High Stubble Height Enhances Ratoon Rice Yield by Optimizing Light–Temperature Resource Utilization and Photothermal Quotient
Abstract
1. Introduction
2. Results
2.1. Grain Yield
2.2. EAT, SR, and PQ of Different Ratoon Rice Varieties
2.3. TUE, TDW, IP, IPAR, and RUE of Different Ratoon Rice Varieties
3. Discussion
4. Materials and Methods
4.1. Experimental Site and Test Material
4.2. Experimental Design and Crop Management
4.3. Measurement of EAT and TUE
4.4. Measurement of SR, and RUE
4.5. Measurement of Photothermal Quotient
4.6. Data Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, R.; Wang, C.H.; Yang, Y.M.; Harrison, M.T.; Zhou, M.X.; Liu, K. Implications of soil waterlogging for crop quality: A meta-analysis. Eur. J. Agron. 2024, 161, 127395. [Google Scholar] [CrossRef]
- Wang, W.Q.; Zhang, H.B.; Chen, Y.W.; Zou, D.; Lou, Y.Y.; Tang, Q.Y. Progress and challenges of rice ratooning technology in Hunan Province, China. Crop Environ. 2023, 2, 101–110. [Google Scholar] [CrossRef]
- Nie, L.X.; Guo, X.Y.; Wang, W.Q.; Qi, Y.C.; Ai, Z.Y.; He, A.B. Regulation of regeneration rate to enhance ratoon rice production. Rice Sci. 2024, 32, 177–192. [Google Scholar]
- Peng, S.B.; Chang, Z.; Xing, Y. Progress and challenges of rice ratooning technology in China. Crop Environ. 2023, 2, 5–11. [Google Scholar] [CrossRef]
- Chen, H.F.; Yao, F.F.; Yang, Y.C.; Zhang, Z.X.; Fang, C.X.; Chen, T.; Lin, W.X. Progress and challenges of rice ratooning technology in Fujian Province, China. Crop Environ. 2023, 2, 121–125. [Google Scholar] [CrossRef]
- Jiang, P.; Zhang, L.; Che, C.; Zhou, X.B.; Liu, M.; Xiong, H.; Guo, X.Y.; Zhu, Y.C.; Xu, F.X. Progress and challenges of rice ratooning technology in Sichuan Province, China. Crop Environ. 2023, 2, 111–120. [Google Scholar] [CrossRef]
- Jiang, C.Q.; Dai, S.J.; Yang, D.G.; Huang, L.Y.; Tian, X.H. Variation in starch properties in ratoon rice and their relationship with rice quality. Plants 2024, 14, 2178. [Google Scholar] [CrossRef]
- Xiong, L.; Liu, Z.B.; Wang, P.; Lin, X.Y.; Wan, G.W.; Li, Q.B.; Zhang, W.X.; Liu, G.R.; Shao, C.H. Progress and challenges of rice ratooning technology in Jiangxi Province, China. Crop Environ. 2023, 2, 87–91. [Google Scholar] [CrossRef]
- Lan, C.J.; Zou, J.N.; Xu, H.L.; Wen, F.L.; Li, H.S. Enhanced strategies for water and fertilizer management to optimize yields and promote environmental sustainability in the mechanized harvesting of ratoon rice in Southeast China. Agr. Water Manag. 2024, 302, 108956. [Google Scholar] [CrossRef]
- Hu, X.Y.; Yan, B.Y.; Liu, Y.Z.; Ma, M.J.; Pan, J.F.; Fu, Y.Q.; Hu, R.; Li, M.J.; Wang, X.Y.; Ye, Q.H.; et al. Light condition during grain-filling stage of main crop strongly influences ratooning ability of low-stubble ratoon rice. Crop Environ. 2024, 3, 213–222. [Google Scholar] [CrossRef]
- Yang, C.; Yang, D.S.; Xiang, H.S.; Zhu, J.J.; Yuan, S. Varietal improvement is a feasible approach for achieving high yield and superior quality simultaneously in ratoon rice. Field Crops Res. 2025, 322, 109772. [Google Scholar] [CrossRef]
- Nakano, H.; Tanaka, R.; Nakagomi, K.; Hakata, M. Grain yield response to stubble leaf blade clipping in rice ratooning in southwestern Japan. Agron. J. 2021, 113, 4013–4021. [Google Scholar] [CrossRef]
- Hu, X.Y.; Ma, M.J.; Huang, Z.B.; Wu, Z.J.; Su, B.F. Progress and challenges of rice ratooning technology in Guangdong Province, China. Crop Environ. 2023, 2, 17–23. [Google Scholar] [CrossRef]
- Meng, T.Y.; Zhang, X.B.; Ge, J.L.; Chen, X.; Zhu, G.L.; Yang, Y.L.; Dai, Q.G. Agronomic and physiological traits facilitating better yield performance of japonica/indica hybrids in saline fields. Field Crops Res. 2021, 271, 108255. [Google Scholar] [CrossRef]
- Baruah, U.; Das, S.; Skalita, P.; Saikia, M.; Bhougal, S.; Pal, S.; Das, R. High-night temperature-induced changes in chlorophyll fluorescence, gas exchange, and leaf anatomy determine grain yield in rice varieties. J. Plant Growth Regul. 2023, 42, 5538–5557. [Google Scholar] [CrossRef]
- Zhou, N.B.; Zhang, J.; Fang, S.L.; Wei, F.Y.; Zhang, H.C. Effects of temperature and solar radiation on yield of good eating-quality rice in the lower reaches of the Huai River Basin, China. J. Integr. Agric. 2021, 20, 1762–1774. [Google Scholar] [CrossRef]
- Huang, M.; Shan, S.L.; Cao, F.B.; Zou, Y.B. The solar radiation-related determinants of rice yield variation across a wide range of regions. NJAS-Wagening J. Life Sci. 2016, 78, 123–128. [Google Scholar] [CrossRef]
- Tu, D.B.; Jiang, Y.; Liu, M.; Zhang, L.J.; Li, C.F.; Wang, J.P. Improvement and stabilization of rice production by delaying sowing date in irrigated rice system in central China. J. Sci. Food Agric. 2020, 100, 595–606. [Google Scholar] [CrossRef] [PubMed]
- Deng, N.Y.; Ling, X.X.; Sun, Y.; Zhang, C.D.; Peng, S.B.; Cui, K.H.; Huang, J.L. Influence of temperature and solar radiation on grain yield and quality in irrigated rice system. Eur. J. Agron. 2015, 64, 37–46. [Google Scholar] [CrossRef]
- Fischer, R.A. Number of kernels in wheat crops and the influence of solar radiation and temperature. J. Agric. Sci. 1985, 105, 447–461. [Google Scholar] [CrossRef]
- Islam, M.S.; Morison, J.I.L. Influence of solar radiation and temperature on irrigated rice grain yield in Bangladesh. Field Crops Res. 1992, 30, 13–28. [Google Scholar] [CrossRef]
- Xia, Y.L.; Qin, J.Q.; Huang, R.K.; Feng, F.; Zhao, Q.Z. Responses of rice qualities to temperature and light in three different ecological environments in karst regions. J. Cereal Sci. 2024, 118, 103984. [Google Scholar] [CrossRef]
- Ortiz-Monasterio, R.J.I.; Dhillon, S.S.; Fischer, R.A. Date of sowing effects on grain yield and yield components of irrigated spring wheat cultivars and relationships with radiation and temperature in Ludhiana, India. Field Crops Res. 1994, 37, 169–184. [Google Scholar] [CrossRef]
- Chakraborty, P.K.; Banerjee, S.; Nath, R. The influence of photothermal quotient on the growth and yield of summer rice under varying dates of transplanting and irrigation regimes in lower gangetic plains of India. Curr. Appl. Sci. Technol. 2018, 29, 1–14. [Google Scholar] [CrossRef]
- Jing, Q.; Spiertz, J.H.J.; Hengsdijk, H.; Keulen, H.; Cao, W.; Dai, T. Adaptation and performance of rice genotypes in tropical and subtropical environments. NJAS-Wagening J. Life Sci. 2010, 57, 149–157. [Google Scholar] [CrossRef]
- Zou, J.N.; Pang, Z.Q.; Li, Z.; Guo, C.L.; Lin, H.M.; Li, Z.; Chen, H.F.; Huang, J.W.; Chen, T.; Xu, H.L. The underlying mechanism of variety-water-nitrogen-stubble damage interactions on yield formation in ratoon rice with low stubble height under mechanized harvesting. J. Integr. Agric. 2024, 23, 806–823. [Google Scholar] [CrossRef]
- Petroudi, E.R.; Noormohammadi, G.; Mirhadi, M.J.; Madani, H.; Mobasser, H.R. Effects of nitrogen fertilization and rice harvest height on agronomic yield indices of ratoon rice-berseem clover intercropping system. Aust. J. Crop Sci. 2011, 5, 566–574. [Google Scholar]
- Yang, D.S.; Peng, S.B.; Zheng, C.; Xiong, Z.; Yang, G.D. Stubble height affects the grain yield of ratoon rice under rainfed conditions. Agr. Water Manag. 2022, 272, 107815. [Google Scholar] [CrossRef]
- Xu, F.X.; Zhang, L.; Zhou, X.B.; Guo, X.Y.; Zhu, Y.C.; Liu, M.; Xiong, H.; Jiang, P. The ratoon rice system with high yield and high efficiency in China: Progress, trend of theory and technology. Field Crops Res. 2021, 272, 108282. [Google Scholar] [CrossRef]
- Harrell, D.L.; Bond, J.A.; Blanche, S. Evaluation of main-crop stubble height on ratoon rice growth and development. Field Crops Res. 2009, 114, 396–403. [Google Scholar] [CrossRef]
- Li, Y.; Yang, X.L.; Wang, B.F.; Zhang, Z.S.; Chen, S.Y.; Li, J.L.; Chen, J.P. Effects of main season stubble height on ratoon season yield and rice quality. Crops 2021, 6, 164–170. (In Chinese) [Google Scholar]
- Torres, R.O.; Natividad, M.A.; Quintana, M.R.; Henry, A. Ratooning as a management strategy for lodged or drought-damaged rice crops. Crop Sci. 2020, 60, 367–380. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; He, A.B.; Wang, W.Q.; Peng, S.B.; Huang, J.L.; Cui, K.H.; Nie, L.X. Comparisons of regeneration rate and yields performance between inbred and hybrid rice cultivars in a direct seeding rice-ratoon rice system in central China. Field Crops Res. 2018, 223, 164–170. [Google Scholar] [CrossRef]
- Huang, L.Y.; Yang, D.S.; Li, X.X.; Peng, S.B.; Wang, F. Coordination of high grain yield and high nitrogen use efficiency through large sink size and high post-heading source capacity in rice. Field Crops Res. 2019, 233, 49–58. [Google Scholar] [CrossRef]
- Qi, D.Q.; Chen, Y.L.; Matthew, T.H.; Liu, K.; He, H.L.; Jia, C.L.; Du, K.; Wang, J.Q.; Sun, Y.J.; Yu, G.L.; et al. Mowing and nitrogen management guidelines for superior rice ratoon yields. Field Crops Res. 2024, 308, 109302. [Google Scholar] [CrossRef]
- Ge, J.L.; Chen, X.; Song, X.W.; Wei, H.H.; Dai, Q.G. Super hybrid rice improved yield by increasing spikelet amount and efficiency under optimized density-nitrogen cultivation. Field Crops Res. 2025, 326, 109859. [Google Scholar] [CrossRef]
- Wang, C.H.; Harrison, M.T.; Liu, D.L.; Yang, R.; Zhou, M.X.; Zhang, Y.B.; Liu, K. Dire need for quantification of environmental impacts associated with breeding climate-resilient crops. Agric. Syst. 2025, 227, 104352. [Google Scholar] [CrossRef]
- Sadras, V.; Dreccer, M.F. Adaptation of wheat, barley, canola, field pea and chickpea to the thermal environments of Australia. Crop Pasture Sci. 2015, 66, 1137–1150. [Google Scholar] [CrossRef]
- Porker, K.; Poole, N.; Warren, D.; Lilley, J.; Harris, F.; Kirkegaard, J. Influence of photothermal quotient in the critical period on yield potential of cereals-A comparison of wheat and barley. Field Crops Res. 2025, 321, 109658. [Google Scholar] [CrossRef]
- Tu, D.B.; Wu, W.G.; Xi, M.; Zhou, Y.J.; Xu, Y.Z.; Chen, J.H.; Shao, C.H.; Zhang, Y.P.; Zhao, Q.Z. Effect of Temperature and Radiation on Indica Rice Yield and Quality in Middle Rice Cropping System. Plants 2022, 11, 2697. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.C.; Shang, L.Y.; Dai, S.J.; Ye, J.Y.; Shen, T.; Deng, J.; Liu, K.; Tian, X.H.; Zhang, Y.B.; Huang, L.Y. Optimizing nitrogen application and planting density improves yield and resource use efficiency via regulating canopy light and nitrogen distribution in rice. J. Integr. Agric. 2024; in press. [Google Scholar]
- Xing, Z.P.; Wu, P.; Zhu, M.; Qian, H.J.; Hu, Y.J.; Guo, B.W.; Wei, H.Y.; Xu, K.; Huo, Z.Y.; Dai, Q.G.; et al. Temperature and solar radiation utilization of rice for yield formation with different mechanized planting methods in the lower reaches of the Yangtze River, China. J. Integr. Agric. 2017, 16, 1923–1935. [Google Scholar] [CrossRef]
- Li, L.C.; Zhang, Y.; Wang, B.; Feng, P.Y.; He, Q.S.; Shi, Y.; Liu, K.; Harrison, M.T.; Liu, D.L.; Yao, N.; et al. Integrating machine learning and environmental variables to constrain uncertainty in crop yield change projections under climate change. Eur. J. Agron. 2023, 149, 126917. [Google Scholar] [CrossRef]
- Zhang, B.L.; Ouyang, Y.N.; Xu, J.Y.; Liu, K. Cadmium remobilization from shoot to grain is related to pH of vascular bundle in rice. Ecotox. Environ. Saf. 2018, 147, 913–918. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Harrison, M.T.; Yan, H.L.; Liu, D.L.; Meinke, H.; Hoogenboom, G.; Wang, B.; Peng, B.; Guan, K.Y.; Jaegermeyr, J.; et al. Silver lining to a climate crisis in multiple prospects for alleviating crop waterlogging under future climates. Nat. Commun. 2023, 14, 765. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Hou, P.; Xie, R.Z.; Hao, W.P.; Li, S.K. Spatial variation and improving measures of the utilization efficiency of accumulated temperature. Crop Sci. 2015, 55, 1806–1817. [Google Scholar] [CrossRef]
- Meek, D.W.; Hatfield, J.L.; Howell, T.A.; Idso, S.B.; Reginato, R.J. A generalized relationship between photosynthetically active radiation and solar-radiation. Agron. J. 1984, 76, 939–945. [Google Scholar] [CrossRef]
Year | Variety | Treatment | MS | RS | TS | |||
---|---|---|---|---|---|---|---|---|
EAT | SR | EAT | SR | EAT | SR | |||
(°C d) | (MJ m−2) | (°C d) | (MJ m−2) | (°C d) | (MJ m−2) | |||
2022 | LY6326 | LS | 1860.5 | 2320.5 | 1135.6 | 1229.2 | 2996.1 | 3549.7 |
HS | 1860.5 | 2320.5 | 1101.5 | 1130.4 | 2962.0 | 3451.0 | ||
YY4949 | LS | 1829.4 | 2309.9 | 1262.2 | 1409.4 | 3091.6 | 3719.3 | |
HS | 1829.4 | 2309.9 | 1214.3 | 1326.1 | 3043.7 | 3636.0 | ||
YLY900 | LS | 1939.8 | 2438.5 | 1103.9 | 1197.5 | 3043.7 | 3636.0 | |
HS | 1939.8 | 2438.5 | 1053.3 | 1113.3 | 2993.1 | 3551.8 | ||
XLY900 | LS | 1985.6 | 2491.6 | 1095.0 | 1212.3 | 3080.6 | 3703.9 | |
HS | 1985.6 | 2491.6 | 1058.1 | 1144.4 | 3043.7 | 3636.0 | ||
ZYXZ | LS | 2030.4 | 2543.1 | 1013.3 | 1092.6 | 3043.7 | 3635.7 | |
HS | 2030.4 | 2543.1 | 962.7 | 1008.4 | 2993.1 | 3551.5 | ||
CLYHZ | LS | 2053.2 | 2568.7 | 956.3 | 1019.5 | 3009.5 | 3588.3 | |
HS | 2053.2 | 2568.7 | 927.9 | 941.5 | 2981.1 | 3510.2 | ||
Average | LS | 1949.8 | 2445.4 | 1094.4 a | 1193.4 a | 3044.2 a | 3638.8 a | |
HS | 1949.8 | 2445.4 | 1053.0 b | 1110.7 b | 3002.8 b | 3556.1 b | ||
2023 | LY6326 | LS | 2099.5 | 2143.4 | 899.7 | 908.7 | 2999.2 | 3052.1 |
HS | 2099.5 | 2143.4 | 868.3 | 842.3 | 2967.8 | 2985.7 | ||
YY4949 | LS | 1996.6 | 2039.8 | 1044.0 | 1055.0 | 3040.6 | 3094.8 | |
HS | 1996.6 | 2039.8 | 1002.6 | 992.6 | 2999.2 | 3032.4 | ||
YLY900 | LS | 2037.2 | 2089.0 | 1026.0 | 1033.9 | 3063.2 | 3122.9 | |
HS | 2037.2 | 2089.0 | 980.8 | 961.2 | 3018.0 | 3050.2 | ||
XLY900 | LS | 2138.1 | 2169.6 | 965.3 | 975.0 | 3103.4 | 3144.5 | |
HS | 2138.1 | 2169.6 | 902.5 | 884.4 | 3040.6 | 3054.0 | ||
ZYXZ | LS | 2138.1 | 2169.6 | 946.7 | 965.6 | 3084.8 | 3135.2 | |
HS | 2138.1 | 2169.6 | 930.8 | 921.5 | 3068.9 | 3091.1 | ||
CLYHZ | LS | 2176.3 | 2213.5 | 919.8 | 929.0 | 3096.1 | 3142.5 | |
HS | 2176.3 | 2213.5 | 898.6 | 880.6 | 3074.9 | 3094.1 | ||
Average | LS | 2097.6 | 2137.5 | 966.9 a | 977.9 a | 3064.6 a | 3115.4 a | |
HS | 2097.6 | 2137.5 | 930.6 b | 913.8 b | 3028.2 b | 3051.2 b |
Variety | Treatment | TUE (%) | TDW (g m−2) | IP (%) | IPAR (MJ m−2) | RUE (g MJ−1) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MS | RS | MS | RS | TS | MS | RS | MS | RS | TS | MS | RS | TS | ||
LY6326 | LS | 63.3 | 61.4 b | 2211.7 | 936.0 b | 3147.7 b | 86.9 | 73.0 b | 827.5 | 396.2 a | 1223.7 a | 2.6 | 2.4 b | 2.6 b |
HS | 63.3 | 62.2 a | 2211.7 | 1158.6 a | 3370.3 a | 86.9 | 80.4 a | 827.5 | 406.7 a | 1234.2 a | 2.6 | 2.9 a | 2.7 a | |
YY4949 | LS | 64.7 | 55.7 b | 2397.4 | 732.0 b | 3129.4 b | 86.3 | 60.2 b | 837.1 | 343.6 b | 1180.6 b | 2.8 | 2.2 b | 2.7 a |
HS | 64.7 | 57.0 a | 2397.4 | 997.5 a | 3394.9 a | 86.3 | 76.6 a | 837.1 | 426.9 a | 1264.0 a | 2.8 | 2.6 a | 2.7 a | |
YLY900 | LS | 65.0 | 55.0 b | 2340.4 | 718.3 b | 3058.7 b | 90.0 | 74.9 a | 925.8 | 372.5 a | 1298.3 b | 2.5 | 1.9 b | 2.4 b |
HS | 65.0 | 56.3 a | 2340.4 | 865.8 a | 3206.2 a | 90.0 | 78.6 a | 925.8 | 374.9 a | 1300.8 a | 2.5 | 2.3 a | 2.5 a | |
XLY900 | LS | 63.0 | 56.7 b | 2072.3 | 713.6 b | 2785.9 b | 89.2 | 63.8 b | 909.5 | 326.1 b | 1235.5 b | 2.3 | 2.2 b | 2.3 a |
HS | 63.0 | 57.1 a | 2072.3 | 954.1 a | 3026.5 a | 89.2 | 78.0 a | 909.5 | 397.0 a | 1306.5 a | 2.3 | 2.4 a | 2.3 a | |
TYXZ | LS | 54.6 | 68.1 b | 2251.9 | 889.4 b | 3141.3 b | 88.6 | 66.8 b | 776.9 | 354.6 b | 1131.5 b | 2.9 | 2.5 b | 2.8 b |
HS | 54.6 | 71.7 a | 2251.9 | 1245.6 a | 3497.5 a | 88.6 | 82.9 a | 776.9 | 434.6 a | 1211.5 a | 2.9 | 2.9 a | 2.9 a | |
CLYHZ | LS | 60.0 | 61.3 b | 2281.5 | 695.3 b | 2976.8 b | 95.1 | 63.8 b | 919.3 | 300.1 b | 1219.5 b | 2.5 | 2.3 b | 2.4 b |
HS | 60.0 | 62.0 a | 2281.5 | 843.6 a | 3125.0 a | 95.1 | 75.4 a | 919.3 | 341.9 a | 1261.3 a | 2.5 | 2.5 a | 2.5 a | |
Variety | LY6326 | 63.3 C | 61.8 B | 2211.7 D | 1047 A | 3259 AB | 86.9 CD | 76.7 A | 827.5 B | 401.4 A | 1229.0 BC | 2.6 B | 2.6 A | 2.7 B |
YY4949 | 64.7 B | 56.4 D | 2397.4 A | 864.7 B | 3262.1 AB | 86.3 D | 68.4 C | 837.1 B | 385.3 AB | 1222.3 C | 2.8 A | 2.3 BC | 2.7 B | |
YLY900 | 65.0 A | 55.7 E | 2340.4 B | 792 B | 3132.4 BC | 90.1 B | 76.7 A | 925.8 A | 373.7 AB | 1299.6 A | 2.5 C | 2.1 C | 2.4 C | |
XLY900 | 63.0 C | 56.9 C | 2072.3 E | 833.9 B | 2906.2 D | 89.2 BC | 70.9 ABC | 909.5 A | 361.5 B | 1271.0 AB | 2.3 D | 2.3 BC | 2.3 D | |
TYXZ | 54.6 E | 69.9 A | 2251.9 C | 1067.5 A | 3319.4 A | 88.6 BCD | 74.8 AB | 776.9 C | 394.6 A | 1171.5 D | 2.8 A | 2.7 A | 2.9 A | |
CLYHZ | 60.0 D | 61.7 B | 2281.5 C | 769.4 B | 3050.9 CD | 96.2 A | 69.6 BC | 919.3 A | 321.5 C | 1240.4 BC | 2.5 C | 2.4 B | 2.5 C | |
Treatment | LS | -- | 59.7 B | -- | 780.8 B | 3039.9 B | -- | 67.1 B | -- | 348.8 B | 1214.9 B | -- | 2.3 B | 2.5 A |
HS | -- | 61.1 A | -- | 1010.9 A | 3270.1 A | -- | 78.6 A | -- | 397.1 A | 1263.1 A | -- | 2.5 A | 2.6 A | |
Analysis of | V | ** | ** | ** | ** | ** | ** | * | ** | * | ** | ** | ** | ** |
variance | T | -- | ** | -- | ** | ** | -- | * | -- | ** | * | -- | ns | ns |
V*T | -- | ** | -- | ** | ** | -- | ns | -- | ns | ns | -- | ns | ns |
Variety | Treatment | TUE (%) | TDW (g m−2) | IP (%) | IPAR (MJ m−2) | RUE (g MJ−1) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MS | RS | MS | RS | TS | MS | RS | MS | RS | TS | MS | RS | TS | ||
LY6326 | LS | 56.3 | 66.4 b | 1503.2 | 617.6 b | 2120.8 b | 84.0 | 48.6 b | 681.2 | 235.9 b | 917.1 b | 2.4 | 2.6 b | 2.3 b |
HS | 56.3 | 68.5 a | 1503.2 | 904.8 a | 2408.0 a | 84.0 | 66.1 a | 681.2 | 301.9 a | 983.1 a | 2.4 | 3.0 a | 2.4 a | |
YY4949 | LS | 60.1 | 57.1 b | 1584.6 | 476.2 b | 2060.7 b | 86.0 | 41.3 b | 715.7 | 196.8 b | 912.6 b | 2.2 | 2.4 b | 2.2 b |
HS | 60.1 | 58.1 a | 1584.6 | 616.2 a | 2200.8 a | 86.0 | 53.3 a | 715.7 | 239.1 a | 954.9 a | 2.2 | 2.6 a | 2.3 a | |
YLY900 | LS | 63.0 | 51.1 b | 1585.9 | 380.9 b | 1966.8 b | 86.3 | 43.2 b | 763.3 | 187.6 b | 950.9 b | 2.1 | 2.0 b | 2.1 b |
HS | 63.0 | 52.7 a | 1585.9 | 740.7 a | 2326.6 a | 86.3 | 67.5 a | 763.3 | 283.6 a | 1046.9 a | 2.1 | 2.6 a | 2.2 a | |
XLY900 | LS | 59.3 | 56.9 b | 1570.7 | 364.3 b | 1935 b | 89.9 | 38.5 b | 777.1 | 173.1 b | 950.2 b | 2.0 | 2.1 b | 2.0 b |
HS | 59.3 | 58.5 a | 1570.7 | 596.3 a | 2167.1 a | 89.9 | 52.8 a | 777.1 | 229.9 a | 1007.0 a | 2.0 | 2.6 a | 2.2 a | |
TYXZ | LS | 58.3 | 53.3 b | 1688.7 | 452.0 b | 2140.7 b | 83.6 | 46.1 b | 712.8 | 186.8 b | 899.6 b | 2.4 | 2.4 b | 2.4 b |
HS | 58.3 | 55.9 a | 1688.7 | 626.5 a | 2315.2 a | 83.6 | 59.4 a | 712.8 | 233.1 a | 945.9 a | 2.4 | 2.7 a | 2.4 a | |
CLYHZ | LS | 58.4 | 53.7 b | 1751.0 | 403.5 b | 2154.4 b | 85.2 | 39.4 b | 736.7 | 171.6 b | 908.3 b | 2.4 | 2.4 b | 2.4 b |
HS | 58.4 | 56.2 a | 1751.0 | 504.8 a | 2255.7 a | 85.20 | 46.3 a | 736.7 | 195.3 a | 931.9 a | 2.4 | 2.6 a | 2.4 a | |
Variety | LY6326 | 56.3 D | 67.5 A | 1503.2 D | 761.2 A | 2264.4 A | 84.5 C | 57.3 A | 681.2 D | 268.9 A | 950.1 BC | 2.4 A | 2.8 A | 2.4 A |
YY4949 | 60.1 B | 57.6 B | 1584.6 C | 546.2 B | 2130.8 AB | 86.4 B | 47.3 B | 715.7 C | 218.0 BC | 933.7 CD | 2.3 B | 2.5 AB | 2.3 B | |
YLY900 | 63.0 A | 51.9 D | 1585.9 C | 560.8 B | 2146.7 AB | 86.3 B | 55.3 A | 763.3 A | 235.6 B | 998.9 A | 2.1 C | 2.3 B | 2.1 C | |
XLY900 | 59.3 B | 57.7 B | 1570.7 C | 480.3 C | 2051 B | 89.9 A | 45.7 B | 777.1 A | 201.5 CD | 978.6 AB | 2.0 C | 2.4 B | 2.1 C | |
TYXZ | 58.3 C | 54.6 C | 1688.7 B | 539.3 B | 2228 A | 83.6 C | 52.7 A | 712.8 C | 209.9 C | 922.7 CD | 2.4 A | 2.6 AB | 2.4 A | |
CLYHZ | 58.4 C | 55.0 C | 1751 A | 454.1 C | 2205.1 AB | 85.2 B | 42.8 B | 736.7 B | 183.4 D | 920.1 D | 2.4 A | 2.5 B | 2.4 A | |
Treatment | LS | -- | 56.4 B | -- | 449.1 B | 2063.1 B | -- | 42.8 B | -- | 192.0 B | 923.1 B | -- | 2.3 B | 2.2 B |
HS | -- | 58.3 A | -- | 664.9 A | 2278.9 A | -- | 57.6 A | -- | 247.1 A | 978.3 A | -- | 2.7 A | 2.3 A | |
Analysis of | V | ** | ** | ** | ** | ** | * | ** | ** | ** | ** | ** | * | ** |
variance | T | -- | ** | -- | ** | ** | -- | ** | -- | ** | ** | -- | ** | ** |
V*T | -- | ** | -- | ** | ** | -- | * | -- | * | * | -- | ns | ns |
Variety | Variety Type | Growth Period (Day) | Year of Release | Female Parent | Male Parent |
---|---|---|---|---|---|
LY6326 | Indica | 129 | 2009 | xuan69S | WH26 |
YLY900 | Indica | 114 | 2016 | Y58S | R900 |
CLYHZ | Indica | 123 | 2016 | C815S | Huazhan |
XLY900 | Indica | 139 | 2017 | Guangxiang24S | R900 |
TYXZ | Indica | 125 | 2021 | Taonong1A | Huanghuazhan |
YY4949 | indica × japonica hybrid | 152 | 2021 | Yongjing49A | F9249 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Sheng, T.; Shang, L.; Zhang, B.; Jin, L.; Hou, F.; Harrison, M.T.; Huang, L.; Jin, Z.; Tian, X.; et al. High Stubble Height Enhances Ratoon Rice Yield by Optimizing Light–Temperature Resource Utilization and Photothermal Quotient. Plants 2025, 14, 2222. https://doi.org/10.3390/plants14142222
Zhang Y, Sheng T, Shang L, Zhang B, Jin L, Hou F, Harrison MT, Huang L, Jin Z, Tian X, et al. High Stubble Height Enhances Ratoon Rice Yield by Optimizing Light–Temperature Resource Utilization and Photothermal Quotient. Plants. 2025; 14(14):2222. https://doi.org/10.3390/plants14142222
Chicago/Turabian StyleZhang, Yin, Tian Sheng, Liyan Shang, Beiyou Zhang, Long Jin, Fangfang Hou, Matthew Tom Harrison, Liying Huang, Zhaoqiang Jin, Xiaohai Tian, and et al. 2025. "High Stubble Height Enhances Ratoon Rice Yield by Optimizing Light–Temperature Resource Utilization and Photothermal Quotient" Plants 14, no. 14: 2222. https://doi.org/10.3390/plants14142222
APA StyleZhang, Y., Sheng, T., Shang, L., Zhang, B., Jin, L., Hou, F., Harrison, M. T., Huang, L., Jin, Z., Tian, X., Liu, K., Shi, S., Zhang, Y., & Li, D. (2025). High Stubble Height Enhances Ratoon Rice Yield by Optimizing Light–Temperature Resource Utilization and Photothermal Quotient. Plants, 14(14), 2222. https://doi.org/10.3390/plants14142222