiole (37.2%) |
A20 | P. lanceifolium | α-cubebene (3.5%), α-copaene (3.8%), caryophyllene (24.0%), germacrene B (4.2%), eudesm-4(14)-en-11-ol (10.7%), caryophyllene oxide (6.1%), γ-eudesmol (4.8%), farnesyl alcohol (14.7%), cembrene (3.5%). |
A22 | P. marginatum | estragole (60.9%), E-Anethole (3.8%), α-copaene (4.5%), β-elemene (3.2%), caryophyllene (6.0%), germacrene B (3.1%). |
A23 | P. marginatum var. niceforoi | γ-terpinene (4.4%), estragole (57.6%), E-Anethole (7.8%), α-copaene (5.2). |
A29 | P. statarium | α-thujene (3.8%), α-pinene (5.0%), β-pinene (5.8%), α-copaene (4.2%), germacrene D (3.8%), myristicin (64.2%). |
A30 | P. subflavum | α-pinene (16.9%), β-pinene (18.5%), limonene (4.9%), γ-terpinene (4.3%), α-copaene (8.2%), caryophyllene (7.3%), germacrene D (8.4%), germacrene B (3.7%), apiole (3.4%) |
A31 | P. tenue | α-pinene (4.3%), β-pinene (4.4%), 2-carene (4.3%), α-phellandrene (3.5%), p-cymene (3.5%), limonene (6,4%), Z-β-ocimene (6.2%), E-β-ocimene (3.5%), γ-terpinene (6.3%), α-terpinolene (3.6%), terpinen-4-ol (8.6%), caryophyllene (5.7%). |
A34 | P. tuberculatum | α-pinene (3.3%), β-pinene (4.2%), Z-β-ocimene (4.4%), α-copaene (3.8%), caryophyllene (9.9%), germacrene D (10.8%), myristicin (9.2%), germacrene B (4.3%), E-nerolidol (5.4%), apiole (13.9%). |
Compound | Structure | IC50 ± SD | Subsets * |
---|---|---|---|
Myristicin
(C29) | 0.48 ± 0.05 | A | |
Dillapiole
(C14) | 0.56 ± 0.08 | A | |
Apiole
(C3) | 3.66 ± 0.51 | A-B | |
Citral
(C11) | 3.99 ± 0.41 | A-B | |
(S)-(-)-α-Terpineol
(C38) | 4.27 ± 2.56 | A-B | |
Methyl eugenol
(C25) | 4.80 ± 2.47 | A-B | |
Methyl isoeugenol
(C26) | 6.59 ± 3.33 | A-B-C | |
E-Cinnamaldehyde (C10) | 7.26 ± 4.41 | A-B-C | |
2-Undecanone
(C40) | 12.25 ± 1.26 | B-C-D | |
Safrole
(C36) | 15.04 ± 1.48 | C-D-E | |
Dihydrocarvone
(C13) | 17.45 ± 4.12 | D-E | |
E-Nerolidol
(C29) | 21.96 ± 2.78 | E-F | |
R-(-)-Carvone
(C9) | 22.87 ± 0.41 | E-F | |
(−)-Isopulegol
(C18) | 22.45 ± 0.33 | E-F | |
Piperitone
(C34) | 28.06 ± 4.16 | F | |
Estragole
(C15) | 41.48 ± 0.85 | G | |
trans-Anethole
(C2) | 42.16 ± 1.27 | G | |
Terpinolene
(C39) | 42.70 ± 1.45 | G | |
(−)-Menthol
(C23) | 45.18 ± 0.15 | G | |
Allylbenzene
(C1) | 59.65 ± 1.26 | H | |
2-Nonanone
(C30) | 60.24 ± 0.51 | H | |
(−)-Linalool
(C22) | 73.20 ± 3.33 | I | |
R-(+)-Pulegone
(C35) | 75.64 ± 3.33 | I | |
Eugenol
(C16) | 85.42 ± 1.48 | J | |
Menthone (C24) | 85.47 ± 0.78 | J | |
R-(-)-Fenchone
(C17) | 89.43 ± 1.07 | J | |
γ-Terpinene
(C37) | 103.70 ± 7.24 | K | |
R-(-)-α-Phellandrene (C31) | 109.81 ± 6.47 | K |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Delgado-Bogotá, N.V.; Patiño-Ladino, O.J.; Prieto-Rodríguez, J.A. Antifungal Potential of Piper-Derived Essential Oils and Key Constituents on Moniliophthora roreri, the Causal Agent of Moniliasis in Cacao (Theobroma cacao L.). Plants 2025, 14, 2514. https://doi.org/10.3390/plants14162514
Delgado-Bogotá NV, Patiño-Ladino OJ, Prieto-Rodríguez JA. Antifungal Potential of Piper-Derived Essential Oils and Key Constituents on Moniliophthora roreri, the Causal Agent of Moniliasis in Cacao (Theobroma cacao L.). Plants. 2025; 14(16):2514. https://doi.org/10.3390/plants14162514
Chicago/Turabian StyleDelgado-Bogotá, Natalia V., Oscar J. Patiño-Ladino, and Juliet A. Prieto-Rodríguez. 2025. "Antifungal Potential of Piper-Derived Essential Oils and Key Constituents on Moniliophthora roreri, the Causal Agent of Moniliasis in Cacao (Theobroma cacao L.)" Plants 14, no. 16: 2514. https://doi.org/10.3390/plants14162514
APA StyleDelgado-Bogotá, N. V., Patiño-Ladino, O. J., & Prieto-Rodríguez, J. A. (2025). Antifungal Potential of Piper-Derived Essential Oils and Key Constituents on Moniliophthora roreri, the Causal Agent of Moniliasis in Cacao (Theobroma cacao L.). Plants, 14(16), 2514. https://doi.org/10.3390/plants14162514