A New Set of SSR Markers Combined in One Reaction for Efficient Genotyping of the Hexaploid European Plum (Prunus domestica L.)
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material, DNA Isolation
2.2. Choice of SSR Markers and Their Evaluation, Fragment Analysis, and Sequencing
2.3. Genetic Structure Analysis
2.4. Kit Validation
3. Results
3.1. Selection of Reliable SSR Markers
3.2. Multiplexing of the Selected SSR Markers
3.3. Stuttering of SSR Markers
3.4. Statistics of Selected SSR Markers in Hexaploid European Plums
3.5. Genetic Structure of Hexaploid Plum Samples
3.6. Verification of the Kit
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Das, B.; Ahmed, N.; Singh, P. Prunus diversity-early and present development: A review. Int. J. Biodivers. Conserv. 2011, 3, 721–734. [Google Scholar]
- Morimoto, T.; Kitamura, Y.; Numaguchi, K.; Akagi, T.; Tao, R. Characterization of post-mating interspecific cross-compatibility in Prunus (Rosaceae). Sci. Hortic. 2019, 246, 693–699. [Google Scholar] [CrossRef]
- Okie, W.R. Spring satin plumcot. J. Am. Pomol. Soc. 2005, 59, 119–124. [Google Scholar]
- Neumüller, M.; Dittrich, F.; Hartmann, W.; Hadersdorfer, J.; Treutter, D. First report on the generation of Prunus domestica × P. armeniaca interspecific hybrids with hypersensitivity resistance to the Plum pox virus. Acta Hortic. 2017, 9, 15–20. [Google Scholar] [CrossRef]
- Zhebentyayeva, T.; Shankar, V.; Scorza, R.; Callahan, A.; Ravelonandro, M.; Castro, S.; DeJong, T.; Saski, C.A.; Dardick, C. Genetic characterization of worldwide Prunus domestica (plum) germplasm using sequence-based genotyping. Hortic. Res. 2019, 6, 12. [Google Scholar] [CrossRef] [PubMed]
- Testolin, R.; Messina, R.; Cipriani, G.; De Mori, G. SSR-based DNA fingerprinting of fruit crops. Crop Sci. 2023, 63, 390–459. [Google Scholar] [CrossRef]
- Schlötterer, C.; Tautz, D. Slippage synthesis of simple sequence DNA. Nucleic Acids Res. 1992, 20, 211–215. [Google Scholar] [CrossRef] [PubMed]
- Abdallah, D.; Baraket, G.; Perez, V.; Ben Mustapha, S.; Salhi-Hannachi, A.; Hormaza, J.I. Analysis of self-incompatibility and genetic diversity in diploid and hexaploid plum genotypes. Front. Plant Sci. 2019, 10, 896. [Google Scholar] [CrossRef] [PubMed]
- Gasi, F.; Sehic, J.; Grahic, J.; Hjeltnis, S.H.; Ordidge, M.; Benedikova, D.; Blouin-Delmas, M.; Drogoudi, P.; Giovannini, D.; Hofer, M.; et al. Genetic assessment of the pomological classification of plum Prunus domestica L. accessions sampled across Europe. Genet. Resour. Crop Evol. 2020, 67, 1137–1161. [Google Scholar] [CrossRef]
- Makovics-Zsohár, N.; Tóth, M.; Surányi, D.; Kovács, S.; Hegedűs, A.; Halász, J. Simple sequence repeat markers reveal Hungarian plum (Prunus domestica L.) germplasm as a valuable gene resource. Hortic. Sci. 2017, 52, 1655–1660. [Google Scholar] [CrossRef]
- Manco, R.; Basile, B.; Capuozzo, C.; Scognamiglio, P.; Forlani, M.; Rao, R.; Corrado, G. Molecular and phenotypic diversity of traditional European plum (Prunus domestica L.) germplasm of southern Italy. Sustainability 2019, 11, 4112. [Google Scholar] [CrossRef]
- Pop, R.; Monica, H.; Katalin, S.; Zănescu, M.; Sisea, C.; Catana, C.; Pamfil, D. Genetic diversity and population structure repeat (SSR) markers. Not. Bot. Horti Agrobot. Cluj-Napoca 2018, 46, 90–96. [Google Scholar] [CrossRef]
- Sehic, J.; Nybom, H.; Hjeltnes, S.H.; Gaši, F. Genetic diversity and structure of Nordic plum germplasm preserved ex situ and on-farm. Sci. Hortic. 2015, 190, 195–202. [Google Scholar] [CrossRef]
- Urrestarazu, J.; Errea, P.; Miranda, C.; Santesteban, L.G.; Pina, A. Genetic diversity of Spanish Prunus domestica L. germplasm reveals a complex genetic structure underlying. PLoS ONE 2018, 13, e0195591. [Google Scholar] [CrossRef] [PubMed]
- Xuan, H.; Ding, Y.; Spann, D.; Möller, O.; Büchele, M.; Neumüller, M. Microsatellite markers (SRR) as a tool to assist in identification of European plum (Prunus domestica). Acta Hortic. 2011, 918, 689–692. [Google Scholar] [CrossRef]
- Nybom, H.; Giovannini, D.; Ordidge, M.; Hjeltnes, S.H.; Grahić, J.; Gaši, F. ECPGR recommended SSR loci for analyses of European plum (Prunus domestica) collections. Genet. Resour. 2020, 1, 40–48. [Google Scholar] [CrossRef]
- Antanyniene, R.; Šikšnianiene, J.B.; Stanys, V.; Frercks, B. Fingerprinting of plum (Prunus domestica) genotypes in Lithuania using SSR Markers. Plants 2023, 12, 1538. [Google Scholar] [CrossRef] [PubMed]
- Meland, M.; Frøynes, O.; Fotirić Akšić, M.; Pojskić, N.; Kalamujić Stroil, B.; Miralem, M.; Konjić, A.; Gasi, F. Genetic characterization of European plum (Prunus domestica L.) accessions from Norway using ECPGR-selected SSR markers. Agronomy 2024, 14, 732. [Google Scholar] [CrossRef]
- Cipriani, G.; Lot, G.; Huang, W.G.; Marrazzo, M.T.; Peterlunger, E.; Testolin, R. AC/GT and AG/CT microsatellite repeats in peach [Prunus persica (L) Batsch]: Isolation, characterisation and cross-species amplification in Prunus. Theor. Appl. Genet. 1999, 99, 65–72. [Google Scholar] [CrossRef]
- Aranzana, M.J.; Garcia-Mas, J.; Carbo, J.; Arús, P. Development and variability analysis of microsatellite markers in peach. Plant Breed. 2002, 121, 87–92. [Google Scholar] [CrossRef]
- Dirlewanger, E.; Cosson, P.; Tavaud, M.; Aranzana, M.; Poizat, C.; Zanetto, A.; Arús, P.; Laigret, F. Development of microsatellite markers in peach [Prunus persica (L.) Batsch] and their use in genetic diversity analysis in peach and sweet cherry (Prunus avium L.). Theor. Appl. Genet. 2002, 105, 127–138. [Google Scholar] [CrossRef] [PubMed]
- Mnejja, M.; Garcia-Mas, J.; Howad, W.; Badenes, M.L.; Arús, P. Simple-sequence repeat (SSR) markers of Japanese plum (Prunus salicina Lindl) are highly polymorphic and transferable to peach and almond. Mol. Ecol. Notes 2004, 4, 163–166. [Google Scholar] [CrossRef]
- Clarke, J.; Tobutt, K. Development and characterization of polymorphic microsatellites from Prunus avium ‘Napoleon’. Mol. Ecol. Notes 2003, 3, 578–580. [Google Scholar] [CrossRef]
- Mnejja, M.; Garcia-Mas, J.; Howad, W.; Arús, P. Development and transportability across Prunus species of 42 polymorphic almond microsatellites. Mol. Ecol. Notes 2005, 5, 531–535. [Google Scholar] [CrossRef]
- Decroocq, V.; Favé, M.; Hagen, L.S.; Bordenave, L.; Decroocq, S. Development and transferability of apricot and grape EST microsatellite markers across taxa. Theor. Appl. Genet. 2003, 106, 912–922. [Google Scholar] [CrossRef] [PubMed]
- Hagen, L.; Chaib, J.; Fady, B.; Decroocq, V.; Bouchet, J.P.; Lambert, P.; Audergon, J.M. Genomic and cDNA microsatellites from apricot (Prunus armeniaca L.). Mol. Ecol. Notes 2004, 4, 742–745. [Google Scholar] [CrossRef]
- Lalli, D.A.; Abbott, A.G.; Zhebentyayeva, T.N.; Badenes, M.L.; Damsteegt, V.D.; Polak, J.W.; Krška, B.; Salava, J. A genetic linkage map for an apricot (Prunus armeniaca L.) BC1 population mapping plum pox virus resistance. Tree Genet. Genomes 2008, 4, 481–493. [Google Scholar] [CrossRef]
- Lopes, M.S.; Sefc, K.M.; Laimer, M.; Machado, A.D. Identification of microsatellite loci in apricot. Mol. Ecol. Notes 2001, 2, 24–26. [Google Scholar] [CrossRef]
- Messina, R.; Lain, O.; Marrazzo, M.T.; Cipriani, G.; Testolin, R. New set of microsatellite loci isolated in apricot. Mol. Ecol. Notes 2004, 4, 432–434. [Google Scholar] [CrossRef]
- Soriano, J.M.; Domingo, M.L.; Zuriaga, E.; Romero, C.; Zhebentyayeva, T.; Abbott, A.G.; Badenes, M.L. Identification of simple sequence repeat markers tightly linked to plum pox virus resistance in apricot. Mol. Breed. 2012, 30, 1017–1026. [Google Scholar] [CrossRef]
- Sosinski, B.R.; Gannavarapu, M.; Hager, L.D.; Beck, L.; King, G.J.; Ryder, C.D.; Rajapakse, S.; Baird, W.V.; Ballard, R.; Abbott, A.G. Characterization of microsatellite markers in peach [Prunus persica (L.) Batsch]. Theor. Appl. Genet. 2000, 101, 421–428. [Google Scholar] [CrossRef]
- Struss, D.; Ahmad, R.; Southwick, S.M.; Boritzki, M. Analysis of Sweet Cherry (Prunus avium L.) Cultivars Using SSR and AFLP Markers. J. Am. Soc. Hortic. Sci. 2003, 128, 904–909. [Google Scholar] [CrossRef]
- Testolin, R.; Marrazzo, T.; Cipriani, G.; Quarta, R.; Verde, I.; Dettori, M.T.; Pancaldi, M.; Sansavini, S. Microsatellite DNA in peach (Prunus persica L. Batsch) and its use in fingerprinting and testing the genetic origin of cultivars. Genome 2000, 43, 512–520. [Google Scholar] [CrossRef] [PubMed]
- Vaughan, S.; Russell, K. Characterization of novel microsatellites and development of multiplex PCR for large-scale population studies in wild cherry, Prunus avium. Mol. Ecol. Notes 2004, 4, 429–431. [Google Scholar] [CrossRef]
- Vendramin, E.; Dettori, M.T.; Giovinazzi, J.; Micali, S.; Quarta, R.; Verde, I. A set of EST-SSRs isolated from peach fruit transcriptome and their transportability across Prunus species. Mol. Ecol. Notes 2007, 7, 307–310. [Google Scholar] [CrossRef]
- Callahan, A.M.; Zhebentyayeva, T.N.; Humann, J.L.; Saski, C.A.; Galimba, K.D.; Georgi, L.L.; Scorza, R.; Main, D.; Dardick, C.D. Defining the ‘HoneySweet’ insertion event utilizing NextGen sequencing and a de novo genome assembly of plum (Prunus domestica). Hortic. Res. 2021, 8, 8. [Google Scholar] [CrossRef] [PubMed]
- Pritchard, J.K.; Stephens, M.; Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 2000, 155, 945–959. [Google Scholar] [CrossRef] [PubMed]
- Earl, D.A.; vonHoldt, B.M. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 2012, 4, 359–361. [Google Scholar] [CrossRef]
- Evanno, G.; Regnaut, S.; Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 2005, 14, 2611–2620. [Google Scholar] [CrossRef] [PubMed]
- Huang, K.; Dunn, D.W.; Ritland, K.; Li, B.G. POLYGENE: Population genetics analyses for autopolyploids based on allelic phenotypes. Methods Ecol. Evol. 2020, 11, 448–456. [Google Scholar] [CrossRef]
- Sokal, R.R.; Michener, C.D. A statistical method for evaluating systematic relationships. Univ. Kans. Sci. Bul. 1958, 28, 1409–1438. [Google Scholar]
- Liu, Y.; Zhao, Q.; Li, T.; Teng, C.; Peng, H.; Yao, Z.; Fang, Z.; Zhou, J.; Yang, X.; Qiao, J.; et al. Availability Evaluation and Application of MNP (Multiple Nucleotide Polymorphism) Markers in Variety Identification of Chrysanthemum. Horticulturae 2024, 10, 845. [Google Scholar] [CrossRef]
- Phillips, A.R. Variant calling in polyploids for population and quantitative genetics. Appl. Plant Sci. 2024, 12, e11607. [Google Scholar] [CrossRef] [PubMed]
- Cmejlova, J.; Rejlova, M.; Paprstein, F.; Cmejla, R. A new one-tube reaction kit for the SSR genotyping of apple (Malus × domestica Borkh.). Plant Sci. 2021, 303, 110768. [Google Scholar] [CrossRef] [PubMed]
- Zurn, J.D.; Nyberg, A.; Montanari, S.; Postman, J.; Neale, D.; Bassil, N. A new SSR fingerprinting set and its comparison to existing SSR- and SNP-based genotyping platforms to manage Pyrus germplasm resources. Tree Genet. Genomes 2020, 16, 72. [Google Scholar] [CrossRef]
- Akin, M.; Nyberg, A.; Postman, J.; Mehlenbacher, S.; Bassil, N. A multiplexed microsatellite fingerprinting set for hazelnut cultivar identification. Eur. J. Hortic. Sci. 2017, 81, 327–338. [Google Scholar] [CrossRef]
- Chambers, A.; Carle, S.; Njuguna, W.; Chamala, S.; Bassil, N.; Whitaker, V.; Barbazuk, W.; Folta, K. A genome-enabled, high-throughput, and multiplexed fingerprinting platform for strawberry (Fragaria L.). Mol. Breed. 2013, 31, 615–629. [Google Scholar] [CrossRef]
- Bassil, N.; Bidani, A.; Nyberg, A.; Hummer, K.; Rowland, L. Microsatellite markers confirm identity of blueberry (Vaccinium spp.) plants in the USDA-ARS National Clonal Germplasm Repository collection. Genet. Resour. Crop Evol. 2020, 67, 393–409. [Google Scholar] [CrossRef]
- Vieira, M.L.; Santini, L.; Diniz, A.L.; Munhoz, C.D. Microsatellite markers: What they mean and why they are so useful. Genet. Mol. Biol. 2016, 39, 312–328. [Google Scholar] [CrossRef] [PubMed]
- Queiroz, Á.; Bagoin Guimarães, J.; Sánchez, C.; Simões, F.; Maia de Sousa, R.; Viegas, W.; Veloso, M.M. Genetic Diversity and Structure of the Portuguese Pear (Pyrus communis L.) Germplasm. Sustainability 2019, 11, 5340. [Google Scholar] [CrossRef]
- Anglin, N.L.; Wenzl, P.; Azevedo, V.; Lusty, C.; Ellis, D.; Gao, D. Genotyping Genebank Collections: Strategic Approaches and Considerations for Optimal Collection Management. Plants 2025, 14, 252. [Google Scholar] [CrossRef] [PubMed]
Original SSR Marker | Source Organism | Comment | Reference |
---|---|---|---|
AMPA100 | Prunus armeniaca L. | 8-plex | [26] |
CPPCT033 | Prunus persica (L.) Batsch | 8-plex | [20] |
CPSCT005 | Prunus salicina Lindl. | 8-plex | [22] |
CPSCT039 | Prunus salicina Lindl. | 8-plex | [22] |
CPSCT042 | Prunus salicina Lindl. | 8-plex | [22] |
EMPAS02 | Prunus avium L. | 8-plex | [34] |
PacA33 * | Prunus armeniaca L. | 8-plex | [25] |
UDP98-412 | Prunus persica (L.) Batsch | 8-plex | [33] |
CPSCT026 * | Prunus salicina Lindl. | 4-plex | [22] |
EMPAS14 | Prunus avium L. | 4-plex | [34] |
UCD-CH17 | Prunus avium L. | 4-plex | [32] |
UDAp446 | Prunus armeniaca L. | 4-plex | [29] |
SSR Marker | Comment |
---|---|
BPPCT007 | more than 6 alleles observed |
BPPCT014 | higher stuttering of longer alleles, alleles differing by 1 nt, binning still possible |
BPPCT034 | difficult scoring, more than 6 alleles observed, higher stuttering |
BPPCT039 | weak PCR amplification, +3 cycles needed to obtain a sufficient signal, difficult scoring, more than 6 alleles observed, higher stuttering |
BPPCT040 | alleles with very low signal observed |
CPSCT026 | selected, 4-plex |
PacA33 | selected, 8-plex |
UDP96-005 | moderate difficulty of scoring, moderate heterogeneity, problematic binning, alleles with very low signal observed |
UDP98-407 | low heterogeneity |
Primer | Sequence | Final Concentration (µM) | Labeling |
---|---|---|---|
8-plex | |||
Blue detection channel: CPPCT033_a + CPSCT042 | |||
CPPCT033_a-F | GTGAATTCAGCAAACTAGAAACAAAC | 0.350 | 6-FAM |
CPPCT033_a-R | GCTTTGAAGTGGGTTTGATAATAG | 0.350 | - |
CPSCT042-F | TGGCTCAAAAGCTCGTAGTG | 0.200 | 6-FAM |
CPSCT042-R | CCAACCTTTCGTTTCGTCTC | 0.200 | - |
Green detection channel: UDP98-412 + CPSCT005 | |||
UDP98-412-F1 | AGGGGAAGTTTCTGCTGCAC | 0.175 | - |
UDP98-412-F2 | AGAGGAAGCTGCTGCTGCAC | 0.175 | - |
UDP98-412-R | GCTGAAGACGACGATGATGA | 0.175 | VIC |
CPSCT005-F | CTGCAAGCACTGTGGATCTC | 0.180 | VIC |
CPSCT005-R | CCCATATTCCCAACCCATTA | 0.180 | - |
Yellow detection channel: EMPaS02 + AMPA100 | |||
EMPaS02-F | CTACTTCCATGATTGCCTCAC | 0.180 | NED |
EMPaS02-R | AACATCCAGAACATCAACACAC | 0.180 | - |
AMPA100-F | TGTTTAGTTGAGGGTAACTTTGG | 0.350 | NED |
AMPA100-R | CCCTTCCTTTTCTGTGTCTCAC | 0.350 | - |
Red detection channel: CPSCT039 + PacA33 | |||
CPSCT039-F | GCCGCARCTCGTAAGGAATA | 0.200 | PET |
CPSCT039-R | TCCACYGTTGATTACCCTTC | 0.200 | - |
PacA33-F | TCAGTCTCATCCTGCATACA | 0.250 | PET |
PacA33-R | CATGTGGCTCAAGGATCAAA | 0.250 | - |
4-plex | |||
UCD-CH17; EMPAS14; UDAp446; CPSCT026 | |||
UCD-CH17-F | TGGACTTCACTCATTTCAGAGA | 0.350 | - |
UCD-CH17-R | ACTGYAGAGAATTTCCACAACCA | 0.350 | FAM |
EMPAS14-F | TCCGCCATATCACAATCAAC | 0.130 | VIC |
EMPAS14-R | TTCCACACAAAAACCAATCC | 0.130 | - |
UDAp446-F | CCTCCCCCTAGATTTTCAGC | 0.120 | NED |
UDAp446-R | CGTGCTTGGGACATAGATCA | 0.120 | - |
CPSCT026-F | TCTCACACGCTTTCGTCAAC | 0.160 | PET |
CPSCT026-R | AAAAAGCCAAAAGGGGTTGT | 0.160 | - |
Marker | Number of Alleles | Number of Rare Alleles * | Average Number of Alleles Per Genotype | Allele Combinations in 242 Samples | Unique Allele Combinations in % of Samples | Allele Range (nt) | Window Between Markers (nt) |
---|---|---|---|---|---|---|---|
8-plex | |||||||
Blue detection channel (6-FAM) | |||||||
CPPCT033_a | 16 | 8 | 4.5 | 143 | 39.3% | 95–129 | 27 |
CPSCT042 | 20 | 13 | 4.0 | 179 | 55.8% | 157–183 | |
Green detection channel (VIC) | |||||||
UDP98-412 | 26 | 19 | 4.4 | 158 | 47.9% | 87–140 | 16 |
CPSCT005 | 20 | 11 | 4.4 | 183 | 62.0% | 157–209 | |
Yellow detection channel (NED) | |||||||
EMPAS02 | 15 | 7 | 4.4 | 127 | 31.4% | 107–151 | 44 |
AMPA100 | 16 | 8 | 4.7 | 157 | 51.2% | 196–242 | |
Red detection channel (PET) | |||||||
CPSCT039 | 27 | 20 | 4.3 | 158 | 51.7% | 89–145 | 20 |
PacA33 | 40 | 35 | 4.9 | 217 | 81.4% | 166–254 | |
Total | 180 | 121 (67%) | Combined allele | 5.06 × 1017 | |||
Average | 22.5 | 15 | combinations | ||||
4-plex | |||||||
UCD-CH17 | 25 | 15 | 4.7 | 182 | 60.7% | 122–169 | |
EMPAS14 | 18 | 11 | 4.1 | 132 | 36.4% | 102–199 | |
UDAp446 | 44 | 38 | 5.2 | 209 | 76.4% | 120–214 | |
CPSCT026 | 28 | 21 | 4.8 | 188 | 63.6% | 165–213 | |
Total | 115 | 85 (74%) | Combined allele | 9.44 × 108 | |||
Average | 28.8 | 21.3 | combinations | ||||
Combined 8-plex + 4-plex | |||||||
Total | 295 | 206 (70%) | Combined allele | 4.78 × 1026 | |||
Average | 24.6 | 17.2 | combinations |
Marker | Genotypes Resolved (n; %) | Cumulative | Remaining Genotypes (n) | |
---|---|---|---|---|
8-plex markers | ||||
PacA33 | 197 | 81.4% | 45 | |
+CPSCT039 | 21 | 8.7% | 90.1% | 24 |
+CPSCT005 | 8 | 3.3% | 93.4% | 16 |
+AMPA100 | 6 | 2.5% | 95.9% | 10 |
+CPSCT042 | 2 | 0.8% | 96.7% | 8 |
All 8 markers | 8 | 3.3% | 100.0% | 0 |
242 | 100% | |||
Combined 8-plex + 4-plex markers | ||||
PacA33 | 197 | 81.4% | 45 | |
+CPSCT039 | 21 | 8.7% | 90.1% | 24 |
+CPSCT005 | 8 | 3.3% | 93.4% | 16 |
+AMPA100 | 6 | 2.5% | 95.9% | 10 |
+UDAp446 | 3 | 1.2% | 97.1% | 7 |
+CPSCT042 | 1 | 0.4% | 97.5% | 6 |
All 12 markers | 6 | 2.5% | 100.0% | 0 |
242 | 100% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Čmejlová, J.; Pluhařová, K.; Krška, B.; Čmejla, R. A New Set of SSR Markers Combined in One Reaction for Efficient Genotyping of the Hexaploid European Plum (Prunus domestica L.). Plants 2025, 14, 2281. https://doi.org/10.3390/plants14152281
Čmejlová J, Pluhařová K, Krška B, Čmejla R. A New Set of SSR Markers Combined in One Reaction for Efficient Genotyping of the Hexaploid European Plum (Prunus domestica L.). Plants. 2025; 14(15):2281. https://doi.org/10.3390/plants14152281
Chicago/Turabian StyleČmejlová, Jana, Kamila Pluhařová, Boris Krška, and Radek Čmejla. 2025. "A New Set of SSR Markers Combined in One Reaction for Efficient Genotyping of the Hexaploid European Plum (Prunus domestica L.)" Plants 14, no. 15: 2281. https://doi.org/10.3390/plants14152281
APA StyleČmejlová, J., Pluhařová, K., Krška, B., & Čmejla, R. (2025). A New Set of SSR Markers Combined in One Reaction for Efficient Genotyping of the Hexaploid European Plum (Prunus domestica L.). Plants, 14(15), 2281. https://doi.org/10.3390/plants14152281