Multi-Locus GWAS Mapping and Candidate Gene Analysis of Anticancer Peptide Lunasin in Soybean (Glycine max L. Merr.)
Abstract
1. Introduction
2. Results
2.1. Trait Distribution and Broad Sense Heritability of Assessed Traits
2.2. Multi-Locu GWAS QTN Mapping
2.3. Candidate Genes for Lunasin Content in Soybean Seeds
3. Discussion
4. Materials and Methods
4.1. GWAS Mapping Panel
4.2. SNP Genotyping and Phenotyping
4.3. Multi-Locus GWAS QTN Mapping and Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Velasquez, M.T.; Bhathena, S.J. Role of dietary soy protein in obesity. Int. J. Med. Sci. 2007, 4, 72–82. [Google Scholar] [CrossRef]
- He, F.J.; Chen, J.Q. Consumption of soybean, soy foods, soy isoflavones and breast cancer incidence: Differences between Chinese women and women in Western countries and possible mechanisms. Food Sci. Hum. Wellness 2013, 2, 146–161. [Google Scholar] [CrossRef]
- Messina, J.; Persky, V.; Setchell, D.; Barnes, S. Soy intake and cancer risk: A review of the in vitro and in vivo data. Nutr. Cancer 1994, 21, 113–131. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, C.; Gleddie, S.; Xiao, C.W. Soybean bioactive peptides and their functional properties. Nutrients 2018, 10, 1211. [Google Scholar] [CrossRef]
- Galvez, A.F.; de Lumen, B.O. A soybean cDNA encoding a chromatin-binding peptide inhibits mitosis of mammalian cells. Nat. Biotech. 1999, 17, 495–500. [Google Scholar] [CrossRef] [PubMed]
- Galvez, A.F.; Chen, N.; Macasieb, J.; de Lumen, B.O. Chemopreventive property of a soybean peptide (lunasin) that binds to deacetylated histones and inhibits acetylation. Cancer Res. 2001, 61, 7473–7478. [Google Scholar]
- Lam, Y.; Galvez, A.; de Lumen, B.O. Lunasin suppresses E1A-mediated transformation of mammalian cells but does not inhibit growth of immortalized and established cancer cell lines. Nutr. Cancer 2003, 47, 88–94. [Google Scholar] [CrossRef]
- Jeong, H.J.; Jeong, J.B.; Kim, D.S.; de Lumen, B.O. Inhibition of core histone acetylation by the cancer preventive peptide Lunasin. J. Agric. Food Chem. 2007, 55, 632–637. [Google Scholar] [CrossRef]
- Liu, J.; Jia, S.H.; Kirberger, M.; Chen, N. Lunasin as a promising health-beneficial peptide. Eur. Rev. Med. Pharmacol. Sci. 2014, 18, 2070–2075. [Google Scholar]
- Wan, X.; Hong, L.; Yong, S.; Zhang, J.; Chen, X.; Chen, N. Lunasin: A promising polypeptide for the prevention and treatment of cancer (Review). Oncol. Lett. 2017, 3, 3997–4001. [Google Scholar] [CrossRef]
- Ďúranová, H.; Fialková, V.; Bilčíková, J.; Lukáč, N.; Kňažická, Z. Lunasin and its versatile health-promoting actions. J. Microbiol. Biotechnol. Food Sci. 2019, 8, 1106–1110. [Google Scholar] [CrossRef]
- Kusmardi, K.; Wiyarta, E.; Rusdi, N.K.; Maulana, A.M.; Estuningtyas, A.; Sunaryo, H. The potential of lunasin extract for the prevention of breast cancer progression by upregulating E-Cadherin and inhibiting ICAM-1. E1000Research 2021, 10, 902. [Google Scholar] [CrossRef]
- Kaufman-Szymczyk, A.; Kaczmarek, W.; Fabianowska-Majewska, K.; Lubecka-Gajewska, K. Lunasin and its epigenetic impact in cancer chemoprevention. Int. J. Mol. Sci. 2023, 24, 9187. [Google Scholar] [CrossRef]
- Lule, V.K.; Garg, S.; Pophaly, S.D.; Tomar, S.D. Potential health benefits of Lunasin: A multifaceted Soy—Derived bioactive peptide. J. Food Sci. 2015, 80, R485–R494. [Google Scholar] [CrossRef] [PubMed]
- Singh, B.P.; Vij, S.; Hati, S. Functional significance of bioactive peptides derived from soybean. Peptides 2014, 54, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Hernandez-Ledesma, B.; Hsieh, C.C.; de Lumen, B.O. Relationship between lunasin’s sequence and its inhibitory activity of histones H3 and H4 acetylation. Mol. Nutr. Food Res. 2011, 55, 989–998. [Google Scholar] [CrossRef]
- Hsieh, C.C.; Hernandez-Ledesma, B.; de Lumen, B.O. Soybean peptide lunasin suppresses in vitro and in vivo 7,12-dimethylbenz anthracene-induced tumorigenesis. J. Food Sci. 2010, 75, H311–H316. [Google Scholar] [CrossRef]
- Shidal, C.; Al-Rayyan, N.; Yaddanapudi, K.; Davis, K. Lunasin is a novel therapeutic agent for targeting melanoma cancer stem cells. Oncotarget 2016, 7, 84128–84141. [Google Scholar] [CrossRef]
- Devapatla, B.; Shidal, C.; Yaddanapudi, K.; Davis, K. Validation of syngeneic mouse models of melanoma and non-small cell lung cancer for investigating the anticancer effects of the soy-derived peptide Lunasin. F1000Research 2017, 5, 2432. [Google Scholar] [CrossRef]
- de Mejia, G.E.; Vásconez, M.; de Lumen, B.O.; Nelson, R. Lunasin concentration in different soybean genotypes, commercial soy protein, and isoflavone products. J. Agric. Food Chem. 2004, 52, 5882–5887. [Google Scholar] [CrossRef]
- Zhang, W.; Hao, Y.; Teng, C.; Tan, C. Effects of Salt Stimulation on Lunasin Accumulation and Activity during Soybean Germination. Foods 2020, 9, 118. [Google Scholar] [CrossRef] [PubMed]
- Kump, K.L.; Bradbury, P.J.; Wisser, R.J.; Buckler, E.S.; Belcher, A.R.; Oropeza-Rosas, M.A. Genome-wide association study of quantitative resistance to southern leaf blight in the maize nested association mapping population. Nat. Genet. 2011, 43, 163–168. [Google Scholar] [CrossRef] [PubMed]
- Wen, Z.; Tan, R.; Yuan, J.; Bales, C.; Du, W.; Zhang, S.; Wang, D. Genome-wide association mapping of quantitative resistance to sudden death syndrome in soybean. BMC Genom. 2014, 15, 809. [Google Scholar] [CrossRef]
- Yuan, J.; Bizimungu, B.; De Koeyer, D.; Rosyara, U.; Wen, Z.; Lagüe, M. Genome-Wide Association Study of Resistance to Potato Common Scab. Potato Res. 2020, 63, 253–266. [Google Scholar] [CrossRef]
- Naik, S.; Sudan, J.; Urwat, U.; Pakhtoon, M.; Bhat, B.; Sharma, V.; Sofi4, P.; Shikari, S.; Bhat, B.; Sofi, N.; et al. Genome-wide SNP discovery and genotyping delineates potential QTLs underlying major yield-attributing traits in buckwheat. Plant Genome 2024, 17, e20427. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.B.; Feng, J.Y.; Ren, W.L.; Huang, B.; Zhou, L.; Wen, Y.J.; Zhang, J.; Dunwell, J.M.; Xu, S.; Zhang, Y.M. Improving power and accuracy of genome-wide association studies via a multi-locus mixed linear model methodology. Sci. Rep. 2016, 6, 19444. [Google Scholar] [CrossRef]
- Lee, S.; Van, K.; Sung, M.; McHale, L.; Nelson, R.L.; LaMantia, J.M.; Mian, M.A.R. Genome-wide association study of seed protein, oil, and amino acid contents in soybean from maturity groups I to IV. J. Theor. Appl. Genet. 2019, 132, 1639–1659. [Google Scholar] [CrossRef]
- Wójcik-Jagła, M.; Fiust, A.; Koscielniak, J.; Rapacz, M. Association mapping of drought tolerance-related traits in barley to complement a traditional biparental QTL mapping study. Theor. Appl. Genet. 2018, 131, 167–181. [Google Scholar] [CrossRef]
- Xu, X.; Sharma, R.; Tondelli, A.; Russell, J.; Comadran, J.; Schnaithmann, F.; Pillen, K.; Kilian, B.; Cattivelli, L.; Thomas, W.T.B.; et al. Genome-wide association analysis of grain yield-associated traits in a Pan-European barley cultivar collection. Plant Genome 2018, 11, 170073. [Google Scholar] [CrossRef]
- van Rooijen, R.; Kruijer, W.; Boesten, R.; van Eeuwijk, F.A.; Harbinson, J.; Aarts, M.G.M. Natural variation of yellow seedling1affects photosynthetic acclimation of Arabidopsis thaliana. Nat. Commun. 2017, 8, 1421. [Google Scholar] [CrossRef]
- Ramalingam, A.; Mohanavel, W.; Kambale, R.; Rajagopalan, V.; Marla, S.; Prasad, P.; Muthurajan, R.; Perumal, R. Pilot-scale genome-wide association mapping in diverse sorghum germplasms identified novel genetic loci linked to major agronomic, root and stomatal traits. Sci. Rep. 2023, 13, 21917. [Google Scholar] [CrossRef] [PubMed]
- Nordborg, M.; Tavare, S. Linkage disequilibrium: What history has to tell us. Trends Genet. 2002, 18, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Pressoir, G.; Briggs, W.; Vroh, I.; Bi, M.; Yamasaki, J.F.; Doebley, M.D.; McMullen, B.S.; Gaut, D.; Nielsen, J.B.; et al. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat. Genet. 2006, 38, 203–208. [Google Scholar] [CrossRef]
- Yu, J.; Buckler, E.S. Genetic association mapping and genome organization of maize. Curr. Opin. Biotechnol. 2006, 17, 155–160. [Google Scholar] [CrossRef]
- Zhang, Z.W.; Ersoz, E.; Lai, C.Q.; Todhunter, R.J.; Tiwari, H.K.; Gore, M.A. Mixed linear model approach adapted for genome-wide association studies. Nat. Genet. 2010, 42, 355–360. [Google Scholar] [CrossRef]
- Zhang, Y.; Jia, Z.; Dunwell, J. Editorial: The Applications of New Multi-Locus GWAS Methodologies in the Genetic Dissection of Complex Traits. Front. Plant Sci. 2019, 10, 100. [Google Scholar] [CrossRef]
- Tamba, C.L.; Ni, Y.L.; Zhang, Y.M. Iterative sure independence screening EM-Bayesian LASSO algorithm for multi-locus genome-wide association studies. PLoS Comput. Biol. 2017, 13, e1005357. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Feng, J.Y.; Ni, Y.N.; Wen, Y.J.; Niu, Y.; Tamba, C.L.; Yue, C.; Song, Q.; Zhang, Y.-M. pLARmEB: Integration of least angle regression with empirical Bayes for multi-locus genome-wide association studies. Heredity 2017, 118, 517–524. [Google Scholar] [CrossRef]
- Wen, Y.J.; Zhang, H.; Ni, Y.N.; Huang, B.; Zhang, J.; Feng, J.Y.; Wang, S.B.; Dunwell, J.M.; Zhang, Y.M.; Wu, R. Methodological implementation of mixed linear models in multi-locus genome-wide association studies. Brief. Bioinform. 2018, 19, 700–712. [Google Scholar] [CrossRef]
- Tamba, C.; Zhang, Y.M. A fast mrMLM algorithm for multi-locus genome-wide association studies. bioRxiv 2018. [Google Scholar] [CrossRef]
- Ren, W.; Wen, Y.; Dunwell, J.M.; Zhang, Y.M. pKWmEB: Integration of Kruskal-Wallis test with empirical Bayes under polygenic background control for multi-locus genome-wide association study. Heredity 2018, 120, 208–218. [Google Scholar] [CrossRef]
- Zhang, W.; Tamba, C.; Wen, Y.; Li, P.; Ren, W.; Ni, Y.; Gao, J.; Zhang, Y. mrMLM v4.0: An R platform for multi-locus genome-wide association studies. bioRxiv 2020. [Google Scholar] [CrossRef]
- Zhang, Y.; Jia, Z.; Dunwell, J. Editorial: The applications of new multi-locus GWAS methodologies in the genetic dissection of complex traits, volume II. Front. Plant Sci. 2023, 14, 1340767. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.H.; Zhou, G.; Ma, J.; Jiang, W.; Jin, L.G.; Zhang, Z.; Guo, Y.; Zhang, J.; Sui, Y.; Zheng, L.; et al. De novo assembly of soybean wild relatives for pan-genome analysis of diversity and agronomic traits. Nat. Biotechnol. 2014, 32, 1045–1052. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Abe, J.; Gai, Y.; Shimamoto, Y. Diversity of chloroplast DNA SSRs in wild and cultivated soybeans: Evidence for multiple origins of cultivated soybean. Theor. Appl. Genet. 2002, 105, 645–653. [Google Scholar] [CrossRef]
- Gizlice, Z.; Carter, T.E.; Burton, J.W. Genetic base for North American public soybean cultivars released between 1947 and 1988. Crop Sci. 1994, 4, 1143–1151. [Google Scholar] [CrossRef]
- Revilleza, M.J.; Galvez, A.F.; Krenz, D.C.; de Lumen, B.O. An 8 kDa methionine-rich protein from soybean (Glycine max) cotyledon: Identification, purification, and N-terminal sequence. J. Agric. Food Chem. 1996, 44, 2930–2935. [Google Scholar] [CrossRef]
- Jeong, H.J.; Park, J.H.; Lam, Y.; de Lumen, B.O. Characterization of lunasin isolated from soybean. J. Agric. Food Chem. 2003, 51, 7901–7906. [Google Scholar] [CrossRef]
- Sachdeva, S.; Singh, R.; Maurya, A.; Singh, V.; Singh, U. New insights into QTNs and potential candidate genes governing rice yield via a multi-model genome-wide association study. BMC Plant Biol. 2024, 24, 124. [Google Scholar] [CrossRef]
- Zeffa, D.; Júnior, L.; de Assis, R.; Delfini, J.; Marcos, A.; Koltun, A.; Baba, V.; Goncalves, L. Multi-locus genome-wide association study for phosphorus use efficiency in a tropical maize germplasm. Front. Plant Sci. 2024, 15, 1366173. [Google Scholar] [CrossRef]
- Galvez, A.F.; Revilleza, M.J.R.; de Lumen, B.O. A novel methionine-rich protein from soybean cotyledon: Cloning and characterization of a cDNA (Accession No. AF005030) Plant Gene Register #PGR97-103. Plant Physiol. 1997, 114, 1567. [Google Scholar]
- McLennan, A.G. The Nudix hydrolase superfamily. Cell. Mol. Life Sci. 2006, 63, 123–143. [Google Scholar] [CrossRef] [PubMed]
- Ge, X.; Xia, Y. The role of AtNUDT7, a Nudix hydrolase, in the plant defense response. Plant Signal. Behav. 2008, 3, 119–120. [Google Scholar] [CrossRef] [PubMed]
- Dong, S.; Wang, Y. Nudix Effectors: A Common Weapon in the Arsenal of Plant Pathogens. PLoS Pathog. 2016, 12, e1005704. [Google Scholar] [CrossRef]
- Hallauer, A.R.; Carena, M.J.; Miranda Filho, J.D. Quantitative Genetics in Maize Breeding; Springer Science & Business Media: New York, NY, USA, 2010. [Google Scholar] [CrossRef]
- Hassani, M.; Mahmoudi, S.; Saremirad, A.; Taleghani, D. Genotype by environment and genotype by yield*trait interactions in sugar beet: Analyzing yield stability and determining key traits association. Sci. Rep. 2023, 13, 23111. [Google Scholar] [CrossRef]
- Falconer, D.S.; Mackay, T.F.C. Introduction to Quantitative Genetics, 4th ed.; Addison Wesley Longman: Harlow, UK, 1996. [Google Scholar]
- Zhang, J.; Song, Q.; Cregan, P.; Jiang, G. Genome-wide association study, genomic prediction and marker-assisted selection for seed weight in soybean (Glycine max). Theor. Appl. Genet. 2016, 129, 117–130. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wu, M.; Chen, H.; Liao, W.; Yao, S.; Wei, Y.; Wang, H.; Long, Q.; Hu, X.; Wang, W.; et al. An integrated physiological indicator and transcriptomic analysis reveals the response of soybean buds to high-temperature stress. BMC Plant Biol. 2024, 24, 1102. [Google Scholar] [CrossRef]
- Song, Q.; Hyten, D.; Jia, G.; Quigley, C.; Fickus, E.; Nelson, R.; Cregan, P. Development and evaluation of SoySNP50K, a high-density genotyping array for soybean. PLoS ONE 2013, 8, e54985. [Google Scholar] [CrossRef]
- Song, Q.; Hyten, D.; Jia, G.; Quigley, C.; Fickus, E.; Nelson, R.; Cregan, P. Fingerprinting soybean germplasm and its utility in genomic research. G3 2015, 5, 1999–2006. [Google Scholar] [CrossRef]
- Grant, D.; Nelson, R.T.; Cannon, S.B.; Shoemaker, R.C. SoyBase, the USDA-ARS soybean genetics and genomics database. Nucleic Acids Res. 2010, 38, D843–D846. [Google Scholar] [CrossRef]
- Cavazos, A.; Morales, E.; Dia, V.P.; De Mejia, E.G. Analysis of lunasin in commercial and pilot plant produced soybean products and an improved method of lunasin purification. J. Food Sci. 2012, 77, C539–C545. [Google Scholar] [CrossRef]
- Kusumah, J.; Castañeda-Reyes, E.D.; Bringe, N.A.; de Mejia, E.G. Soybean (Glycine max) INFOGEST Colonic Digests Attenuated Inflammatory Responses Based on Protein Profiles of Different Varieties. Int. J. Mol. Sci. 2023, 24, 12396. [Google Scholar] [CrossRef] [PubMed]
- Pilet-Nayel, M.L.; Muehlbauer, F.J.; McGee, R.J.; Kraft, J.M.; Baranger, A.; Coyne, C.J. Quantitative trait loci for partial resistance to Aphanomyces root rot in pea. Theor. Appl. Genet. 2002, 106, 28–39. [Google Scholar] [CrossRef] [PubMed]
Trait | Mean | Range | CV (%) | SE | Skewness | Kurtosis | W Value (p < 0.05) |
---|---|---|---|---|---|---|---|
Lunasin_Pr03 | 6.32 | 10.74 | 43.08 | 0.32 | 0.01 | 2.15 | 0.96 * |
Lunasin_DF03 | 5.79 | 9.88 | 43.03 | 0.29 | −0.08 | 2.14 | 0.96 * |
Lunasin_Pr21 | 338.09 | 772.87 | 46.16 | 17.23 | 0.56 | 3.25 | 0.97 |
Lunasin_DF21 | 35.29 | 106.49 | 66.82 | 2.6 | 1.33 | 4.41 | 0.87 *** |
Trait Name | Method | SNP | Chr. | Marker Position | QTN Effect | LOD Score | ‘−log10(P)’ | r2 (%) | MAF | Genotype |
---|---|---|---|---|---|---|---|---|---|---|
Lunasin_DF03 | mrMLM | ss715595316 | 6 | 5184562 | 1.2504 | 4.0461 | 4.7999 | 8.3756 | 0.1179 | G |
Lunasin_DF03 | mrMLM | ss715596616 | 7 | 17043096 | 0.8142 | 5.8761 | 6.7049 | 6.9945 | 0.3302 | C |
Lunasin_DF03 | mrMLM | ss715633674 | 19 | 3035283 | −8.3977 | 5.5739 | 6.392 | 30.7161 | 0.0047 | G |
Lunasin_DF03 | FASTmrMLM | ss715595316 | 6 | 5184562 | 0.8255 | 3.9564 | 4.7058 | 4.9591 | 0.1157 | G |
Lunasin_DF03 | FASTmrMLM | ss715595189 | 6 | 50535934 | −1.1725 | 3.0827 | 3.7832 | 8.7577 | 0.1065 | A |
Lunasin_DF03 | FASTmrMLM | ss715596616 | 7 | 17043096 | 0.421 | 3.0624 | 3.7616 | 2.5404 | 0.3241 | C |
Lunasin_DF03 | FASTmrEMMA | ss715579276 | 1 | 40092915 | 1.2741 | 4.0034 | 4.7551 | 5.5541 | 0.3056 | T |
Lunasin_DF03 | FASTmrEMMA | ss715586961 | 3 | 793778 | 1.3682 | 3.5775 | 4.3071 | 6.8987 | 0.3704 | A |
Lunasin_DF03 | FASTmrEMMA | ss715596420 | 7 | 15552442 | −1.1375 | 3.6375 | 4.3703 | 4.0045 | 0.2639 | A |
Lunasin_DF03 | pLARmEB | ss715580426 | 1 | 54004529 | 0.7868 | 3.1176 | 3.8203 | 3.6523 | 0.088 | G |
Lunasin_DF03 | pLARmEB | ss715581194 | 2 | 13683259 | −1.5026 | 7.0063 | 7.871 | 15.4191 | 0.0926 | G |
Lunasin_DF03 | pLARmEB | ss715590292 | 5 | 1942075 | 0.4423 | 4.5676 | 5.3456 | 3.0459 | 0.412 | A |
Lunasin_DF03 | pLARmEB | ss715595316 | 6 | 5184562 | 0.8666 | 5.0072 | 5.8036 | 5.4654 | 0.1157 | G |
Lunasin_DF03 | pLARmEB | ss715596608 | 7 | 16974662 | 0.5261 | 3.3406 | 4.0567 | 3.967 | 0.3241 | G |
Lunasin_DF03 | pLARmEB | ss715604755 | 9 | 47022602 | −0.6594 | 4.5291 | 5.3054 | 5.7395 | 0.2824 | T |
Lunasin_DF03 | pLARmEB | ss715616380 | 13 | 42752378 | 0.3751 | 3.275 | 3.9873 | 2.1377 | 0.412 | T |
Lunasin_DF03 | pLARmEB | ss715628168 | 17 | 7370439 | −0.5191 | 4.9246 | 5.7177 | 3.9145 | 0.3426 | A |
Lunasin_DF03 | ISIS EM-BLASSO | ss715579317 | 1 | 41141330 | 0.535 | 5.766 | 6.5909 | 4.3876 | 0.3889 | G |
Lunasin_DF03 | ISIS EM-BLASSO | ss715580042 | 1 | 50725197 | 0.6076 | 5.4564 | 6.2702 | 3.7298 | 0.1898 | A |
Lunasin_DF03 | ISIS EM-BLASSO | ss715580426 | 1 | 54004529 | 0.8918 | 4.4724 | 5.2462 | 4.6926 | 0.088 | G |
Lunasin_DF03 | ISIS EM-BLASSO | ss715581194 | 2 | 13683259 | −0.9361 | 3.1766 | 3.8829 | 5.9838 | 0.0926 | G |
Lunasin_DF03 | ISIS EM-BLASSO | ss715595316 | 6 | 5184562 | 0.606 | 3.6641 | 4.3983 | 2.6723 | 0.1157 | G |
Lunasin_DF03 | ISIS EM-BLASSO | ss715596608 | 7 | 16974662 | 0.4661 | 4.3235 | 5.0905 | 3.1138 | 0.3241 | G |
Lunasin_DF03 | ISIS EM-BLASSO | ss715597517 | 7 | 37004443 | −0.6891 | 5.3944 | 6.2058 | 4.0617 | 0.1389 | G |
Lunasin_DF03 | ISIS EM-BLASSO | ss715599447 | 8 | 13272509 | −0.7145 | 3.3954 | 4.1147 | 1.4537 | 0.0463 | A |
Lunasin_DF03 | ISIS EM-BLASSO | ss715604755 | 9 | 47022602 | −0.572 | 4.6519 | 5.4335 | 4.3192 | 0.2824 | T |
Lunasin_DF03 | ISIS EM-BLASSO | ss715628168 | 17 | 7370439 | −0.4974 | 4.6701 | 5.4525 | 3.5938 | 0.3426 | A |
Lunasin_DF21 | mrMLM | ss715588993 | 4 | 51820047 | −15.7929 | 6.7159 | 7.5719 | 7.4369 | 0.0875 | G |
Lunasin_DF21 | mrMLM | ss715591002 | 5 | 34359243 | −6.6651 | 4.0003 | 4.7519 | 4.1176 | 0.4 | C |
Lunasin_DF21 | mrMLM | ss715607293 | 10 | 43465671 | −47.9847 | 5.2081 | 6.0124 | 30.9931 | 0.0187 | C |
Lunasin_DF21 | mrMLM | ss715608045 | 10 | 49696358 | 10.6285 | 6.4119 | 7.2585 | 6.1079 | 0.1562 | G |
Lunasin_DF21 | mrMLM | ss715613090 | 12 | 4402508 | −24.2842 | 5.6262 | 6.4462 | 26.1584 | 0.0688 | A |
Lunasin_DF21 | mrMLM | ss715623919 | 16 | 28465014 | −8.3573 | 5.1897 | 5.9933 | 6.4143 | 0.4125 | A |
Lunasin_DF21 | mrMLM | ss715629312 | 18 | 1735923 | 6.1196 | 3.319 | 4.0339 | 2.8076 | 0.2562 | A |
Lunasin_DF21 | mrMLM | ss715638485 | 20 | 44108146 | 7.0304 | 3.5643 | 4.2931 | 2.518 | 0.15 | T |
Lunasin_DF21 | FASTmrMLM | ss715591002 | 5 | 34359243 | −4.567 | 3.6677 | 4.4021 | 3.6408 | 0.4146 | A |
Lunasin_DF21 | FASTmrMLM | ss715592971 | 6 | 12980012 | −5.8621 | 3.3236 | 4.0387 | 4.2342 | 0.2073 | A |
Lunasin_DF21 | FASTmrMLM | ss715594520 | 6 | 45930385 | −5.7135 | 4.6139 | 5.3939 | 5.5865 | 0.3841 | C |
Lunasin_DF21 | FASTmrMLM | ss715612259 | 12 | 33175894 | 12.4064 | 6.1152 | 6.9521 | 8.6429 | 0.1159 | T |
Lunasin_DF21 | FASTmrMLM | ss715616757 | 13 | 16561515 | −4.0125 | 3.0799 | 3.7802 | 2.8878 | 0.4939 | A |
Lunasin_DF21 | FASTmrMLM | ss715618992 | 14 | 44255136 | −8.8116 | 5.3863 | 6.1974 | 7.4492 | 0.1524 | C |
Lunasin_DF21 | FASTmrMLM | ss715622529 | 15 | 49657138 | −10.779 | 10.211 | 11.1535 | 17.7085 | 0.2988 | C |
Lunasin_DF21 | FASTmrEMMA | ss715612259 | 12 | 33175894 | 32.5837 | 4.7315 | 5.5165 | 16.6431 | 0.1159 | T |
Lunasin_DF21 | FASTmrEMMA | ss715622529 | 15 | 49657138 | −3.37 × 10−5 | 3.6424 | 4.3755 | 4.23 × 10−11 | 0.2988 | C |
Lunasin_DF21 | pLARmEB | ss715585714 | 3 | 36302681 | −7.1031 | 7.3819 | 8.2573 | 3.0745 | 0.3415 | G |
Lunasin_DF21 | pLARmEB | ss715592971 | 6 | 12980012 | −10.0753 | 9.5639 | 10.4929 | 4.7987 | 0.2073 | A |
Lunasin_DF21 | pLARmEB | ss715594507 | 6 | 45436808 | 5.7038 | 4.8581 | 5.6484 | 1.9438 | 0.3171 | T |
Lunasin_DF21 | pLARmEB | ss715607342 | 10 | 44167653 | −14.8486 | 7.1929 | 8.063 | 4.1257 | 0.061 | C |
Lunasin_DF21 | pLARmEB | ss715612259 | 12 | 33175894 | 13.9585 | 8.9721 | 9.8878 | 4.1975 | 0.1159 | T |
Lunasin_DF21 | pLARmEB | ss715622529 | 15 | 49657138 | −7.622 | 6.2133 | 7.0534 | 3.3971 | 0.2988 | C |
Lunasin_DF21 | pLARmEB | ss715624628 | 16 | 33733586 | −5.4859 | 3.485 | 4.2094 | 1.5313 | 0.2195 | C |
Lunasin_DF21 | ISIS EM-BLASSO | ss715592975 | 6 | 12984798 | −8.1046 | 6.5187 | 7.3686 | 9.2736 | 0.2622 | G |
Lunasin_DF21 | ISIS EM-BLASSO | ss715594520 | 6 | 45930385 | −4.9599 | 3.781 | 4.5214 | 4.2099 | 0.3841 | C |
Lunasin_DF21 | ISIS EM-BLASSO | ss715607342 | 10 | 44167653 | −14.3003 | 5.7142 | 6.5373 | 9.974 | 0.061 | C |
Lunasin_DF21 | ISIS EM-BLASSO | ss715612259 | 12 | 33175894 | 9.0802 | 3.6503 | 4.3838 | 4.6298 | 0.1159 | T |
Lunasin_DF21 | ISIS EM-BLASSO | ss715616757 | 13 | 16561515 | −4.0037 | 3.1842 | 3.891 | 2.8752 | 0.4939 | A |
Lunasin_DF21 | ISIS EM-BLASSO | ss715622529 | 15 | 49657138 | −8.1201 | 6.2863 | 7.1288 | 10.0496 | 0.2988 | C |
Lunasin_DF21 | ISIS EM-BLASSO | ss715624628 | 16 | 33733586 | −7.8726 | 5.2596 | 6.0659 | 8.2199 | 0.2195 | C |
Environment | QTN | Chromosome | Genomic Position | Candidate Gene ID | Reference Genome | Functional Annotation |
---|---|---|---|---|---|---|
GRIN, 2003 | qL-01 | 2 | 12034409 | Glyma.02G123302 | Wm82.gnm6 | RAB geranylgeranyl transferase alpha subunit 1 |
GRIN, 2003 | qL-02 | 2 | 13683259 | Glyma.02G131052 | Wm82.gnm6 | Nudix hydrolase 1 (NUDT1) cluster |
GRIN, 2003 | qL-03 | 3 | 793778 | Glyma.03G008400 | Wm82.gnm6 | Peptide chain release factor |
GRIN, 2003 | qL-04 | 7 | 17043096 | Glyma.07G144500 | Wm82.gnm6 | mRNA capping enzyme family protein |
GRIN, 2003 | qL-05 | 7 | 35777062 | Glyma.07G177100 | Wm82.gnm6 | Pentatricopeptide repeat (PPR-like) superfamily protein |
GRIN, 2003 | qL-06 | 7 | 37004443 | Glyma.07G179400 | Wm82.gnm6 | Embryo defective 1273 protein |
GRIN, 2003 | qL-07 | 9 | 47022602 | Glyma.09G238700 | Wm82.gnm6 | ZF-HD homeobox protein cluster |
GRIN, 2003 | qL-08 | 13 | 13819188 | Glyma.13G044000 | Wm82.gnm6 | ATP-binding ABC transporter |
GRIN, 2003 | qL-09 | 16 | 4380977 | Glyma.16G047300 | Wm82.gnm6 | ATP binding/protein serine/threonine kinase |
GRIN, 2003 | qL-10 | 16 | 36170992 | Glyma.16G179400 | Wm82.gnm6 | Pentatricopeptide repeat (PPR) superfamily protein |
GRIN, 2003 | qL-11 | 18 | 5146121 | Glyma.18G059800 | Wm82.gnm6 | Pentatricopeptide repeat-containing protein |
GRIN, 2003 | qL-12 | 20 | 34499736 | Glyma.20G083300 | Wm82.gnm6 | Ribosomal protein S3 |
Clayton, NC 2021 | qL-01 | 3 | 36302681 | Glyma.03G007400 | Wm82.gnm6 | Transmembrane protein |
Clayton, NC 2021 | qL-02 | 4 | 51820047 | Glyma.04G214500 | Wm82.gnm6 | Ribosomal protein L17 family protein |
Clayton, NC 2021 | qL-03 | 5 | 34359243 | Glyma.05G129200 | Wm82.gnm6 | Transmembrane protein |
Clayton, NC 2021 | qL-04 | 6 | 12980012 | Glyma.06G156700 | Wm82.gnm6 | Transmembrane amino acid transporter family protein |
Clayton, NC 2021 | qL-05 | 6 | 45436808–45930385 | Glyma.06G253700 | Wm82.gnm6 | Transmembrane protein 184C-like |
Clayton, NC 2021 | qL-06 | 10 | 43465671 | Glyma.10G162500 | Wm82.gnm6 | Pentatricopeptide repeat (PPR) superfamily protein |
Clayton, NC 2021 | qL-07 | 10 | 44167653 | Glyma.10G168600 | Wm82.gnm6 | Pentatricopeptide repeat (PPR) superfamily protein |
Clayton, NC 2021 | qL-08 | 10 | 49696358 | Glyma.10G230100 | Wm82.gnm6 | Pentatricopeptide repeat (PPR) superfamily protein |
Clayton, NC 2021 | qL-09 | 12 | 4402508 | Glyma.12G060101 | Wm82.gnm6 | Pentatricopeptide repeat (PPR) superfamily protein |
Clayton, NC 2021 | qL-10 | 12 | 33175894 | Glyma.12G162300 | Wm82.gnm6 | 30S ribosomal protein S20 |
Clayton, NC 2021 | qL-11 | 13 | 16561515 | Glyma.13G068200 | Wm82.gnm6 | Peptide transporter 1 |
Clayton, NC 2021 | qL-12 | 14 | 44255136 | |||
Clayton, NC 2021 | qL-13 | 15 | 49657138 | Glyma.15G245700 | Wm82.gnm6 | Pentatricopeptide repeat (PPR) superfamily protein |
Clayton, NC 2021 | qL-14 | 16 | 28465014 | Glyma.16G116600 | Wm82.gnm6 | Pentatricopeptide repeat (PPR) superfamily protein |
Clayton, NC 2021 | qL-15 | 16 | 33733586 | Glyma.16G160200 | Wm82.gnm6 | Transmembrane amino acid transporter family protein |
Clayton, NC 2021 | qL-16 | 18 | 1735923 | Glyma.18G022400 | Wm82.gnm6 | Transmembrane amino acid transporter family protein |
Clayton, NC 2021 | qL-17 | 20 | 44108146 | Glyma.20G170700 | Wm82.gnm6 | RAN binding protein 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Locklear, R.; Kusumah, J.; Rashad, L.; Lugaro, F.; Viera, S.; Kipyego, N.; Kipkosgei, F.; Jerop, D.; Jacquet, S.; Kassem, M.A.; et al. Multi-Locus GWAS Mapping and Candidate Gene Analysis of Anticancer Peptide Lunasin in Soybean (Glycine max L. Merr.). Plants 2025, 14, 2169. https://doi.org/10.3390/plants14142169
Locklear R, Kusumah J, Rashad L, Lugaro F, Viera S, Kipyego N, Kipkosgei F, Jerop D, Jacquet S, Kassem MA, et al. Multi-Locus GWAS Mapping and Candidate Gene Analysis of Anticancer Peptide Lunasin in Soybean (Glycine max L. Merr.). Plants. 2025; 14(14):2169. https://doi.org/10.3390/plants14142169
Chicago/Turabian StyleLocklear, Rikki, Jennifer Kusumah, Layla Rashad, Felecia Lugaro, Sonia Viera, Nathan Kipyego, Faith Kipkosgei, Daisy Jerop, Shirley Jacquet, My Abdelmajid Kassem, and et al. 2025. "Multi-Locus GWAS Mapping and Candidate Gene Analysis of Anticancer Peptide Lunasin in Soybean (Glycine max L. Merr.)" Plants 14, no. 14: 2169. https://doi.org/10.3390/plants14142169
APA StyleLocklear, R., Kusumah, J., Rashad, L., Lugaro, F., Viera, S., Kipyego, N., Kipkosgei, F., Jerop, D., Jacquet, S., Kassem, M. A., Yuan, J., de Mejia, E., & Mian, R. (2025). Multi-Locus GWAS Mapping and Candidate Gene Analysis of Anticancer Peptide Lunasin in Soybean (Glycine max L. Merr.). Plants, 14(14), 2169. https://doi.org/10.3390/plants14142169