The Biocontrol and Growth-Promoting Potential of Penicillium spp. and Trichoderma spp. in Sustainable Agriculture
Abstract
1. Introduction
2. Penicillium spp. as Plant-Growth-Promoting Fungi with Biocontrol Properties
3. Trichoderma spp. as Plant Growth-Promoting Fungi with Biocontrol Properties
4. Journey of Trichoderma spp. Species
5. Trichoderma spp. and Prospects for Application in Agriculture, Horticulture, and Organic Farming
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shahrajabian, M.H.; Chaski, C.; Polyzos, N.; Tzortzakis, N.; Petropoulos, S.A. Sustainable agriculture systems in vegetable production using chitin and chitosan as plant biostimulants. Biomolecules 2021, 11, 819. [Google Scholar] [CrossRef] [PubMed]
- Shahrajabian, M.H.; Chaski, C.; Polyzos, N.; Petropoulos, S.A. Biostimulants application: A low input cropping management tool for sustainable farming of vegetables. Biomolecules 2021, 11, 698. [Google Scholar] [CrossRef] [PubMed]
- Shahrajabian, M.H.; Sun, W.; Cheng, Q. Using bacteria and fungi as plant biostimulants for sustainable agricultural production systems. Recent Pat. Biotechnol. 2022, 17, 206–244. [Google Scholar] [CrossRef]
- Sun, W.; Shahrajabian, M.H. The effectiveness of rhizobium bacteria on soil fertility and sustainable crop production under cover and catch crops management and green manuring. Not. Bot. Horti Agrobot. Cluj Napoca 2022, 50, 12560. [Google Scholar] [CrossRef]
- Chabbi, N.; Chafiki, S.; Telmoudi, M.; Labbassi, S.; Bouharroud, R.; Tahiri, A.; Mentag, R.; El-Amri, M.; Bendiab, K.; Hsissou, D.; et al. Plant growth promoting rhizobacteria improve seeds germination and growth of Argania spinosa. Plants 2024, 13, 2025. [Google Scholar] [CrossRef] [PubMed]
- Raish, S.M.; Sourani, O.M.; Abu-Elsaoud, A.M. Plant growth-promoting microorganisms as biocontrol agents: Mechanisms, challenges, and future prospects. Appl. Microbiol. 2025, 5, 44. [Google Scholar] [CrossRef]
- Embacher, J.; Seehauser, M.; Kappacher, C.; Stuppner, S.; Zeilinger, S.; Kirchmair, M.; Neuhauser, S. Serpula lacrymans reacts with a general, unspecialized chemical response during interaction with mycoparasitic Trichoderma spp. and bacteria. Fungal Ecol. 2023, 63, 101230. [Google Scholar] [CrossRef]
- Shahrajabian, M.H.; Cheng, Q.; Sun, W. The effects of amino acids, phenols and protein hydrolysates as biostimulants on sustainable crop production and alleviated stress. Recent Pat. Biotechnol. 2022, 16, 319–328. [Google Scholar] [CrossRef]
- Shahrajabian, M.H.; Petropoulos, S.A.; Sun, W. Survey of the influences of microbial biostimulants on horticultural crops: Case studies and successful paradigms. Horticulturae 2023, 9, 193. [Google Scholar] [CrossRef]
- Kim, K.; Lee, Y.; Ha, A.; Kim, J.-I.; Park, A.R.; Yu, N.H.; Son, H.; Choi, G.J.; Park, H.W.; Lee, C.W.; et al. Chemosensitization of Fusarium graminearum to chemical fungicides using cyclic lipopeptides produced by Bacillus amyloliquefaciens strain JCK-12. Front. Plant Sci. 2017, 8, 2010. [Google Scholar] [CrossRef]
- De Souza, R.R.; Moraes, M.P.; Paraginski, J.A.; Moreira, T.F.; Bittencourt, K.C.; Toebe, M. Effects of Trichoderma asperellum on germination indexes and seedling parameters of lettuce cultivars. Curr. Microbiol. 2022, 79, 2–12. [Google Scholar] [CrossRef] [PubMed]
- Kumar, K.; Thakur, P.; Rathore, U.S.; Kumar, S.; Mishra, R.K.; Amaresan, N.; Pandey, S.; Mishra, M. Plant beneficial effects of Trichoderma spp. suppressin Fusarium wilt and enhancing growth in tomato. Vegetos 2022, 35, 188–195. [Google Scholar] [CrossRef]
- Sun, W.; Shahrajabian, M.H. The application of arbuscular mycorhhizal fungi as microbial biostimulant, sustainable approaches in modern agriculture. Plants 2023, 12, 3101. [Google Scholar] [CrossRef]
- Sun, W.; Shahrajabian, M.H.; Petrpoulos, S.A.; Shahrajabian, N. Developing sustainable agriculture systems in medicinal and aromatic plant production by using chitosan and chitin-based biostimulants. Plants 2023, 12, 2469. [Google Scholar] [CrossRef]
- Ma, H.-G.; Liu, Q.; Zhu, G.-L.; Liu, H.-S.; Zhu, W.-M. Marine natural products sourced from marine-derived Penicillium fungi. J. Asian Nat. Prod. Res. 2016, 18, 92–115. [Google Scholar] [CrossRef]
- Nobre, C.; Nascimento, A.K.C.D.; Silva, S.P.; Coelho, E.; Coimbra, M.A.; Cavalcanti, M.T.H.; Teixeira, J.A.; Porto, A.L.F. Process development for the production of prebiotic fructo-oligosaccarides by Penicillium citreonigrum. Bioresour. Technol. 2019, 282, 464–474. [Google Scholar] [CrossRef]
- Huang, J.-N.; Zou, Q.; Chen, J.; Xu, S.-H.; Luo, D.; Zhang, F.-G.; Lu, Y.-Y. Phenols and diketopiperazines isolated from Antarctic-derived fungi, Penicillium citreonigrum SP-6. Phytchem. Lett. 2018, 27, 114–118. [Google Scholar] [CrossRef]
- Huber, A.; Galgoczy, L.; Varadi, G.; Holzknecht, J.; Kakar, A.; Malanovic, N.; Leber, R.; Kochf, J.; Kellerf, M.A.; Battag, G.; et al. Two small, cysteine-rich and cationic antifungal proteins from Penicillium chrysogenum: A comparative study of PAF and PAFB. Biochim. Biophys. Acta-Biomembr. 2020, 1862, 183246. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Liu, X.; Zhao, H.; Ni, Y.; Lian, Q.; Qian, H.; He, B.; Liu, H.; Ma, Q. Biological control of Fusarium wilt of sesame by Penicillium bilaiae 47M-1. Biol. Control 2021, 158, 104601. [Google Scholar] [CrossRef]
- De Cal, A.; Sztejnberg, A.; Sabuquillo, P.; Melgarejo, P. Management Fusarium wilt on melon and watermelon by Penicillium oxalicum. Biol. Control 2009, 51, 480–486. [Google Scholar] [CrossRef]
- Waqas, M.; Khan, A.L.; Kamran, M.; Hamayun, M.; Kang, S.M.; Kim, Y.H.; Lee, I.J. Endophytic fungi produce gibberellins and indoleacetic acid and promotes host-plant growth during stress. Molecules 2012, 17, 10754–10773. [Google Scholar] [CrossRef]
- Fan, Y.; Luan, Y.; An, L.; Yu, K. Arbuscular mycorrhizae formed by Penicillium pinophilum improve the growth nutrient uptake, and photosynthesis of strawberry with two inoculum-types. Biotechnol. Lett. 2008, 30, 1489–1494. [Google Scholar] [CrossRef] [PubMed]
- Maccari, G.; Deodato, D.; Fiorucci, D.; Orofino, F.; Truglio, G.I.; Pasero, C.; Martini, R.; Luca, F.D.; Docquier, J.-D.; Botta, M. Design and synthesis of a novel inhibitor of T. viride chitinase through an in silico target fishing protocol. Bioorg. Med. Chem. Lett. 2017, 27, 3332–3336. [Google Scholar] [CrossRef] [PubMed]
- Jia, M.; Chen, J.; Liu, X.; Xie, M.; Nie, S.; Chen, Y.; Xie, J.; Yu, Q. Structural characteristics and functional properties of soluble dietary fiber from defatted rice bran obtained through Trichoderma viride fermentation. Food Hydrocoll. 2019, 94, 468–474. [Google Scholar] [CrossRef]
- Moya, P.; Barrera, V.; Cipollone, J.; Bedoya, C.; Kohan, L.; Tolerdo, A.; Sisterna, M. New isolates of Trichoderma spp. as biocontrol and plant growth-promoting agents in the pathosystem Pyrenophora teres-barley in Argentina. Biol. Control 2020, 141, 104152. [Google Scholar] [CrossRef]
- Tomah, A.A.; Zhang, Z.; Alamer, I.S.A.; Khattak, A.A.; Ahmed, T.; Hu, M.; Wang, D.; Xu, L.; Li, B.; Wang, Y. The potential of Trichoderma-mediated nanotechnology application in sustainable development scopes. Nanomaterials 2023, 13, 2475. [Google Scholar] [CrossRef]
- Druzhinia, I.S.; Seidl-Seiboth, V.; Herrera-Estrella, A.; Horwitz, B.A.; Kenerley, C.M.; Monte, E.; Mukherjee, P.K.; Zeilinger, S.; Grigoriev, I.V.; Kubicek, C.P. Trichoderma: The genomics of opportunistic success. Nat. Rev. Microbiol. 2011, 9, 749–759. [Google Scholar] [CrossRef]
- Wakiyama, M.; Tanaka, H.; Yoshihara, K.; Hayashi, S.; Ohta, K. Purification and properties of family-10 endo-1, 4-β-Xylanase from Penicillium citrinum and structural organization of encoding gene. J. Biosci. Bioeng. 2008, 105, 367–374. [Google Scholar] [CrossRef]
- Lipsa, R.; Tudorachi, N.; Darie-Nita, R.N.; Oprica, L.; Vasile, C.; Chiriac, A. Biodegradation of poly(lactic acid) and some of its based systems with Trichoderma viride. Int. J. Biol. Macromol. 2016, 88, 515–526. [Google Scholar] [CrossRef]
- Peil, S.; Beckers, S.J.; Fischer, J.; Wurm, F.R. Biodegradable, lignin-based encapsulation enables delivery of Trichoderma reesei with programmed enzymatic release against grapevine trunk diseases. Mat. Today Bio 2020, 7, 100061. [Google Scholar] [CrossRef]
- Sun, F.-S.; Yu, G.-H.; Ning, J.-Y.; Zhu, X.-D.; Goodman, B.A.; Wu, J. Biological removal of cadmiuum from biogas residues during vermicomposting, and the effect of earthworm hydrolysates on Trichoderma guizhouense sporulation. Biosour. Technol. 2020, 312, 123635. [Google Scholar] [CrossRef] [PubMed]
- Chinnapermal, K.; Govindasamy, B.; Paramasivam, D.; Dilipkumar, A.; Dhayalan, A.; Vadivel, A.; Sengodan, K.; Pachiappan, P. Bio-pesticidal effects of Trichoderma viride formulated titanium dioxide nanoparticle and their physiological and biochemical changes on Helicoverpa armigera (Hub.). Pest Biochem. Physiol. 2018, 149, 26–36. [Google Scholar] [CrossRef]
- Panchalingam, H.; Ashfield-Crook, N.; Naik, V.; Frenken, R.; Foster, K.; Tomlin, R.; Shapcott, A.; Kurtboke, D.I. Testing the biocontrol ability of a Trichoderma-streptomycetes consortium against Pyrrhoderma noxium (Corner) L.W. Zhou and Y.C. Dai in soil. J. Fungi 2023, 9, 67. [Google Scholar] [CrossRef] [PubMed]
- Russo, A.; Pollastri, S.; Ruocco, M.; Monti, M.M.; Loreto, F. Volatile organic compounds in the interaction between plants and beneficial microorganisms. J. Plant Interact. 2022, 17, 840–852. [Google Scholar] [CrossRef]
- Tyskiewicz, R.; Nowak, A.; Ozimek, E.; Jaroszuk-Scisel, J. Trichoderma: The current status of its application in agriculture for the biocontrol of fungal phytopathogens and stimulation of plant growth. Int. J. Mol. Sci. 2022, 23, 2329. [Google Scholar] [CrossRef]
- Arnold, A.E.; Mejia, L.C.; Kyllo, D.; Rojas, E.; Maynard, Z.; Robbins, N.; Herre, E.A. Fungal endophytes limit pathogen damage in a tropical tree. Proc. Natl. Acad. Sci. USA 2003, 100, 15649–15654. [Google Scholar] [CrossRef]
- Redman, R.S.; Dunigan, D.D.; Rodriguez, R.J. Fungal symbiosis: From mutualism to parasitism, who controls the outcome, host or invader? New Phytol. 2001, 151, 705–716. [Google Scholar] [CrossRef]
- Redman, R.S.; Sheehan, K.B.; Stout, R.G.; Rodriguez, R.J.; Henson, J.M. Thermotolerance conferred to plant host and fungal endophyte during mutualistic symbiosis. Science 2002, 298, 1581. [Google Scholar] [CrossRef]
- Waller, F.; Achatz, B.; Baltruschat, H.; Fodor, J.; Becker, K.; Fischer, M.; Heier, T.; Huckelhoven, R.; Neumann, C.; Von Wettstein, D.; et al. The endophytic fungus Piriformis indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proc. Natl. Acad. Sci. USA 2005, 102, 13386–13391. [Google Scholar] [CrossRef]
- Marquez, L.M.; Redman, R.S.; Rodriguez, R.J.; Roossinck, M.J. A virus in a fungus in a plant-three way symbioses required for thermal tolerance. Science 2007, 315, 513–515. [Google Scholar] [CrossRef]
- Allaga, H.; Zhumakayev, A.; Buchner, R.; Kocsube, S.; Szucz, A.; Vagvolgyi, C.; Kredics, L.; Hatvani, L. Members of the Trichoderma harzianum species complex with mushroom pathogenic potential. Agronomy 2021, 11, 2434. [Google Scholar] [CrossRef]
- Louw, J.P.; Korsten, L. Pathogenicity and host susceptibility of Penicillium spp. on citrus. Plant Dis. 2015, 99, 21–30. [Google Scholar] [CrossRef]
- Salinas, M.C.; Cavagnaro, P.F. In vivo and in vitro screening for resistance against Penicillium allii in garlic accessions. Eur. J. Plant Pathol. 2020, 156, 173–187. [Google Scholar] [CrossRef]
- Dugan, F.M.; Lupien, S.L.; Vahling-Armstrong, C.; Chastagner, G.A.; Schroeder, B.K. Host range of Penicillium species causing blue mold of bulbs crops in Washington state and Idaho. Crop Prot. 2017, 96, 265–272. [Google Scholar] [CrossRef]
- Zhu, G.; Wang, X.; Chen, T.; Wang, S.; Chen, X.; Song, Z.; Shi, X.; Laborda, P. First report of Aspergillus flavus causing fruit rot on kiwifruit in China. Plant Dis. 2022, 106, 1990. [Google Scholar] [CrossRef]
- Poveda, J.; Eugui, D.; Abril-Urias, P.; Velasco, P. Endophytic fungi as direct plant growth promoters for sustainable agricultural production. Symbiosis 2021, 85, 1–19. [Google Scholar] [CrossRef]
- Mathis, K.A.; Bronstein, J.L. Our current understanding of commensalism. Annu. Rev. Ecol. Syst. 2020, 14, 167–189. [Google Scholar] [CrossRef]
- Duan, B.; Gao, Z.; Reymick, O.O.; Ouyang, Q.; Chen, Y.; Long, C.; Yang, B.; Tao, N. Cinnamaldehyde promotes the defense response in postharvest citrus fruit inoculated with Penicillium digitatum and Geotrichum citri-aurantii. Pest Biochem. Physiol. 2021, 179, 104976. [Google Scholar] [CrossRef]
- Liu, K.; Wang, L.; Jiang, B.; An, J.; Nian, B.; Wang, D.; Chen, L.; Ma, Y.; Wang, X.; Fan, J.; et al. Effect of inoculation with Penicillium chrysogenum on chemical components and fungal communities in fermentation of Pu-erh tea. Food Res. Int. 2021, 150, 110748. [Google Scholar] [CrossRef]
- Fierro, F.; Vaca, I.; Castillo, N.I.; Garcia-Rico, R.O.; Chavez, R. Penicillium chrysogenum, a vintage model with a cutting-edge profile in biotechnology. Microorganisms 2022, 10, 573. [Google Scholar] [CrossRef]
- Qi, B.; Jia, F.; Luo, Y.; Ding, N.; Li, S.; Shi, F.; Hai, Y.; Wang, L.; Zhu, Z.-X.; Liu, X.; et al. Two new diterpenoids from penicillium chrysogenum MT-12, and endophytic fungus isolated from Huperzia serrata. Nat. Prod. Res. 2022, 36, 814–821. [Google Scholar] [CrossRef] [PubMed]
- Newaz, A.W.; Yong, K.; Yi, W.; Wu, B.; Zhang, Z. Antimicrobial metabolites from the Indonesian mangrove sediment-derived fungus Penicillium chrysogenum sp. ZZ1151. Nat. Prod. Res. 2023, 37, 1702–1708. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Zhang, J.; Liu, Y.; Feng, W. Biodegradation of hydrocarbons by Purpureocillium lilacinum and Penicillium chrysogenum from heavy oil sludge and their potential for bioremediation of contaminated soil. Int. Biodeter. Biodegrade 2023, 178, 105566. [Google Scholar] [CrossRef]
- Leitao, A.L. Potential of Penicillium species in the bioremediation field. Int. J. Environ. Res. Public Health 2009, 6, 1393–1417. [Google Scholar] [CrossRef]
- Visagie, C.M.; Houbraken, J.; Frisvad, J.C.; Hong, S.-B.; Klaassen, C.H.W.; Perrone, G.; Seifert, K.A.; Varga, J.; Yaguchi, T.; Samson, R.A. Identification and nomenclature of the genus Penicillium. Stud. Mycol. 2014, 78, 343–371. [Google Scholar] [CrossRef]
- Hossain, M.M.; Sultana, F.; Kubota, M.; Hyakumachi, M. Differential inducible defense mechanisms against bacterial speck pathogen in Arabidopsis thaliana by plant-growth-promoting-fungus Penicillium sp. GP16-2 and its cell free filtrate. Plant Soil 2008, 304, 227–239. [Google Scholar] [CrossRef]
- Ali, S.; Khan, A.L.; Ali, L.; Rizvi, T.S.; Khan, S.A.; Hussain, J.; Hamayun, M.; Al-Harrasi, A. Enzyme inhibitory metabolites from endophytic Penicillium citrinum isolated from Boswellia sacra. Arch. Microbiol. 2017, 199, 691–700. [Google Scholar] [CrossRef]
- Ali, T.; Inagaki, M.; Chai, H.; Wieboldt, T.; Rapplye, C.; Rakotondraibe, L.H. Halogenated compounds from directed fermentation of Penicillium concentricum, an endophytic fungus of the Liverwort Trichocolea tomentella. J. Nat. Prod. 2017, 80, 1397–1403. [Google Scholar] [CrossRef] [PubMed]
- Attia, E.Z.; Khalifa, B.A.; Shaban, G.M.; Abdelraheem, W.M.; Mustafa, M.; Abdelmohsen, U.R.; El-Katatny, M.H. Discovering the chemical profile antimicrobial and antibiofilm potentials of the endophytic fungus Penicillium chrysogenum isolated from Artemisia judaica L. assisted with docking studies. S. Afr. J. Bot. 2022, 151, 218–227. [Google Scholar] [CrossRef]
- Fu, S.F.; Wei, J.Y.; Chen, H.W.; Liu, Y.Y.; Lu, H.Y.; Chou, J.Y. Indole-3-acetic acid: A widespread physiological code in interactions of fungi with other organisms. Plant Signal Behav. 2015, 10, e1048052. [Google Scholar] [CrossRef]
- Shi, Y.; Xie, H.; Cao, L.; Zhang, R.; Xu, Z.; Wang, Z.; Deng, Z. Effects of Cd- and Pb-resistant endophytic fungi on growth and phytoextraction of Brassica napus in metal-contaminated soils. Environ. Sci. Pollut. Res. Int. 2017, 24, 417–426. [Google Scholar] [CrossRef] [PubMed]
- Mehmannavaz, M.; Nickavar, B. Biotransformation of testosterone by the filamentous fungus Penicillium pinophilum. Arch. Microbiol. 2022, 204, 570. [Google Scholar] [CrossRef]
- Tian, H.; Ma, Y.J.; Li, W.Y.; Wang, J.W. Efficient degradation of triclosan by an endophytic fungus Penicillium oxalicum B4. Environ. Sci. Pollut. Res. Int. 2018, 25, 8963–8975. [Google Scholar] [CrossRef]
- Yassin, M.T.; Mostafa, A.A.-F.; Al-Askar, A.A.; Sayed, S.R.M.; Rady, A.M. Antagonistic activity of Trichoderma harzianum and Trichoderma viride strains against some fusarial pathogens causing stalk rot disease of maize, in vitro. J. King Saud. Univ. Sci. 2021, 33, 101363. [Google Scholar] [CrossRef]
- Gao, S.S.; Li, X.M.; Du, F.Y.; Li, C.S.; Proksch, P.; Wang, B.G. Secondary metabolites from a marine-derived endophytic fungus Penicillium chrysogenum QEN-24S. Mar. Drugs 2010, 9, 59–70. [Google Scholar] [CrossRef]
- Gao, S.S.; Li, X.M.; Li, C.S.; Proksch, P.; Wang, B.G. Penicisteroids A and B, antifungal and cytotoxic polyoxygenated steroids from the marine alga-derived endophytic fungus Penicillium chrysogenum QEN-24S. Bioorg. Med. Chem. Lett. 2011, 21, 2894–2897. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.S.; Li, C.M.; Zhang, Y.; Li, C.S.; Wang, B.G. Conidiogenones H and I, two new diterpenes of Cyclopiane class from a marine-derived endophytic fungus Penicillium chrysogenum QEN-24S. Chem. Biodivers. 2011, 8, 1748–1753. [Google Scholar] [CrossRef] [PubMed]
- Baitharu, I.; Jain, V.; Deep, S.N.; Shroff, S.; Sahu, J.K.; Naik, P.K.; Ilavazhagan, G. Withanolide A prevents neurodegeneration by modulating hippocampal glutathione biosynthesis during hypoxia. PLoS ONE 2014, 9, e105311. [Google Scholar] [CrossRef]
- Wang, W.; Zhai, Y.; Cao, K.; Tan, H.; Zhang, R. Endophytic bacterial and fungal microbiota in sprouts, roots and stems of rice (Oryza sativa L.). Microbiol. Res. 2016, 188–189, 1–8. [Google Scholar] [CrossRef]
- Wang, W.G.; Li, A.; Yan, B.C.; Niu, S.B.; Tang, J.W.; Li, X.N.; Du, X.; Challis, G.L.; Che, Y.; Sun, H.D.; et al. LC-MS-guided isolation of Penicilfuranone A: A new antifibrotic furancarboxylic acid from the plant endophytic fungus Penicillium sp. sh18. J. Nat. Prod. 2016, 79, 149–155. [Google Scholar] [CrossRef]
- Colovic, M.B.; Krstic, D.Z.; Lazarevic-Pasti, T.D.; Bondzic, A.M.; Vasic, V.M. Acetylcholinesterase inhibitors: Pharmacology and toxicology. Curr. Neuropharmacol. 2013, 11, 315–335. [Google Scholar] [CrossRef] [PubMed]
- Ateba, J.E.T.; Toghueo, R.M.K.; Awantu, A.F.; Mba’ning, B.M.; Gohlke, S.; Sahal, D.; Rodrigues-Filho, E.; Tsamo, E.; Boyom, F.F.; Sewald, N.; et al. Antiplasmodial properties and cytotoxicity of endophytic fungi from Symphonia globulifera (Clusiaceae). J. Fungi 2018, 4, E70. [Google Scholar] [CrossRef] [PubMed]
- Toghueo, R.M.K.; Boyom, F.F. Endophytic Penicillium species and their agricultural, biotechnological, and pharmaceutical applications. 3 Biotech 2020, 10, 1–35. [Google Scholar] [CrossRef]
- Leitao, A.L.; Garcia-Estrada, C.; Ullan, R.V.; Guedes, S.F.; Martin-Jimenez, P.; Mendes, B.; Martin, J.F. Penicillium chrysogenum var. halophenolicum, a new halotolerant strain with potential in the remediation of aromatic compounds in high salt environments. Microbiol. Res. 2012, 167, 79–89. [Google Scholar] [CrossRef]
- Ferreira-Guedes, S.; Leitao, A.L. Simultaneous removal of dihydroxybenzenes and toxicity reduction by Penicillium chrysogenum var. halophenolicum under saline conditions. Ecotoxicol. Environ. Saf. 2018, 150, 240–250. [Google Scholar] [CrossRef] [PubMed]
- Francis, F.; Jaber, K.; Colinet, F.; Portetelle, D.; Haubruge, E. Purification of a new fungal mannose-specific lectin from Penicillium chrysogenum and its aphicidal properties. Fungal Biol. 2011, 115, 1093–1099. [Google Scholar] [CrossRef]
- Garcia-Estrada, C.; Martin, J.F.; Cueto, L.; Barreiro, C. Omics approaches applied to Penicillium chrysogenum and Penicillin production: Revealing the secrets of improved productivity. Genes 2020, 11, 712. [Google Scholar] [CrossRef]
- Martin, J.F. Insight into the genome of diverse Penicillium chrysogenum strains: Specific genes, cluster duplications and DNA fragment translocatins. Int. J. Mol. Sci. 2020, 21, 3936. [Google Scholar] [CrossRef] [PubMed]
- Sonderegger, C.; Galgoczy, L.; Garrigues, S.; Fizil, A.; Borics, A.; Manzanares, P.; Hegedus, N.; Huber, A.; Marcos, J.F.; Batta, G.; et al. A Pencillium chrysogenum-based expression system for the production of mall, cysteine-rich antifungal proteins for structural and functional analyses. Microb. Cell Fact. 2016, 15, 192. [Google Scholar] [CrossRef]
- Estrada-Rivera, M.; Hernandez-Onate, M.A.; Dautt-Castro, M.; Gallardo-Negrete, J.D.J.; Rebolledo-Prudencio, O.G.; Uresti-Rivera, E.E.; Arenas-Huertero, C.; Herrera-Estrella, A.; Casas-Flores, S. IPA-1 a putative chromatin remodeler/helicase-related protein of Trichodermis virens plays important roles in antibiosis against Rhizoctonia solani and induction of Arabidopsis systemic disease resistance. Mol. Plant Microbe Interact. 2020, 33, 808–824. [Google Scholar] [CrossRef]
- Garcia-Rico, R.O.; Martin, J.F.; Fierro, F. Heterotrimeric Ga protein Pga1 from Penicillium chrysogenum triggers germination in response to carbon sources and affects negatively resistance to different stress conditions. Fungal Gen. Biol. 2011, 48, 641–649. [Google Scholar] [CrossRef] [PubMed]
- Akaniro, I.R.; Chibuikde, I.V.; Onwujekwe, E.C.; Gbadamosti, F.A.; Enyi, D.O.; Onwe, O.N. Penicillium species as chassis for biomanufacturing and environmental sustainability in the modern era: Progress, challenges, and future perspective. Fungal. Biol. Rev. 2023, 46, 100326. [Google Scholar] [CrossRef]
- Meng, L.; Sun, P.; Tang, H.; Li, L.; Draeger, S.; Schulz, B.; Krohn, K.; Hussain, H.; Zhang, W.; Yi, Y. Endophytic fungus Penicillium chrysogenum, a new source of hypocrellins. Biochem. Syst. Ecol. 2011, 39, 163–165. [Google Scholar] [CrossRef]
- Qin, J.; Teng, J.; Li, Z.; Xia, N.; Wei, B.; Huang, L. Expression of citrinin biosynthesis gene in Liupao tea and effect of Penicillium citrinum on tea quality. Fungal Gene Biol. 2022, 163, 103742. [Google Scholar] [CrossRef]
- Guijarro, B.; Larena, I.; Melgarejo, P.; Cal, A.D. Adaptive conditions and safety of the application of Penicillium frequentans as a biocontrol agent on stone fruit. Int. J. Food Microbiol. 2017, 254, 25–35. [Google Scholar] [CrossRef]
- Arunthirumeni, M.; Vinitha, G.; Shivakumar, M.S. Antifeedant and larvicidal activity of bioactive compounds isolated from entomopathogenic fungi Penicillium sp. for the control of agricultural and medically important insect pest (Spodoptera litura and Culex quinquefasciatus). Parasitol. Int. 2023, 92, 102688. [Google Scholar] [CrossRef]
- Karpova, N.V.; Yaderets, V.V.; Glagoleva, E.V.; Petrova, K.S.; Ovchinnikov, A.I.; Dzhavakhiya, V.V. Antifungal activity of the dry biomass of Penicillium chrysogenum F-24-28 and Is application in combination with azoxystrobin for efficient crop protection. Agriculture 2021, 11, 935. [Google Scholar] [CrossRef]
- Sikandar, A.; Zhang, M.; Wang, Y.; Zhu, X.; Liu, X.; Fan, H.; Xuan, Y.; Chen, L.; Duan, Y. In vitro evaluation of Penicillium chrysogenum Snef1216 against Meloidogyne incognita (root-knot nematode). Sci. Rep. 2020, 10, 8342. [Google Scholar] [CrossRef]
- Khan, S.A.; Hamayun, M.; Yoon, H.; Kim, H.-Y.; Suh, S.-J.; Hwang, S.-K.; Kim, J.-M.; Lee, I.-J.; Choo, Y.-S.; Yoon, U.-H.; et al. Plant growth promotion and Penicillium citrinum. BMC Microbiol. 2008, 8, 231. [Google Scholar] [CrossRef]
- Nguyen, H.C.; Lin, K.-H.; Nguyen, T.P.; Le, H.S.; Ngo, K.N.; Pham, D.C.; Tran, T.N.; Su, C.-H.; Barrow, C.J. Isolation and cultivation of Penicillium citrinum for biological control of Spodoptera litura and Plutella xylostella. Fermentation 2023, 9, 438. [Google Scholar] [CrossRef]
- Babu, J.V.; Popay, A.J.; Miles, C.O.; Wilkins, A.L.; di Menna, M.E.; Finch, S.C. Identification and structure elucidation of Janthitrems A and D from Penicillium janthinellum and determination of tremorgenic and anti-insect activity of Janthitrems A and B. J. Agric. Food Chem. 2018, 66, 13116–13125. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Yang, X.; Lin, Y.; Yuan, J.; Lu, Y.; Zhu, X.; Li, J.; Li, M.; Lin, Y.; He, J.; et al. Meroterpenes and azaphilones from marine mangrove endophytic fungus Penicillium 303#. Fitoterapa 2014, 97, 241–246. [Google Scholar] [CrossRef]
- Li, X.D.; Miao, F.P.; Liang, X.R.; Ji, N.Y. Meroterpenes from an algicolous strain of Penicillium echinulatum. Magn. Reson. Chem. 2014, 52, 247–250. [Google Scholar] [CrossRef] [PubMed]
- Katoch, M.; Pull, S. Endophytic fungi associated with Monarda citriodora, an aromatic and medicinal plant and their biocontrol potential. Pharm. Biol. 2017, 55, 1528–1535. [Google Scholar] [CrossRef]
- Li, Z.F.; Wang, L.F.; Feng, Z.L.; Zhao, L.H.; Shi, Y.Q.; Zhu, H.Q. Diversity of endophytic fungi from different Verticillium-wilt-resistant Gossypium hirsutum and evaluation of antifungal activity against Verticillium dahliae in vitro. J. Microbiol. Biotechnol. 2014, 24, 1149–1161. [Google Scholar] [CrossRef]
- Hassan, S.E. Plant growth-promoting activities for bacterial and fungal endophytes isolated from medicinal plant of Teucrium polium L. J. Adv. Res. 2017, 8, 687–695. [Google Scholar] [CrossRef]
- Ownley, B.H.; Benson, D.M. Evaluation of Penicillium janthinellum as a biological control of phytophthora root rot of Azalea. J. Amer. Soc. Hort. Sci. 1992, 117, 407–410. [Google Scholar] [CrossRef]
- Gu, K.; Chen, C.-Y.; Selvaraj, P.; Pavagadhi, S.; Yeap, Y.T.; Swarup, S.; Zheng, W.; Naqvi, N.I. Penicillium citrinum provides transkingdom growth benefits in Choy Sum (Brassica rapa var. parachinensis). J. Fungi 2023, 9, 420. [Google Scholar] [CrossRef]
- Dong, H.; Zhang, X.; Choen, Y.; Zhou, Y.; Li, W.; Li, Z. Dry mycelium of Penicillium chrysogenum protects cotton plants against wilt diseases and increases yield under field conditions. Crop Prot. 2006, 25, 324–330. [Google Scholar] [CrossRef]
- Sikandar, A.; Zhang, M.Y.; Zhu, X.F.; Wang, Y.Y.; Ahmed, M.; Iqbal, M.F.; Javeed, A.; Xuan, Y.H.; Fan, H.Y.; Liu, X.Y.; et al. Efficacy of Penicillium chrysogenum strain SNEF1216 against root-knot nematodes (Meloidogyne incognita) in cucumber (Cucumis sativus L.) under greenhouse conditions. Appl. Ecol. Environ. Res. 2019, 17, 12451–12464. [Google Scholar] [CrossRef]
- Li, S.-Y.; Yang, X.-Q.; Chen, J.-X.; Wu, Y.-M.; Yang, Y.-B.; Ding, Z.-T. The induced cryptic metabolites and antifungal activities from culture of Penicillium chrysogenum by supplementing with host Ziziphus jujuba extract. Phytochemistry 2022, 203, 113391. [Google Scholar] [CrossRef] [PubMed]
- Galeano, R.M.S.; Silva, S.M.; Yonekawa, M.K.A.; Guimaraes, N.C.D.A.; Giannesi, G.C.; Masui, D.C.; Correa, B.O.; Brasil, M.D.S.; Zanoelo, F.F. Penicillium chrysogenum strain 34-P promotes plant growth and improves initial development of maize under saline conditions. Rhizosphere 2023, 26, 100710. [Google Scholar] [CrossRef]
- Murali, M.; Sudisha, J.; Amruthesh, K.N.; Ito, S.-I.; Shetty, H.S. Rhizosphere fungus Penicillium chrysogenum promotes growth and induces defence-related genes and downy mildew disease resistance in pearl millet. Plant Biol. 2013, 15, 111–118. [Google Scholar] [CrossRef] [PubMed]
- Gotlieb, D.; Oka, Y.; Ben-Daniel, B.-H.; Cohen, Y. Dry mycelium of Penicillium chrysogenum protects cucumber and tomato plants against root-knot nematode Meloidogyne javanica. Phytoparasitica 2003, 31, 217–225. [Google Scholar] [CrossRef]
- Khan, A.L.; Waqas, M.; Khan, A.R.; Hussain, J.; Kang, S.-M.; Gilani, S.A.; Hamayun, M.; Shin, J.-H.; Kamran, M.; Al-Harrasi, A.; et al. Fungal endophyte Penicillium janthinellum LK5 improves growth of ABA-deficient tomato under salinity. World J. Microbiol. Biotechnol. 2013, 29, 2133–2144. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.L.; Waqas, M.; Hussain, J.; Al-Harrasi, A.; Hamayun, M.; Lee, I.-J. Phytohormones enabled endophytic fungal symbiosis improve aluminum phytoextraction in tolerant Solanum lycopersicum: A examples of Penicillium janthinellum LK5 and comparison with exogenous GA3. J. Hazard. Mat. 2015, 295, 70–78. [Google Scholar] [CrossRef] [PubMed]
- Ting, A.S.Y.; Mah, S.W.; Tee, C.S. Evaluating the feasibility of induced host resistance by endophytic isolate Penicillium citrinum BTF08 as a control mechanism for Fusarium wilt in banana plantlets. Biol. Control 2012, 61, 155–159. [Google Scholar] [CrossRef]
- Chen, S.; Dong, H.; Fan, Y.; Li, W.; Cohen, Y. Dry mycelium of Penicillium chrysogenum induces expression of pathogenesis-related protein genes and resistance against wilt diseases in Bt transgenic cotton. Biol. Control 2006, 39, 460–464. [Google Scholar] [CrossRef]
- Dong, H.; Li, W.; Zhang, D.; Tang, W. Differential expression of induced resistance by an aqueous extract of killed Penicillium chrysogenum against Verticillium wilt of cotton. Crop Prot. 2003, 22, 129–134. [Google Scholar] [CrossRef]
- Wang, H.; Mo, S.; Xia, Q.; Zhao, Z.; Chen, X.; Shen, X.; Yin, C.; Mao, Z. The interaction of the pathogen Fusarium proliferatum with Trichoderma asperellum characterized by transcriptome changes in apple rootstock roots. Physiol. Mol. Plant Pathol. 2022, 121, 101894. [Google Scholar] [CrossRef]
- Li, X.; Leng, J.; Yu, L.; Bai, H.; Li, X.; Wisniewski, M.; Liu, J.; Sui, Y. Efficacy of the biocontrol agent Trichoderma hamatum against Lasiodiplodia theobromae on macadamia. Front. Microbiol. 2022, 13, 994422. [Google Scholar] [CrossRef] [PubMed]
- Ibiang, S.R.; Usami, T.; Sakamoto, K.; Ibiang, Y.B. Lettuce tolerance to verticillium wilt after inoculation with Penicillium pinophilum and Rhizophagus intraradices. Physiol. Mol. Plant Pathol. 2023, 128, 102171. [Google Scholar] [CrossRef]
- Dong, H.; Cohen, Y. Extracts of killed Penicillium chrysogenum induce resistance against Fusarium wilt of melon. Phytoparasitica 2001, 29, 421–430. [Google Scholar] [CrossRef]
- Shen, F.; Wang, G.; Liu, X.; Zhu, S. Exogenous inoculation of endophyte Penicillium sp. alleviated pineapple internal browning during storage. Heliyon 2023, 9, e16258. [Google Scholar] [CrossRef]
- Maity, A.; Pal, R.K.; Chandra, R.; Singh, N.V. Penicillium pinophilum—A novel microorganism for nutrient management in pomegranate (Punica granatum L.). Sci. Hortic. 2014, 169, 111–117. [Google Scholar] [CrossRef]
- Rosa, C.A.R.; Keller, K.M.; Oliveira, A.A.; Almeida, T.X.; Keller, L.A.M.; Marassi, A.C.; Kruger, C.D.; Deveza, M.V.; Monteiro, B.S.; Nunes, L.M.T.; et al. Production of citreoviridin by Penicillium citreonigrum strains associated with rice consumption and beriberi cases in the Maranhao state, Brazil. Food Additt. Contam. Part A Chem. Anal. Control Expo. Risk Assess 2010, 27, 241–248. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.C.; Duan, Y.M.; Wang, X.X.; Wang, J.G.; Xu, X.Y.; Chen, S.L.; Yin, P.; Zhu, S.; Li, X.J.; Chen, S.Y. The effect of dry mycelium of Penicillium chrysogenum on the growth of flue-cured tobacco on floating system and resistance against tobacco mosaic under field conditions. J. Yunnan Agric. Univ. 2013, 28, 169–174. [Google Scholar]
- Zhong, Y.; Li, Y.; Huang, K.; Chen, Z.-Z.; Fu, J.; Liu, C.-M.; Chen, S.-Y.; Wang, J.-G. Crude peptides extracted from dry mycelium of Penicillium chrysogenu serve as a micro-associated molecular pattern to induce systemic resistance against tobacco mosaic virus in tobacco. Physiol. Mol. Plant Pathol. 2021, 115, 101677. [Google Scholar] [CrossRef]
- Zhong, Y.; Li, Y.; Chen, Z.; Fu, J.; Li, X.; Zhang, B.; Chen, S.; Wang, J. Treatment of Penicillium chrysogenum extracts (PDMP) restricts the spread of Tobacco mosaic virus by priming callose deposition in Nicotiana benthamiana. Physiol. Mol. Plant Pathol. 2021, 113, 101569. [Google Scholar] [CrossRef]
- Zhong, Y.; Pen, J.-J.; Chen, Z.-Z.; Xie, H.; Luo, D.; Dai, J.-R.; Yan, F.; Wang, J.-G.; Dong, H.-Z.; Chen, S.-Y. Dry mycelium of Penicillium chrysogenum activates defense responses and restricts the spread of Tobacco Mosaic Virus in tobacco. Physiol. Mol. Plant Pathol. 2015, 92, 28–37. [Google Scholar] [CrossRef]
- Wang, J.; Chen, S. Dry mycelium of Penicillium chrysogenum protect flue-cured tobacco against brown spot and wildfire disease. New Biotechnol. 2012, 29, S190. [Google Scholar] [CrossRef]
- Li, Y.; Jiao, M.; Li, Y.; Zhong, Y.; Li, X.; Chen, Z.; Chen, S.; Wang, J. Penicillium chrysogenum polypeptide extract protects tobacco plants from tobacco mosaic virus infection through modulation of ABA biosynthesis and callose priming. J. Experim. Bot. 2021, 72, 3526–3539. [Google Scholar] [CrossRef]
- Fu, J.; Zhang, S.; Wu, J.; Chen, Y.; Zhong, Y.; Zhou, Y.; Wang, J.; Chen, S. Structural characterization of a polysaccharide from dry mycelium of Penicillium chrysogenum that induces resistance to Tobacco mosaic virus in tobacco plants. Int. J. Biol. Macromol. 2020, 156, 67–79. [Google Scholar] [CrossRef] [PubMed]
- Kaur, R.; Saxena, S. Penicillium citrinum, a drought-tolerant endophytic fungus isolated from wheat (Triticum aestivum L.) leaves with plant growth-promoting abilities. Curr. Microbiol. 2023, 80, 184. [Google Scholar] [CrossRef]
- Narwade, J.D.; Odaneth, A.A.; Lele, S.S. Solid-state fermentation in an earthen vessel: Trichoderma viride spore-based biopesticide production using corn cobs. Fungal Biol. 2023, 127, 1146–1156. [Google Scholar] [CrossRef] [PubMed]
- Juric, S.; Dermic, E.; Topolovec-Pintaris, S.; Bedek, M.; Vincekovic, M. Physicochemical properties and release characteristics of caldium alginate microspheres loaded with Trichoderma viride spores. J. Integr. Agric. 2019, 18, 2534–2548. [Google Scholar] [CrossRef]
- Nabilah, B.; Purnomo, A.S.; Prasetyoko, D.; Rohmah, A.A. Methylene blue biodecolotization and biodegradation by immobilized mixed cultures of Trichoderma viride and Ralstonia pickettii into SA-PVA-Bentionite matrix. Arab J. Chem. 2023, 16, 104940. [Google Scholar] [CrossRef]
- Xu, S.; Luo, Y.; Han, Z.; Zhang, T.; Sun, L.; Zheng, G.; Wang, K.; Cheng, Z. Diatomite-Trichoderma viride composite microspheres for selective removal of anionic dyes and copper ions. J. Water Process Eng. 2023, 55, 104235. [Google Scholar] [CrossRef]
- Alonso-Ramirez, A.; Poveda, J.; Martin, H.; Hermosa, R.; Monte, E.; Nicolas, C. Salicylic acid prevents Trichoderma harzianum from entering the vascular system of roots. Mol. Plant Pathol. 2014, 15, 823–831. [Google Scholar] [CrossRef]
- Taylor, J.T.; Harting, R.; Shalaby, S.; Kenerley, C.M.; Braus, G.H.; Horwitz, B.A. Adhesion as a focus in Trichoderma-root interactions. J. Fungi 2022, 8, 372. [Google Scholar] [CrossRef]
- Pfordt, A.; Gaumann, P.; von Tiedemann, A. Pathogenicity of Trichoderma afroharzianum in cereal crops. Pathogen 2023, 12, 936. [Google Scholar] [CrossRef] [PubMed]
- Pfordt, A.; Schiwek, S.; Karlovsky, P.; von Tiedemann, A. Trichoderma afroharzianum ear rot- A new disease on maize in Europe. Front. Agron. 2020, 2, 547758. [Google Scholar] [CrossRef]
- Sanna, M.; Pugliese, M.; Gullino, M.L.; Mezzalama, M. First report of Trichoderma afroharzianum causing seed rot on maize in Italy. Plant Diseases 2022, 106, 1982. [Google Scholar] [CrossRef]
- Schmoll, M.; Esquivel-Naranjo, E.U.; Herrera-Estrella, A. Trichoderma in the light of day-Physiology and development. Fungal Genet. Biol. 2010, 47, 909–916. [Google Scholar] [CrossRef]
- Kubicek, C.P.; Herrera-Estrella, A.; Seidl-Seiboth, V.; Martinez, D.A.; Druzhini, I.S.; Thon, M.; Zeilinger, S.; Casas-Flores, S.; Horwitz, B.A.; Mukherjee, P.K. Comparative genome sequence analysis underscores mycoparasitism as the ancestral life style of Trichoderma. Genome Biol. 2011, 12, R40. [Google Scholar] [CrossRef]
- Schuster, A.; Bruno, K.S.; Collett, J.R.; Baker, S.E.; Seiboth, B.; Kubicek, C.P.; Schmoll, M. A versatile toolkit for high throughput functional genomics with Trichoderma reesei. Biotechnol. Biofuels 2012, 5, 1. [Google Scholar] [CrossRef]
- Chammem, H.; Nesler, A.; Pertot, I. Wood pellets as carriers of conidia of Trichoderma atroviride SC1 for soil application. Fungal Biol. 2021, 125, 989–998. [Google Scholar] [CrossRef]
- Zhang, G.-Z.; Yang, H.-T.; Zhang, X.-J.; Zhou, F.-Y.; Wu, X.-Q.; Xie, X.-Y.; Zhao, X.-Y.; Zhou, H.-Z. Five new species of Trichoderma from moist soils in China. Mycokeys 2022, 87, 133. [Google Scholar] [CrossRef]
- Woo, S.L.; Hermosa, R.; Lorito, M.; Monte, E. Trichoderma: A multipurpose, plant-beneficial microorganism for eco-sustainable agriculture. Nat. Rev. Microbiol. 2023, 21, 312–326. [Google Scholar] [CrossRef]
- Verma, H.; Kumar, D.; Kumar, V.; Kumari, M.; Singh, S.K.; Sharma, V.K.; Droby, S.; Santoyo, G.; White, J.F.; Kumar, A. The potential application of endophytes in management of stress from drought and salinity in crop plants. Microorganisms 2021, 9, 1729. [Google Scholar] [CrossRef]
- Perera, D.S.; Tharaka, W.G.H.; Amarasinghe, D.; Wickramarachchi, S.R. Extracellular extracts of antagonistic fungi, Trichoderma longibrachiatum and Trichoderma viride, as larvicides against dengue vectors, Aedes aegypti and Aedes albopictus. Acta Trop 2023, 238, 106747. [Google Scholar] [CrossRef] [PubMed]
- Moussa, Z.; Alanazi, Y.F.; Khateb, A.M.; Eldadamony, N.M.; Ismail, M.M.; Saber, W.I.; Darwish, D.B.E. Domiciliation of Trichoderma asperellum suppresses Globiosporangium ultimum and promotes pea growth, ultrastructure, and metabolic features. Microorganisms 2023, 11, 198. [Google Scholar] [CrossRef] [PubMed]
- Fayzalla, E.; Sadik, E.; Elwakil, M.; Gomah, A. Soil solarization for controlling Cephalosporium maydis, the cause of late wilt disease of maize in Egypt. Egypt J. Phytopathol. 1994, 22, 171–178. [Google Scholar]
- Legein, M.; Smets, W.; Vandenheuvel, D.; Eilers, T.; Muyshondt, B.; Prinsen, E.; Samson, R.; Lebeer, S. Modes of action of microbial biocontrol in the phyllosphere. Front. Microbiol. 2020, 11, 1619. [Google Scholar] [CrossRef]
- Alghuthaymi, M.A.; Abd-Elsalam, K.A.; AboDalam, H.M.; Ahmed, F.K.; Ravichandran, M.; Kalia, A.; Rai, M. Trichoderma: An eco-friendly source of nanomaterials for sustainable agroecosystems. J. Fungi 2022, 8, 367. [Google Scholar] [CrossRef]
- Zhang, F.; Xu, X.; Huo, Y.; Xiao, Y. Trichoderma-inoculation and mowing synergistically altered soil available nutrients, rhizosphere chemical compounds and soil microbial community, potentially driving alfalfa growth. Front. Microbiol. 2019, 9, 3241. [Google Scholar] [CrossRef]
- Molla, A.H.; Manjurul Haque, M.; Amdadul Haque, M.; Ilias, G.N.M. Trichoderma-enriched biofertilizer enhances production and nutritional quality of tomato (Lycopersicon esculentum Mill.) and minimizes NPK fertilizer use. Agric. Res. 2012, 1, 265–272. [Google Scholar] [CrossRef]
- Sun, J.; Yuan, X.; Li, Y.; Wang, X.; Chen, J. The pathway of 2,2-dichlorovinyl dimethyl phosphate (DDVP) degradation by Trichoderma atroviride strain T23 and characterization of a paraoxonase-like enzyme. Appl. Microbiol. Biotechnol. 2019, 103, 8947–8962. [Google Scholar] [CrossRef] [PubMed]
- Lodi, R.S.; Peng, C.; Dong, X.; Deng, P.; Peng, L. Trichoderma hamatum and its benefits. J. Fungi 2023, 9, 994. [Google Scholar] [CrossRef]
- Velasco, P.; Rodriguez, V.M.; Soengas, P.; Pveda, J. Content and antioxidant potential of different leafy Brassica vegetables. Plants 2021, 10, 2449. [Google Scholar] [CrossRef]
- Krause, M.S.; De Ceuster, T.J.J.; Tiquia, S.M.; Michel, F.C.; Madden, L.V.; Hoitink, H.A.J. Isolation and characterization of rhizobacteria from composts that suppress the severity of bacterial leaf spot of radish. Phytopathology 2003, 93, 1292–1300. [Google Scholar] [CrossRef] [PubMed]
- Daba, A.; Berecha, G.; Tadesse, M.; Belay, A. Evaluation of the herbicidal potential of some fungal species against Bidens Pilosa, the coffee farming wees. Saudi. J. Biol. Sci. 2021, 28, 6408–6416. [Google Scholar] [CrossRef] [PubMed]
- Wen, C.; Xiong, H.; Wen, J.; Wen, X.; Wang, C. Trichoderma species attract Coptotermes formosanus and antagonize termite pathogen Metarhizium anisopliae. Front. Microbiol. 2020, 11, 00653. [Google Scholar] [CrossRef] [PubMed]
- Lana, M.; Simon, O.; Velasco, P.; Rodriguez, V.M.; Caballero, P.; Poveda, J. First study on the root endophytic fungus Trichoderma hamatum as an entomopathogen: Development of a fungal bioinsecticide against cotton leafworm (Spodoptera littoralis). Microbiol. Res. 2023, 270, 127334. [Google Scholar] [CrossRef]
- Rai, S.; Kashyap, P.L.; Kumar, S.; Srivastava, A.K.; Ramteke, P.W. Identification, characterization and phylogenetic analysis of antifungal Trichoderma from tomato rhizosphere. Springerplus 2016, 5, 1939. [Google Scholar] [CrossRef]
- Sood, M.; Kapoor, D.; Kumar, V.; Sheteiwy, M.S.; Ramakrishnan, M.; Landi, M.; Araniti, F.; Sharma, A. Trichoderma: The secrets of a multitalented biocontrol agent. Plants 2020, 9, 762. [Google Scholar] [CrossRef]
- Moran-Diez, E.; Hermosa, R.; Ambrosino, P.; Cardoza, R.E.; Gutierrez, S.; Lorito, M.; Monte, E. ThPG1 endopolygalacturonase is required for the Trichoderma harzianum-plant beneficial interaction. Mol. Plant Microbe Interact. 2009, 22, 1021–1031. [Google Scholar] [CrossRef]
- Jaroszuk-Scisel, J.; Tyskiewicz, R.; Nowak, A.; Ozimek, E.; Majewska, M.; Hanaka, A.; Tyskiewicz, K.; Pawlik, A.; Janusz, G. Phytohormones (auxin, gibberellin) and ACC deaminase in vitro synthesized by the mycoparasitic Trichoderma DEMTkZ3A0 strain and changes in the level of auxin and plant resistance markers in wheat seedlings inoculated with this strain conidia. Int. J. Mol. Sci. 2019, 20, 4923. [Google Scholar] [CrossRef]
- An, X.-Y.; Cheng, G.-H.; Gao, H.-X.; Li, X.-F.; Yang, Y.; Li, D.; Li, Y. Phylogenetic analysis of Trichoderma species associated with green mold disease on mushrooms and two new pathogens on Ganoderma sichuanense. J. Fungi 2022, 8, 704. [Google Scholar] [CrossRef]
- Krause, M.S.; Madden, L.V.; Hoitink, H.A.J. Effect of potting mix microbial carrying capacity on biological control of Rhizoctonia damping-off of radish and Rhizoctonia crown root rot of poinsettia. Phytopathology 2001, 91, 1116–1123. [Google Scholar] [CrossRef]
- Alfano, G.; Lewis Ivey, M.L.; Cakir, C.; Bos, J.I.B.; Miller, S.A.; Madden, L.V.; Kamoun, S.; Hoitink, H.A.J. Systemic modulation of gene expression in tomato by Trichoderma hamatum 382. Phytopathology 2007, 97, 429–437. [Google Scholar] [CrossRef] [PubMed]
- Baazeem, A.; Almanea, A.; Manikandan, P.; Alorabi, M.; Vijayaraghavan, P.; Abdel-Hadi, A. In vitro antibacterial, antifungal, nematocidal and growth promoting activities of Trichoderma hamatum fb10 and its secondary metabolites. J. Fungi 2021, 7, 331. [Google Scholar] [CrossRef] [PubMed]
- Wamani, A.O.; Muthomi, J.W.; Mutitu, E.; Waceke, W.J. Efficacy of microbial antagonists in the management of bacterial wilt of field-grown tomato. J. Nat. Pestic. Res. 2023, 6, 100051. [Google Scholar] [CrossRef]
- Shaw, S.; Le Cocq, K.; Paszkiewicz, K.; Moore, K.; Winsbury, R.; De Torres Zabala, M.; Studholme, D.J.; Salmon, D.; Thornton, C.R.; Grant, M.R. Transcriptional reprogramming underpins enhanced plant growth promotion by the biocontrol fungus Trichoderma hamatum gd12 during antagonistic interactions with Sclerotinia sclerotiorum in soil. Mol. Plant Pathol. 2016, 17, 1425–1441. [Google Scholar] [CrossRef]
- Studholme, D.J.; Harris, B.; Le Cocq, K.; Winsbury, R.; Perera, V.; Ryder, L.; Ward, J.L.; Beale, M.H.; Thornton, C.R.; Grant, M. Investigating the beneficial traits of Trichoderma hamatum GD12 for sustainable agriculture-insights from genomics. Front. Plant Sci. 2013, 4, 00258. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Shahrajabian, M.H. Survey on nitrogenase evolution by considering the importance of nitrogenase, its structure, and mechanism of nitrogenase. Not. Bot. Horti Agrobot. Cluj-Napoca 2024, 52, 13157. [Google Scholar] [CrossRef]
- Sun, W.; Shahrajabian, M.H.; Kuang, Y.; Wang, N. Amino acids biostimulants and protein hydrolysates in agricultural sciences. Plants 2024, 13, 210. [Google Scholar] [CrossRef]
- Sun, W.; Shahrajabian, M.H.; Soleymani, A. The roles of plant-growth-promoting rhizobacteria (PGPR)-based biostimulants for agricultural production systems. Plants 2024, 13, 613. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, Y.; Wang, Y.; Suo, M.; Wu, H.; Zhao, M.; Yang, H. Inoculation with Penicillium citrinum aids ginseng in resisting Fusarium oxysporum by regulating the root and rhizosphere microbial communities. Rhizosphere 2022, 22, 100535. [Google Scholar] [CrossRef]
- Liu, R.; Chen, M.; Gao, J.; Luo, M.; Wang, G. Identification of antagonistic fungi and their antifungal activities against aconite root rot pathogens. Plant Signal Behav. 2023, 18, 2211852. [Google Scholar] [CrossRef]
- Poveda, J.; Rodriguez, V.M.; Abilleira, R.; Velasco, P. Trichoderma hamatum can act as inter-plant communicator of foliar pathogen infections by colonizing the roots of nearby plants: A new inter-plant wired communication. Plant Sci. 2023, 330, 111664. [Google Scholar] [CrossRef] [PubMed]
- Kottb, M.; Gigolashvili, T.; GroBkinsky, D.K.; Piechulla, B. Trichoderma volatiles effecting Arabidopsis: From inhibition to protection against phytopathogenic fungi. Front. Microbiol. 2015, 6, 995. [Google Scholar] [CrossRef]
- Garnica-Vergara, A.; Barrera-Ortiz, S.; Munoz-Parra, E.; Raya-Gonzalez, J.; Mendez-Bravo, A.; Macias-Rodriguez, L.; Ruiz-Herrera, L.F.; Lopez-Bucio, J. The volatile 6-pentyl-2H-pyran-2-one from Trichoderma atroviride regulates Arabidopsis thaliana root morphogenesis via auxin signaling and ETHYLENE INSENSITIVE 2 functioning. New Phytol. 2016, 209, 1496–1512. [Google Scholar] [CrossRef]
- Boukaew, S.; Kumla, J.; Prasertsan, P.; Cheirsilp, B.; Petlamul, W.; Srinuanpan, S. In vitro and in situ antifungal properties of a Trichoderma asperelloides SKRU-01 against aflatoxigenic aspergillus species. Food Control. 2023, 14, 110025. [Google Scholar] [CrossRef]
- Haouhach, S.; Karkachi, N.; Oguiba, B.; Sisaoui, A.; Chamorro, I.; Kihal, M.; Monte, E. Three new reports of Trichoderna in Algeria: T. atrobrunneum (South), T. longibrachiatum (South), and T. afroharzianum (Northwest). Microorganisms 2020, 8, 1455. [Google Scholar] [CrossRef]
- Ma, J.; Tsegaye, E.; Li, M.; Wu, B.; Jiang, X. Biodiversity of Trichoderma from grassland and forest ecosystems in Northern Xinjiang, China. 3 Biotech 2020, 10, 362. [Google Scholar] [CrossRef]
- Saravanakumar, K.; Fan, L.; Fu, K.; Yu, C.; Wang, M. Cellulase from Trichoderma harzianum interacts with roots and triggers induced systemic resistance to foliar disease in maize. Sci. Rep. 2016, 6, 35543. [Google Scholar] [CrossRef] [PubMed]
- Inglis, P.W.; Mello, S.C.M.; Martins, I.; Silva, J.B.T.; Macedo, K.; Sifuentes, D.N.; Valadares-Inglis, M.C. Trichoderma from Brazilian garlic and onion crop soils and description of two new species: Trichoderma azevedoi and Trichoderma peberdyi. PLoS ONE 2020, 15, e0228485. [Google Scholar] [CrossRef]
- Jiang, Y.; Wang, J.L.; Chen, J.; Mao, L.J.; Feng, X.X.; Zhang, C.L.; Lin, F.C. Trichoderma biodiversity of agricultural fields in east China reveals a gradient distribution of species. PLoS ONE 2016, 11, e0160613. [Google Scholar] [CrossRef]
- Cummings, N.; Ambrose, A.; Braithwaite, M.; Bissett, J.; Roslan, H.A.; Abdullah, J.; Stewart, A.; Agbayani, F.V.; Steyaert, J.; Hill, R.A. Diversity of root-endophytic Trichoderma from Malaysian Borneo. Mycol. Progr. 2016, 15, 45–50. [Google Scholar] [CrossRef]
- Swain, H.; Adak, T.; Mkherjee, A.K.; Sarangi, S.; Samal, P.; Khandual, A.; Jena, R.; Bhattacharyya, P.; Naik, S.K.; Mehetre, S.T.; et al. Seed biopriming with Trichoderma stains isolated from tree bark improves plant growth, antioxidative defense system in rice and enhance straw degradation capacity. Front. Microbiol. 2021, 12, 633881. [Google Scholar] [CrossRef] [PubMed]
- Blaszczyk, L.; Strakowska, J.; Chelkowski, J.; Gabka-Buszek, A.; Kaczmarek, J. Trichoderma species occurring on wood with decay symptoms in mountains forests in Central Europe: Genetic and enzymatic characterization. J. Appl. Genet. 2016, 57, 397–407. [Google Scholar] [CrossRef]
- Bohacz, J.; Kornillowicz-Kowalska, T. Modification of post-industrial lignin by fungal strains of the genus Trichoderma isolated from different composting stages. J. Environ. Manag. 2020, 266, 110573. [Google Scholar] [CrossRef] [PubMed]
- Kubiak, A.; Wolna-Maruwka, A.; Pilarska, A.A.; Niewiadomska, A.; Piotrowska-Cyplik, A. Fungi of the Trichoderma genus: Future perspectives of benefits in sustainable agriculture. Appl. Sci. 2023, 13, 6434. [Google Scholar] [CrossRef]
- Ruocco, M.; Lanzuise, S.; Lombardi, N.; Woo, S.L.; Vinale, F.; Marra, R.; Varlese, R.; Manganiello, G.; Pascale, A.; Scala, V.; et al. Multiple roles and effects of a novel Trichoderma hydrophobin. Mol. Plant-Microbe Interact. 2015, 28, 167–179. [Google Scholar] [CrossRef] [PubMed]
- Ramirez-Valdespino, C.A.; Porras-Troncoso, M.D.; Corrales-Escobosa, A.R.; Wrobel, K.; Martinez-Hernandez, P.; Olmedo-Monfil, V. Functional characterization of TvVyt2, a member of the p450 monoocygenases from Trichoderma virens relevant during the association with plants and mycoparasitism. Mol. Plant-Microbe Interact. 2018, 31, 289–298. [Google Scholar] [CrossRef]
- Rimkus, A.; Namina, A.; Dzierkale, M.T.; Grigs, O.; Senkovs, M.; Larsson, S. Impact of growth conditions on the viability of Trichoderma asperellum during storage. Microorganisms 2023, 11, 1084. [Google Scholar] [CrossRef] [PubMed]
- Brotman, Y.; Briff, E.; Viterbo, A.; Chet, I. Role of swollenin, an expansin-like protein from Trichoderma, in plant root colonization. Plant Physiol. 2008, 147, 779–789. [Google Scholar] [CrossRef]
- Zhang, S.; Gan, Y.; Xu, B. Application of plant-growth-promoting fungi Trichoderma longibrachiatum T6 enhances tolerance of wheat to salt stress through improvement of antioxidative defense system and gene expression. Front. Plant Sci. 2016, 7, 1405. [Google Scholar] [CrossRef]
- Ghorbanpour, A.; Salimi, A.; Ghanbary, M.A.T.; Pirdashti, H.; Dehestani, A. The effect of Trichoderma harzianum in mitigating low temperature stress in tomato (Solanum lycopersicum L.) plants. Sci. Hortic. 2018, 230, 134–141. [Google Scholar] [CrossRef]
- Gallou, A.; Cranenbrouk, S.; Declerck, S. Trichoderma harzianum elicits defence response genes in roots of potato plantlets challenged by Rhizoctonia solani. Eur. J. Plant Pathol. 2008, 124, 219–230. [Google Scholar] [CrossRef]
- Wang, Y.; Hou, X.; Deng, J.; Yao, Z.; Lyu, M.; Zhang, R. Auxin response factor 1 acts as a positive regulator in the response of poplar to Trichoderma asperellum inoculation in over-expressing plants. Plants 2020, 9, 272. [Google Scholar] [CrossRef]
- Kumar, V.; Koul, B.; Taak, P.; Yadav, D.; Song, M. Journey of Trichoderma from pilot scale to mass production: A review. Agriculture 2023, 13, 2022. [Google Scholar] [CrossRef]
- Abbas, A.; Mubeen, M.; Zheng, H.; Sohail, M.A.; Shakeel, Q.; Solanki, M.K.; Iftikhar, Y.; Sharma, S.; Kashyap, B.K.; Hussain, S.; et al. Trichoderma spp. Genes involved in the biocontrol activity against Rhizoctonia solani. Front. Microbiol. 2022, 13, 884469. [Google Scholar] [CrossRef]
- Marcello, C.M.; Steindorff, A.S.; da Silva, S.P.; do Nascimento Silva, R.; Bataus, L.A.M.; Ulhoa, C.J. Expression analysis of the exo-B-1, 3-glucanase from the mycoparasitic fungus Trichoderma asperellum. Microbiol. Res. 2010, 165, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, P.K.; Latha, J.; Hadar, R.; Horwitz, B.A. Role of two G-protein alpha subunits, TgaA and TgaB, in the antagonism of plant pathogens by Trichoderma virens. Appl. Environ. Microbiol. 2004, 70, 542–549. [Google Scholar] [CrossRef]
- Moran-Diez, M.E.; Martinez de Alba, A.E.; Rubio, M.B.; Hermosa, R.; Monte, E. Trichoderma and the plant heritage priming responses. J. Fungi 2021, 7, 318. [Google Scholar] [CrossRef]
- Vizcaino, J.; Cardoza, R.; Hauser, M.; Hermosa, R.; Rey, M.; Llobell, A.; Becker, J.; Gutierrez, S.; Monte, E. ThPTR2, a di/tri-peptide transporter gene from Trichoderma harzianum. Fungal Genet. Biol. 2006, 43, 234–246. [Google Scholar] [CrossRef]
- Tijerino, A.; Cardoza, R.E.; Moraga, J.; Malmierca, M.G.; Vicente, F.; Aleu, J.; Collado, I.G.; Gutierrez, S.; Monte, E.; Hermosa, R. Overexpression of the trichodiene synthase gene trip5 increases trichodermin production and antimicrobial activity in Trichoderma brevicompactum. Fungal Genet. Biol. 2011, 48, 285–296. [Google Scholar] [CrossRef]
- Dixit, P.; Mukherjee, P.K.; Ramachandran, V.; Eapen, S. Glutathone transferase from Trichoderma virens enhances cadmium tolerance without enhancing its accumulation in transgenic Nicotiana tabacum. PLoS ONE 2011, 6, e16360. [Google Scholar] [CrossRef]
- Zhong, Y.H.; Wang, T.H.; Wang, X.L.; Zhang, G.T.; Yu, H.N. Identification and characterization of a novel gene, TrCCD1, and its possible function in hyphal growth and conidiospore development of Trichoderma reesei. Fungal Genet. Biol. 2009, 46, 255–263. [Google Scholar] [CrossRef]
- Migheli, Q. Biodiversity of the Genus Trichoderma and Identification of Marker Genes Involved in the Antagonism Between Trichoderma spp. and Plant Pathogenic Fungi. Ph.D. Thesis, University of Sassari, Sassari, Italy, 2008. [Google Scholar]
- Samolski, I.; Rincon, A.M.; Pinzon, L.M.; Viterbo, A.; Monte, E. The qid74 gene from Trichoderma harzianum has a role in root architecture and plant biofertilization. Microbiology 2012, 158, 129–138. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, M.; Mukherjee, P.K.; Kale, S.P. cAMP signaling is involved in growth, germination, mycoparasitism and secondary metabolism in Trichoderma virens. Microbiology 2007, 153, 1734–1742. [Google Scholar] [CrossRef] [PubMed]
- Min, S.Y.; Kim, B.-G.; Lee, C.; Hur, H.-G.; Ahn, J.-H. Purification, characterization, and cDNA cloning of xylanase from fungus Trichoderma strain SY. J. Microbiol. Biotechnol. 2002, 12, 89–894. [Google Scholar]
- Guzman-Guzman, P.; Aleman-Duarte, M.I.; Delaye, L.; Herrera-Estrella, A.; Olmedo-Monfil, V. Identification of effector-like proteins in Trichoderma spp. and role of a hydrophobin in the plant-fungus interaction and mycoparasitism. BMC Genet. 2017, 18, 16. [Google Scholar] [CrossRef]
- Atanasova, L.; Gruber, S.; Lichius, A.; Radebner, T.; Abendstein, L.; Munsterkotter, M.; Stralis-Pavese, N.; Labaj, P.P.; Kreil, D.P.; Zeilinger, S. The Gpr1-regulated Sur7 family protein Sfp2 is required for hyphal growth and cell wall stability in the mycoparasite Trichoderma atroviride. Sci. Rep. 2018, 8, 12064. [Google Scholar] [CrossRef]
- Guo, R.; Ji, S.; Wang, Z.; Zhang, H.; Wang, Y.; Liu, Z. Trichoderma asperellum xylanases promote growth and induce resistance in poplar. Microbiol. Res. 2021, 248, 126767. [Google Scholar] [CrossRef]
- Nabi, S.U.; Raja, W.H.; Sharma, A.; Malik, G. Evaluation of different substrates for development of Trichoderma harzianum based stock cultures and their utilization in management of chilli wilt disease. Chem. Sci. Rev. Lett. 2017, 6, 2229–2235. [Google Scholar]
- Mohiddin, F.; Bashir, I.; Padder, S.A.; Hamid, B. Evaluation of different substrates for mass mltiplication of Trichoderma species. J. Pharmacogn. Phytochem. 2017, 6, 563–569. [Google Scholar]
- Andrzejak, R.; Janowska, B. Trichoderma spp. improves flowering, quality, and nutritional status of ornamental plants. Int. J. Mol. Sci. 2022, 23, 15662. [Google Scholar] [CrossRef]
- Guzman-Guzman, P.; Kumar, A.; de los Santos-Villalobos, S.; Parra-Cota, F.I.; Orozco-Mosqueda, M.D.C.; Fadiji, A.E.; Hyder, S.; Babalola, O.O.; Santoyo, G. Trichoderma species: Our best fungal allies in the biocontrol of plant diseases—A review. Plants 2023, 12, 432. [Google Scholar] [CrossRef] [PubMed]
- Zhou, P.; Cao, J.; Zhu, H.; Chen, C.; Lai, Y.; Zhang, Y. Trichodermatides A-D, four new polyketides from Trichoderma sp. XM-3. Fitoterapia 2023, 169, 105584. [Google Scholar] [CrossRef]
- Kassam, R.; Kranti, K.V.V.S.; Yadav, J.; Chatterjee, M.; Chawla, G.; Kundu, A.; Hada, A.; Thokala, P.D.; Shukla, L.; Mishra, J.; et al. Exploration of rhizsophere-dwelling nematophagous Trichoderma spp. using novel bait technique with root-knot nematode Meloidogyne incognita. Biol. Control 2023, 186, 105327. [Google Scholar] [CrossRef]
- Chan, M.E.; Tan, J.Y.; Lee, Y.Y.; Lee, D.; Fong, Y.K.; Mutwil, M.; Wong, J.Y.; Hong, Y. Locally isolated Trichoderma harzianum species have broad spectrum biocontrol activities against the wood rot fungal species through both volatile inhibition and mycoparasitism. J. Fungi 2023, 9, 675. [Google Scholar] [CrossRef]
- De Oliveira, C.M.; Oshiquiri, L.H.; Almeida, N.O.; Steindorf, A.S.; Rocha, M.R.D.; Georg, R.C.; Ulhoa, C.J. Trichoderma harzianum transcriptome in response to the nematode Pratylenchus branchyurus. Biol. Control 2023, 183, 105245. [Google Scholar] [CrossRef]
- Wu, J.-L.; Yu, Y.-H.; Yao, H.-Z.; Zhao, X.; Yuan, T.; Huang, Y.-H. Trichodermic acids from an endophytic Trichoderma sp. and their antifungal activity against the phytopathogen Botrytis cinerea. Phytochem. Lett. 2023, 56, 24–29. [Google Scholar] [CrossRef]
- Tamandegani, P.R.; Sharifnabi, B.; Massah, A.; Zahravi, M. Induced reprogramming of oxidative stress responses in cucumber by Trichoderma asperellum (Iran 3062C) enhances defense against cucumber mosaic virus. Biol. Control 2021, 164, 104779. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, Z.; Lu, B.; Quan, X.; Zhao, G.; Zhang, Z.; Liu, W.; Tian, Y. Antagonistic potential of Trichoderma as a biocontrol agent Sclerotinia asari. Front. Microbiol. 2022, 13, 997050. [Google Scholar] [CrossRef]
- Bansal, R.; Sahoo, S.A.; Barvkar, V.T.; Srivastava, A.K.; Mukherjee, P.K. Trichoderma virens exerts herbicidal effect on Arabidopsis thaliana via modulation of amino acid metabolism. Plant Sci. 2023, 332, 111702. [Google Scholar] [CrossRef]
- McLeod, A.; Labuschagne, N.; Kotze, J. Evaluation of Trichoderma for biological control of avocado root rot in bark medium artificially infested with Phytophthora cinnamomi. S. Afr. Avocado Grow. Assoc. Yearb. 1995, 18, 32–37. [Google Scholar]
- Lopez-Lopez, M.E.; Del-Toro-Sanchez, C.L.; Gutierrez-Lomeli, M.; Ochoa-Ascencio, S.; Aguilar-Lopez, J.A.; Robles-Garcia, M.A.; Plascencia-Jatomea, M.; Bernal-Mercado, M.A.; Martinez-Cruz, O.; Avila-Novoa, M.G.; et al. Isolation and characterization of Trichoderma spp. for antagonistic activity against Avocado (Persea americana Mill.) fruit pathogens. Horticulturae 2022, 8, 714. [Google Scholar] [CrossRef]
- Meki, S.; Ahmed, S.; Sakhuja, P.K. Control of chickpea wilt (Fusarium oxysporum f.s.p. ciceris) using Trichoderma spp. in Ehtiopia. Arch. Phytopathol. Plant Prot. 2011, 44, 432–440. [Google Scholar] [CrossRef]
- Rawat, J.; Sanwal, P.; Saxena, J.; Prasad, R. Exploring the biochar as a suitable carrier for a bioinoculant Aspergillus niger K7 and its consequence on Eleusine coracana in field studies. J. Agric. Food Res. 2023, 14, 100825. [Google Scholar] [CrossRef]
- Olabiyi, T.I.; Ojo, O.J.; Adewuyi, B.O.; Moral, M.T. Impact assessment of need compost and Trichoderma harzianum solution in the control of root knot nematode disease on cowpea. Cogent Food Agric. 2016, 2, 1207843. [Google Scholar] [CrossRef]
- Gupta, R.; Singh, M.; Khan, B.R. Photosynthetic electron transport rate and root dynamics of finger millet in response to Trichoderma harzianum. Plant Signal Behav. 2022, 17, 2146373. [Google Scholar] [CrossRef] [PubMed]
- Choudhary, A.; Ashraf, S.; Musheer, N. The antagonistic effect of locally isolated Trichoderma spp. against dry root rot of mungbean. Arch. Phytopathol. Plant Prot. 2021, 54, 1204–1210. [Google Scholar] [CrossRef]
- Barbosa, J.Z.; Hungria, M.; Prior, S.A.; Moura, M.C.; Poggere, G.; Motta, A.C.V. Improving yield and health of legume crops via co-inoculation with rhizobia and Trichoderma: A global meta-analysis. Appl. Soil Ecol. 2022, 176, 104493. [Google Scholar] [CrossRef]
- Pandey, V.; Ansari, M.W.; Tula, S.; Yadav, S.; Sahoo, R.K.; Shukla, N.; Bains, G.; Badal, S.; Chandra, S.; Gaur, A.K.; et al. Does-dependent response of Trichoderma harzianum in improving drought tolerance in rice genotypes. Plants 2016, 243, 1251–1264. [Google Scholar] [CrossRef]
- Chowdhury, M.R.; Ahmed, S.F.; Khalid, B.; Bony, Z.F.; Asha, J.F.; Bhuiyan, M.K.A. Biocontrol efficiency of microencapsulated Trichoderma harzianum coupled with organic additives against potato stem rot caused by Sclerotium rolfsii. Plant Stress 2023, 9, 100181. [Google Scholar] [CrossRef]
- Limdolthamand, S.; Songkumarn, P.; Suwannarat, S.; Jantasorn, A.; Dethoup, T. Bioconrol efficacy of endophytic Trichoderma spp. in fresh and dry powder formulations in controlling northern corn leaf blight in sweet corn. Biol. Control 2023, 181, 105217. [Google Scholar] [CrossRef]
- Manzar, N.; Singh, Y.; Kashyap, A.S.; Sahu, P.K.; Rajawat, M.V.S.; Bhowmik, A.; Sharma, P.K.; Saxena, A.K. Biocontrol potential of native Trichoderma spp. against anthracnose of great millet (Sorghum bicolour L.) from Tarai and hill regions of India. Biol. Control 2021, 152, 104474. [Google Scholar] [CrossRef]
- Diaz-Gutierrez, C.; Arroyave, C.; Llugany, M.; Pschenrieder, C.; Martos, S.; Pelaez, C. Trichoderma asperellum as a preventive and curative agent to control Fusarium wilt in Stevia rebaudiana. Biol. Control 2021, 155, 104537. [Google Scholar] [CrossRef]
- Wang, H.; Tang, W.; Mao, Y.; Ma, S.; Chen, X.; Shen, X.; Yin, C.; Mao, Z. Isolation of Trichoderma virens 6PS-2 and its effects on Fusarium prolideratum f. sp. Malus domestica MR5 related to apple replant disease (ARD) in China. Hortic. Plants J. 2020, 10, 1291–1308. [Google Scholar] [CrossRef]
- Kishmoto, K.; Matsui, K.; Ozawa, R.; Takabayashi, J. Volatile 1-Octen-3-Ol induced a defensive response in Arabidopsis thaliana. J. Gen. Plant Pathol. 2007, 73, 35–37. [Google Scholar] [CrossRef]
- Contretas-Cornejo, H.A.; Macias-Rodriguez, L.; Herrera-Estrella, A.; Lopez-Bucio, J. The 4-phosphopantetheinyl transferase of Trichoderma virens plays a role in plant protection against Botrytis cinerea through volatine organic compounds emission. Plant Soil 2014, 379, 261–274. [Google Scholar] [CrossRef]
- Lopez, A.C.; Alvarenga, A.E.; Zapata, P.D.; Luna, M.F.; Villalba, L.L. Trichoderma spp. from misiones, Argentina: Effective fungi to promote plant growth of the regional crop Ilex paraguariensis St. Hil. Mycology 2019, 10, 210–221. [Google Scholar] [CrossRef] [PubMed]
- Ruano-Rosa, D.; Arjona-Girona, I.; Lopez-Herrera, C.J.L. Integrated control of avocado white root rot combining low concentrations of fluazinam and Trichoderma spp. Crop Prot. 2018, 112, 363–370. [Google Scholar] [CrossRef]
- Muthukathan, G.; Mukherjee, P.; Salaskar, D.; Pachauri, S.; Tak, H.; Ganapathi, T.R.; Mukherjee, P.K. Secretome of Trichoderma virens induced by banana roots-identification of novel fungal proteins for enhancing plant defence. Physiol. Mol. Plant Pathol. 2020, 110, 101476. [Google Scholar] [CrossRef]
- Almeida, N.O.; Oliveira, C.M.D.; Ulhoa, C.J.; Cortes, M.V.D.C.B.; Junior, M.L.; Rocha, M.R.D. Trichoderma harzianum and Trichoderma asperellum are potential biocontrol agents of Meloidogyne javanica in banana cv. Grande Naine. Biol. Control 2022, 175, 105054. [Google Scholar] [CrossRef]
- Sano, L.; Oliveira, L.L.B.D.; Leao, M.D.M.; Santos, J.E.D.A.D.; Medeiros, S.C.D.; Schneider, F.; Sousa, A.B.O.D.; Taniguchi, C.A.K.; Muniz, C.R.; Grangeiro, T.B.; et al. Trichoderma longibrachiatum as a biostimulant of micropropagated banana seedlings under acclimatization. Plant Physiol. Biochem. 2022, 190, 184–192. [Google Scholar] [CrossRef]
- Moreira, F.M.; Cairo, P.A.R.; Borges, A.L.; Silva, L.D.D.; Haddad, F. Investigating the ideal mixture of soil and organic compound with Bacillus sp. and Trichoderma asperellum inoculations for optimal growth and nutrient content of banana seedlings. S. Afr. J. Bot. 2021, 137, 249–256. [Google Scholar] [CrossRef]
- Costa, A.C.D.; Miranda, R.F.D.; Costa, F.A.; Ulhoa, C.J. Potential of Trichoderma piluliferum as a biocontrol agent of Colletotrichum musae in banana fruits. Biocatal. Agric. Biotechnol. 2021, 34, 102028. [Google Scholar] [CrossRef]
- Mayo, S.; Gutierrez, S.; Malmierca, M.G.; Lorenzana, A.; Campelo, M.P.; Hermosa, R.; Casquero, P.A. Influence of Rhizoctonia solani and Trichoderma spp. in growth of bean (Phaseolus vulgaris L.) and in the induction of plant defense-related genes. Front. Plant Sci. 2015, 6, 685. [Google Scholar] [CrossRef] [PubMed]
- Eslahi, N.; Kowsari, M.; Motallebi, M.; Zamani, M.R.; Moghadasi, Z. Influence of recombinant Trichoderma strains on growth of bean (Phaseolus vulgaris L.) by increased root colonization and induction of root growth related genes. Sci. Hortic. 2020, 261, 108932. [Google Scholar] [CrossRef]
- Silva, F.D.A.; Vieira, V.D.O.; Silva, R.C.D.; Pinheiro, D.G.; Soares, M.A. Introduction of Trichoderma spp. biocontrol strains against Sclerotinia scleotiorum (Lib.) de Bary change soil microbial community composition in common bean (Phaseolus vulgaris L.) cultivation. Biol. Control 2021, 163, 104755. [Google Scholar] [CrossRef]
- Ghoneem, K.M.; Al-Askar, A.A.; Saber, W.-E.I.A. A simple formula of the endophytic Trichoderma viride, a case study for the management of Rhizoctonia solani on the common bean. Life 2023, 13, 1358. [Google Scholar] [CrossRef] [PubMed]
- Abdelmoteleb, A.; Gonzalez-Mendoza, D.; Zayed, O. Cell-free culture filtrate of Trichoderma longibrachiatum AD-1 as alternative approach to control Fusarium solani and induce defense response Phaseolus vulgaris L. plants. Rhizosphere 2023, 25, 100648. [Google Scholar] [CrossRef]
- Bedine, M.A.B.; Iacomi, B.; Tchameni, S.N.; Sameza, M.L.; Fekam, F.B. Harnessing the phosphate-solubilizing ability of Trichoderma strains to improve plant growth, phosphorus uptake and photosynthetic pigment contents in common bean (Phaseolus vulgaris). Biocatal. Agric. Biotechnol. 2022, 45, 102510. [Google Scholar] [CrossRef]
- Boat, M.A.B.; Sameza, M.L.; Iacomi, B.; Tchameni, S.N.; Boyom, F.F. Screening, identification and evaluation of Trichoderma spp. for biocontrol potential of common bean damping-off pathogens. Biocontrol Sci. Technol. 2020, 30, 228–242. [Google Scholar] [CrossRef]
- Silva, F.D.A.; Vierira, V.D.O.; Carrenho, R.; Rodrigues, V.B.; Junior, M.L.; Silva, G.F.D.; Soares, M.A. Influence of the biocontrol agents Trichoderma spp. on the structure and functionality of the edaphic microbial community in common bean cultivars (Phaseolus vulgaris L.) inoculated with Sclerotinia sclerotiorum (Lib.) de Bary. Appl. Soil Ecol. 2021, 168, 104190. [Google Scholar] [CrossRef]
- Umadevi, P.; Anandaraj, M.; Srivastav, V.; Benjamin, S. Trichoderma harzianum MTCC 5179 impacts the population and functional dynamics of microbial community in the rhzisophere of black pepper (Piper nigrum L.). Brazil J. Microbiol. 2018, 49, 463–470. [Google Scholar] [CrossRef] [PubMed]
- Pradhan, D.A.; Makandar, R. Delineating host responses induced by Trichoderma in castor through comparative transcriptome analysis. Rhizosphere 2023, 27, 100745. [Google Scholar] [CrossRef]
- Prasad, R.D.; Chandrika, K.S.V.P.; Godbole, V. A novel chitosan biopolymer based Trichoderma delivery system: Storage stability, persistence and bio efficacy against seed and soil borne diseases of oilseed crops. Microbiol. Res. 2020, 237, 126487. [Google Scholar] [CrossRef] [PubMed]
- Verma, R.; Das, A.; Kaman, P.K.; Kushwaha, K.P.S.; Bisht, A.S.; Narzary, P.R.; Roy, B. Comparative evaluation of physiological and biochemical chages in black pepper plants infected by Colletotrichum siamense in response to Trichoderma viride and T. harzianum application. Physiol. Mol. Plant Pathol. 2023, 128, 102170. [Google Scholar] [CrossRef]
- Tchameni, S.N.; Ngonkeu, M.E.L.; Begoude, B.A.D.; Nana, L.W.; Fokom, R.; Owona, A.D.; Mbarga, J.B.; Tchana, T.; Tondje, P.R.; Etoa, F.X.; et al. Effect of Trichoderma asperellum and arbuscular mycorrhizal fungi on cacao growth and resistance against black pod disease. Crop Prot. 2011, 30, 1321–1327. [Google Scholar] [CrossRef]
- Mbarga, J.B.; Begoude, B.A.D.; Ambang, Z.; Meboma, M.; Kuate, J.; Ewbank, W.; Hoopen, G.M.T. Field testing an oil-based Trichoderma asperellum formulation for the biological control of cacao black pod disease caused by Phytophthora megakarya. Crop Prot. 2020, 132, 105134. [Google Scholar] [CrossRef]
- Mbargo, J.B.; Begoude, B.A.D.; Ambang, Z.; Meboma, M.; Kuate, J.; Schiffers, B.; Ewbank, W.; Dedieu, L.; Hoopen, G.M.T. A new oil-based formulation of Trichoderma asperellum for the biological control of cacao black pod disease caused by Phytophthora megakarya. Biol. Control 2014, 77, 15–22. [Google Scholar] [CrossRef]
- Motlagh, M.R.S.; Abolghasemi, M. The effect of Trichoderma spp. isolates on some morphological traits of canola inoculated with Sclerotinia sclerotiorum and evaluation of their efficacy in biological control of pathogen. J. Saudi Soc. Agric. Sci. 2022, 21, 217–231. [Google Scholar] [CrossRef]
- Da Silva, J.S.A.D.; Medeiros, E.V.D.; Costa, D.P.D.; Souza, C.A.F.D.; Oliveira, J.B.D.; Franca, R.F.D.; Souza-Motta, C.M.; Lima, J.R.D.S.; Hammecker, C. Biochar and Trichoderma aureoviride URM 5158 as alternatives for the management of cassava root rot. Appl. Soil Ecol. 2022, 172, 104353. [Google Scholar] [CrossRef]
- Pradham, D.A.; Bagagoni, P.; Slathia, S.; Prasad, R.D. Characterization of Trichoderma strains for novel species-specific markers by multiplex PCR and antagonistic property against Alternaria ricini in castor (Ricinus communis L.). Biocatal. Agric. Biotechnol. 2023, 54, 102945. [Google Scholar] [CrossRef]
- Pradhan, D.A.; Bagagoni, P.; Makandar, R. Assessing rhizosphere Trichoderma asperellum strains for root colonizing and antagonistic competencies against Fusarium wilt through molecular and biochemical responses in castor. Biol. Control 2023, 184, 105280. [Google Scholar] [CrossRef]
- Dubey, S.C.; Tripathi, A.; Bhavani, R.; Singh, B. Evaluation of seed dressing and soil application formulation of Trichoderma species for integrated management of dry root rot of chickpea. Biocontrol. Sci. Technol. 2011, 21, 93–100. [Google Scholar] [CrossRef]
- Begum, M.F.; Rahman, M.A.; Firoz Alam, M. Biological control of Alternaria fruit rot of chili by Trichoderma species under field conditions. Mycobiology 2010, 38, 113–117. [Google Scholar] [CrossRef]
- Ji, S.; Liu, Z.; Liu, B.; Wang, Y.; Wang, J. The effect of Trichoderma biofertilizer on the quality of flowering Chinese cabbage and the soil environment. Sci. Hortic. 2020, 262, 109069. [Google Scholar] [CrossRef]
- De Lima, F.B.; Felix, C.; Osorio, N.; Alves, A.; Vitorino, R.; Domingues, P.; da Silva Ribeiro, R.T.; Esteves, A.C. Trichoderma harzianum T1A constitutively secretes proteins involved in the biological control of Guignardia citricarpa. Biol. Control 2017, 106, 99–109. [Google Scholar] [CrossRef]
- Bae, H.; Sicher, R.C.; Kim, M.S.; Kim, S.H.; Strem, M.D.; Melnick, R.L.; Bailey, B.A. The beneficial endophyte Trichoderma hamatum isolate DIS 219b promotes growth and delays the onset of the drought response in Theobroma cacao. J. Exp. Bot. 2009, 60, 3279–3295. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; An, X.; Lv, Y.; Khan, R.A.A.; Xue, M.; Chen, J.; Liu, T. Trichoderma asperellum GD040 upregulates defense-related genes and reduces lesion size in Coffea canephora leaves inoculated with Colletotrichum cairnsense. Biol. Control 2023, 181, 105213. [Google Scholar] [CrossRef]
- Howell, C.R.; Hanson, L.E.; Stipanovic, R.D.; Puckhaber, L.S. Induction of terpenoid synthesis in cotton roots and control of Rhizoctonia solani by seed treatment with Trichoderma virens. Phytopathology 2000, 90, 248–252. [Google Scholar] [CrossRef]
- Howell, C.R. Cotton seedling preemergence damping-off incited by Rhizopus oryzae and Pythium spp. and its biological control with Trichoderma spp. Phytopathology 2002, 92, 177–180. [Google Scholar] [CrossRef]
- Howell, C.R. Understanding the mechanisms employed by Trichoderma virens to effect biological control of cotton diseases. Phytopathology 2006, 96, 178–180. [Google Scholar] [CrossRef]
- Larran, S.; Simon, M.R.; Santamarina, M.P.; Caselles, J.R.; Consolo, V.F.; Perello, A. Endophytic Trichoderma strains increase soya bean growth and promote charcoal rot control. J. Saudi Soc. Agric. Sci. 2023, 22, 395–406. [Google Scholar] [CrossRef]
- Nakkeeran, S.; Renukadevi, P.; Marimuthu, T. Antagonistic potentiality of Trichoderma viride and assessment of its efficacy for the management of cotton root rot. Arch. Phytopathil. Plant Prot. 2005, 38, 209–225. [Google Scholar] [CrossRef]
- Gajera, H.P.; Hirpara, D.G.; Savaliya, D.D.; Golakiya, B.A. Extracellular metabolomics of Trichoderma biocontroller for antifungal action to restrain Rhizoctonia solani Kuhn in cotton. Physiol. Mol. Plant Pathol. 2020, 112, 101547. [Google Scholar] [CrossRef]
- Oliveira, C.M.D.; Almeida, N.O.; Cortes, M.V.D.C.B.; Junior, M.L.; Rocha, M.R.D.; Ulhoa, C.J. Biological control of Pratylenchus brachyurus with isolates of Trichoderma spp. on soybean. Biol. Control 2021, 152, 104425. [Google Scholar] [CrossRef]
- Szczech, M.; Nawrocka, J.; Felczynski, K.; Malolepsza, U.; Sobolewski, J.; Kowalska, B.; Maciorowski, R.; Jas, K.; Kancelista, A. Trichoderma atroviride TRS25 isolate reduces downy mildew and induces systemic defence responses in cucumber in field conditions. Sci. Hortic. 2017, 224, 17–26. [Google Scholar] [CrossRef]
- Nawrocka, J.; Malolepsza, U.; Szymczak, K.; Szczech, M. Involvement of metabolic components, volatile compounds, PR proteins and mechanical strengthening in multilayer protection of cucumber plants against Rhizoctonia solani activated by Trichoderma atroviride TRS25. Protoplasma 2018, 255, 359–373. [Google Scholar] [CrossRef]
- Yuan, M.; Huang, Y.; Ge, W.; Jia, Z.; Song, S.; Zhang, L.; Huang, Y. Involvement of jasmonic acid, ethylene and salicylic acid signaling pathways behind the systemic resistance induced by Trichoderma longibrachiatum H9 in cucumber. BMC Genom. 2019, 20, 144. [Google Scholar] [CrossRef]
- Zhao, L.; Zhang, Y. Effects of phosphate solubilization and phytohormone production of Trichoderma asperellum Q1 on promoting cucumber growth under salt stress. J. Integr. Agr. 2015, 14, 1588–1597. [Google Scholar] [CrossRef]
- Brotman, Y.; Landau, U.; Cuadros-Inostroza, A.; Takayuki, T.; Fernie, A.R.; Chet, I.; Viterbo, A.; Willmitzer, L. Trichoderma-plant root colonization: Escaping early plant defense responses and activation of the antioxidant machinery for saline stress tolerance. PLOS Pathog. 2013, 9, e1003221. [Google Scholar] [CrossRef]
- Wang, R.; Yu, X.; Yi, Y.; Norvienyeku, J.; Khan, R.A.A.; Zhang, M.; Ren, S.; Chen, J.; Liu, T. Biocontrol of cucumber Fuarium wilt by Trichoderma asperellum FJ035 dependent on antagonism and spatiotemporal competition with Fusarium oxysporum. Biol. Control 2023, 186, 105334. [Google Scholar] [CrossRef]
- Li, P.; Xie, D.; Chen, H.; Qiu, Y.; Zhang, X.; Zhang, S.; Wang, L.; Lin, H.; Li, X.; Liu, K. Secondary metabolites from marine derived fungus Penicillium chrysogenum Y19-1 with proangiogenic and antithrombotic activities. Biochem. System. Ecol. 2023, 107, 104625. [Google Scholar] [CrossRef]
- Ulrich, A.; Lerin, L.A.; Camargo, A.F.; Scapini, T.; Diering, N.L.; Bonafin, F.; Gasparetto, I.G.; Confortin, T.C.; Sansonovicz, P.F.; Fabaian, R.L.; et al. Alternative bioherbicide based on Trichoderma koningiopsis: Enzymatic characterization and its effect on cucumber plants and soil organism. Biocatal. Agric. Biotechnol. 2021, 36, 102127. [Google Scholar] [CrossRef]
- Intana, W.; Kumla, J.; Suwannarach, N.; Sunpapao, A. Biological control potential of a soil fungus Trichoderma asperellum K1-02 against Neoscytalidium dimidiatum causing stem canker of dragon fruit. Physiol. Mol. Plant Pathol. 2023, 128, 102151. [Google Scholar] [CrossRef]
- Admasu, W.; Sintayehu, A.; Gezahgne, A.; Terefework, Z. In vitro bioefficacy of Trichoderma species against two Botryosphaeriaceae fungi causing Eucalytpus stem canker disease in Ethiopia. J. Nat. Pest Res. 2023, 4, 100037. [Google Scholar] [CrossRef]
- Mbazia, A.; Youssef, N.O.B.; Kharrat, M. Tunisian isolates of Trichoderma spp. and Bacillus subtilis can control Botrytis fabae on faba bean. Biocontrol Sci. Technol. 2016, 26, 915–927. [Google Scholar] [CrossRef]
- Neme, A.; Leta, A.; Yones, A.M.; Tahir, M. Seedborne mycoflora of faba bean (Vicia fabae L.) and evaluation of plant extract and Trichoderma species against mycelium growth of selected fungi. Heliyon 2023, 9, e17291. [Google Scholar] [CrossRef]
- Gupta, V.P.; Sharma, D.D.; Mahasevaswamy, H.; Chandrashekar, D.S. Trichoderma pseudokoningii for hastening the decomposition of various sericultural wastes and impact of enriched composts on disease suppression in mulberry (Morus spp.). Arch. Phytopathol. Plant Prot. 2009, 7, 603–609. [Google Scholar] [CrossRef]
- Brito, F.D.S.; Costa, D.P.D.; Souza, C.A.F.D.; Almeida, D.T.D.R.G.F.D.; Leite, I.C.H.D.L.; Goncalves, E.P.; Medeiros, E.V.D. Selection and control efficacy of Trichoderma spp. against Fusarium solani and Lasiodiplodia theobromae causing root rot in forage cactus. Physiol. Mol. Plant Pathol. 2022, 122, 101900. [Google Scholar] [CrossRef]
- Mastan, A.; Rane, D.; Dastager, S.G.; Vivek Babu, C.S. Molecular insights of fungal endophyte co-inoculation with Trichoderma viride for the augmentation of forskolin biosynthesis in Coleus forskohlii. Phytochemistry 2021, 184, 112654. [Google Scholar] [CrossRef]
- Kupper, V.; Kortekamp, A.; Steiner, U. Combining Trichoderma koningiopsis and chitosan as a synergistic biocontrol and biostimulating complex to reduce copper rates for downy mildew control on grapevine. Biol. Control 2023, 185, 105293. [Google Scholar] [CrossRef]
- El-Mohamedy, R.; Ziedan, E.H.; Abdalla, A.M. Biological soil treatment with Trichoderma harzianum to control root rot disease grapevine (Vitis vinifera L.) in newly reclaimed lands in Bobaria province. Arch. Phytopathol. Plant Prot. 2010, 43, 73–87. [Google Scholar] [CrossRef]
- Csoto, A.; Kovacs, C.; Pal, K.; Nagy, A.; Peles, F.; Fekete, E.; Karaffa, L.; Kubicek, C.P.; Sandor, E. The biocontrol potential of endophytic Trichoderma fungi isolated from Hungarian grapevines, part II, grapevine stimulation. Pathogens 2023, 12, 2. [Google Scholar] [CrossRef]
- Song, H.; Asghari, M.; Zahedipour-Sheshglani, P.; Alizadeh, M.; Qian, S.; Diao, E. Modeling and optimizing the effects of Trichoderma on quality, decay extension rate and phytochemical compounds of Thompson seedless table grapes by the use of response surface methodology. Eur. J. Agron. 2023, 144, 126758. [Google Scholar] [CrossRef]
- Gajera, H.P.; Savaliya, D.D.; Patel, S.V.; Golakiya, B.A. Trichoderma viride induces pathogenesis related defense response against rot pathogen infection in groundnut (Arachis hypogaea L.). Infect Gene Evol. 2015, 34, 314–325. [Google Scholar] [CrossRef] [PubMed]
- Gajera, H.P.; Katakpara, Z.A.; Golakiya, B.A. Antioxidant defense response induced by Trichoderma viride against Aspergillus niger Van Tieghem causing collar rot in groundnut (Arachis hypogaea L.). Microbiol. Pathogen. 2016, 91, 26–34. [Google Scholar] [CrossRef] [PubMed]
- Ayyandurai, M.; Akila, R.; Manonmani, K.; Harish, S.; Mini, M.L.; Vellaikumar, S. Deciphering the mechanism of Trichoderma spp. consortia possessing volatile organic compounds and antifungal metabolites in the suppression of Sclerotium rolfsii in groundnut. Physiol. Mol. Plant Pathol. 2023, 125, 102005. [Google Scholar] [CrossRef]
- Hoa, P.T.B.; Tue, N.H.; Trang, H.T.Q.; Thu, H.A.; Nhung, L.N.H.; Luong, N.N.; Huy, N.X.; Tien, N.Q.D.; Loc, N.H. Enhancement of resistance against fungal pathogens in peanut (Arachis hypogaea L.) cultivar L14 by heterologous expression of gene encoding chitinase 42 kDa from Trichoderma asperellum SH16. S. Afr. J. Bot. 2023, 160, 673–681. [Google Scholar] [CrossRef]
- Boukaew, S.; Petlamul, W.; Srinuanpan, S.; Nooprom, K.; Zhang, Z. Heat stability of Trichoderma asperelloides SKRU-01 culture filtrates: Potential applications for controlling fungal spoilage and AFB1 production in peanuts. Int. J. Food Microbiol. 2024, 409, 110477. [Google Scholar] [CrossRef]
- Erazo, J.G.; Palacios, S.A.; Pastor, N.; Giordano, F.D.; Rovera, M.; Reynoso, M.M.; Venisse, J.S.; Torres, A.M. Biocontrol mechanisms of Trichoderma harzianum ITEM 3636 against peanut brown root rot caused by Fusarium solani RC 386. Biol. Control 2021, 164, 104774. [Google Scholar] [CrossRef]
- Yan, D.; Cai, N.; Nong, X.; Wang, G.; Wang, Q.; Ullah, H.; Tu, X.; Zhang, Z. Transcriptomic differences in response to Metarhizium anisopliae and Trichoderma harzianum uncovers major regulative genes and pathways for establishment of beneficial relationship in peanut. Biol. Control 2022, 172, 104964. [Google Scholar] [CrossRef]
- Song, X.; Jin, J.; Yin, H.; Wang, T.; Zong, H.; Wang, F.; Liu, J.; Huang, X.; Wang, B.; Chai, C.; et al. Trichoderma viride F7 improves peanut performance while remedying cadmium-contaminated soil with microplastics. Pedosphere 2023, 34, 1–20. [Google Scholar] [CrossRef]
- Sennoi, R.; Singkham, N.; Jogloy, S.; Boonlue, S.; Saksirirat, W.; Kesmala, T.; Patanothai, A. Biological control of southern stem rot caused by Sclerotium rolfsii using Trichoderma harzianum and arbuscular mycorrhizal fungi on Jerusalem artichoke (Helianthus tuberosus L.). Crop Prot. 2013, 54, 148–153. [Google Scholar] [CrossRef]
- Silva, L.R.D.; Valadares-Inglis, M.C.; Peixoto, G.H.S.; Luccas, B.E.G.D.; Muniz, P.H.P.C.; Magalhaes, D.M.; Moraes, M.C.B.; Mello, S.C.M.D. Volatile organic compounds emitted by Trichoderma azevedoi promote the growth of lettuce plants and delay the symptoms of white mold. Biol. Control 2021, 152, 104447. [Google Scholar] [CrossRef]
- Wonglom, P.; Ito, S.-I.; Supapao, A. Volatile organic compounds emitted from endophytic fungus Trichoderma asperellum T1 mediate antifungal activity, defense response and promote plant growth in lettuce (Lactuca sativa). Fungal Ecol. 2020, 43, 100867. [Google Scholar] [CrossRef]
- Baiyee, B.; Pornsuriya, C.; Ito, S.-I.; Sunpapao, A. Trichoderma spirale T76-1 displays biocontrol activity against leaf spot on lettuce (Lactuca sativa L.) caused by Corynespora cassiicola or Curvularia aeria. Biol. Control 2019, 129, 195–200. [Google Scholar] [CrossRef]
- Caporale, A.G.; Sommella, A.; Lorito, M.; Lombardi, N.; Azam, S.M.G.G.; Pigna, M.; Ruocco, M. Trichoderma spp. alleviate phytotoxicity in lettuce plants (Lactuca sativa L.) irrigated with arsenic-contaminated water. J. Plant Physiol. 2014, 171, 1378–1384. [Google Scholar] [CrossRef] [PubMed]
- Santos-Villalobos, S.; Guzman-Ortiz, D.A.; Gomez-Lim, M.A.; Delano-Frier, J.P.; De-Folter, S.; Sanchez-Garcia, P.; Pena-Cabriales, J.J. Potential use of Trichoderma asperellum (Samuels, Liechfeldt et Nirenberg) T8a as a biological control agent against anthracnose in mango (Mangifera indica L.). Biol. Control 2013, 64, 37–44. [Google Scholar] [CrossRef]
- Zhan, X.; Khan, R.A.A.; Zhang, J.; Chen, J.; Yin, Y.; Tang, Z.; Wang, R.; Lu, B.; Liu, T. Control of postharvest stem-end rot on mango by antifungal metabolites of Trichoderma pinnatum LS2029-3. Sci. Hortic. 2023, 310, 111696. [Google Scholar] [CrossRef]
- Akladious, S.A.; Abbas, S.M. Application of Trichoderma harzianum T22 as a biofertilizer potential in maize growth. J. Plant Nutr. 2014, 37, 30–49. [Google Scholar] [CrossRef]
- Yassin, M.T.; Mostafa, A.A.-F.; Al-Askar, A.A. In vitro antagonistic activity of Trichoderma spp. against fungal pathogens causing black point disease of wheat. J. Taibah Univ. Sci. 2022, 16, 57–65. [Google Scholar] [CrossRef]
- Degani, O.; Dor, S. Trichoderma biological control to protect sensitive maize hybrids against Late wilt disease in the field. J. Fungi 2021, 7, 315. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.; Luo, X. Trichoderma koningiopsis controls Fusarium oxysporum causing damping-off in Pinus massoniana seedlings by regulating active oxygen metabolism osmotic potential, and the rhizosphere microbiome. Biol. Control 2020, 150, 104352. [Google Scholar] [CrossRef]
- Saravanakumar, K.; Wand, M.H. Isolation and molecular identification of Trichoderma species from wetland soil and their antagonistic activity against phytopathogens. Physiol. Mol. Plant Pathol. 2020, 109, 101458. [Google Scholar] [CrossRef]
- Karuppiah, V.; Li, Y.; Sun, J.; Vallikkannu, M.; Chen, J. Vel1 regulates the growth of Trichoderma atroviride during co-cultivation with Bacillus amyloliquefaciens and is essential for wheat root rot control. Biol. Control 2020, 151, 104374. [Google Scholar] [CrossRef]
- Galletti, S.; Paris, R.; Cianchetta, S. Selected isolates of Trichoderma gamsii induce different pathways of systemic resistance in maize upon Fuarium verticillioides challenge. Micriobiol. Res. 2020, 233, 126406. [Google Scholar] [CrossRef]
- Hasanloo, T.; Kowsari, M.; Naraghi, S.M.; Bagheri, O. Study of different Trichoderma strains on growth characteristics and silymarin accumulation of milk thistle plant. J. Plant Interact. 2010, 5, 45–49. [Google Scholar] [CrossRef]
- Hohmann, P.; Jones, E.E.; Hill, R.A.; Stewart, A. Understanding Trichoderma in the root system of Pinus radiata: Associations between rhizosphere colonisation and growth promotion for commercially growth seedlings. Fungal Biol. 2011, 115, 759–767. [Google Scholar] [CrossRef]
- Hohmann, P.; Jones, E.E.; Hill, R.A.; Stewart, A. Ecological studies of the bio-inoculant Trichoderma hamatum LU592 in the root system of Pinus radiata. FEMS Microbiol. Ecol. 2012, 80, 709–721. [Google Scholar] [CrossRef]
- Ruangwong, Q.-U.; Wonglom, P.; Phoka, N.; Suwannarach, N.; Lumyong, S.; Ito, S.-I.; Sunpapao, A. Biological control activity of Trichoderma asperelloides PSU-P1 against gummy stem blight in muskmelon (Cucumis melo). Physiol. Mol. Plant Pathol. 2021, 115, 101663. [Google Scholar] [CrossRef]
- Khare, A.; Singh, B.; Upadhyay, R. Biological control of Pythium aphanidermatum causing damping-off of mustard by mutants of Trichoderma viride 1433. J. Agric. Technol. 2010, 6, 231–243. [Google Scholar]
- Samlikamnoed, P.; Anothai, J.; Chairin, T. Defense-related enzyme production in oil palm seedlings against basal stem rot pathogen Ganoderma boninense and its biological control by Trichoderma asperellun. Physiol. Mol. Plant Pathol. 2023, 128, 102154. [Google Scholar] [CrossRef]
- Ben Amira, M.; Lopez, D.; Triki Mohamed, A.; Khouaja, A.; Chaar, H.; Fumanal, B.; Gousset-Dupont, A.; Bonhomme, L.; Label, P.; Goupil, P.; et al. Beneficial effect of Trichoderma harzianum strain Ths97 in biocontrolling Fusarium solani causal agent of root rot disease in olive trees. Biol. Control 2017, 110, 70–78. [Google Scholar] [CrossRef]
- Metwally, R.A.; Soliman, S.A.; Laref, A.A.H.A.; Abdelhameed, R.E. The individual and interactive role of arbuscular mycorrhizal fungi and Trichoderma viride on growth, protein content, amino acids fraction, and phosphatases enzyme activities of onion plant amended with fish waste. Ecotoxicol. Environ. Saf. 2021, 214, 112072. [Google Scholar] [CrossRef] [PubMed]
- Vargas, J.T.; Rodriguez-Monroy, M.; Meyer, M.L.; Montes-Belmont, R.; Sepulveda-Jimenez, G. Trichoderma asperellum ameliorates phytotoxic effects of copper in onion (Allium cepa L.). Environ. Exp. Bot. 2017, 136, 85–93. [Google Scholar] [CrossRef]
- Camacho-Luna, V.; Pizar-Quiroz, A.M.; Rodriguez-Hernandez, A.A.; Rodriguez-Monroy, M.; Sepulveda-Jimenez, G. Trichodera longibrachiatum, a biological control agent of Sclerotium cepivorum on onion plants under salt stress. Biol. Control 2023, 180, 105168. [Google Scholar] [CrossRef]
- Da Silva, L.R.; Rodrigues, L.L.D.B.; Zazaroni, A.B.; Castro, B.S.D.; Sifuentes, D.N.; Botelho, A.S.; Moraes, M.C.B.; Mello, S.C.M.D. Sclerotium rolfssi mycelial profile analysis by MALDI-TOF related to biological control, volatile organic compounds diversity and onion growth promotion, as influenced by Trichoderma spp. Biol. Control 2022, 172, 104970. [Google Scholar] [CrossRef]
- Bunbury-Blanchette, A.L.; Walker, A.K. Trichoderma species show biocontrol potential in dual culture and greenhouse bioassays against Fusarium basal rot of onion. Biol. Control 2019, 130, 127–135. [Google Scholar] [CrossRef]
- Arif, S.; Munis, M.F.H.; Liaquat, F.; Gulzar, S.; Haroon, U.; Zhao, L.; Zhang, Y. Trichoderma viride establishes biodefense against clubroot (Plasmodiophora brassicae) and fosters plant growth via colonizing root hairs in pak choi (Brassica campestris spp. chinensis). Biol. Control 2023, 183, 105265. [Google Scholar] [CrossRef]
- Gulzar, S.; Manzoor, M.A.; Liaquat, F.; Shah, I.H.; Rehman, A.; Hameed, M.K.; Arif, S.; Zhou, X.; Zhang, Y. Effects of melatonin and Trichoderma harzianum on pak choi yield, chlorophyll contents and antioxidant defense system under clubroot disease. S. Afr. J. Bot. 2023, 158, 292–300. [Google Scholar] [CrossRef]
- Nandini, B.; Hariprasad, P.; Niranjana, S.R.; Shetty, H.S.; Geetha, N.P. Elicitation of resistance in pearl millet by oligosaccharides of Trichoderma spp. against downy mildew disease. J. Plant Inter. 2013, 8, 45–55. [Google Scholar] [CrossRef]
- Nandini, B.; Geetha, N.; Prakash, H.S.; Hariparsad, P. Natural uptake of anti-oomycetes Trichoderma produced secondary metabolites from pearl millet seedlings- A new mechanism of biological control of downy mildew disease. Biol. Control 2021, 156, 104550. [Google Scholar] [CrossRef]
- Rochal, K.K.L.; Pierre, E.; Diane, Y.Y.; Sahu, K.P.; Vanessa, N.D.; Wankeu, K.; Herman, T.; Gilbert, G.T.P.; Sevilor, K.; Germain, K.; et al. Biological elicitor potential of endospheric Trichoderma and derived consortia against pepper (Capsicum annuum L.) leaf curl virus. Arch. Phytopathol. Plant Prot. 2021, 54, 1926–1952. [Google Scholar] [CrossRef]
- Eke, P.; Dinango, V.N.; Wakam, L.N.; Toghueo, R.M.K.; Kouokap, L.R.K.; Mabou, L.C.N.; Wankeu, T.H.K.; Ngomsi, P.; Boyom, F.F. Diagnosis and bioefficiancy of endospheric trichoderma strains of selected medicinal plant on pepper root rot and vascular wilt in Cameroon. Arch. Phytopathol. Plant Prot. 2020, 54, 1–15. [Google Scholar] [CrossRef]
- Demissie, S.; Megersa, G.; Meressa, B.H.; Muleta, D. Resistance levels of Ethiopian hot pepper (Capsicum spp.) varieties to a pathogenic Fusarium spp. and in vitro antagonistic effect of Trichoderma spp. Arch. Phytopathol. Plant Prot. 2021, 54, 647–663. [Google Scholar] [CrossRef]
- Pereira, T.D.S.; Macedo, A.G.; Silva, J.D.; Pinheiro, J.B.; Paula, A.M.D.; Biscaia, D.; Busato, J.G. Water-extractable fraction of vrmicomposts enriched with Trichoderma enhances the growth of bell pepper and tomato as well as their tolerance against Meloidogyne incognita. Sci. Hortic. 2020, 272, 109536. [Google Scholar] [CrossRef]
- Tomah, A.A.; Alamer, I.S.A.; Li, B.; Zhang, J.-Z. A new species of Trichoderma and gliotoxin role: A new observation in enhancing biocontrol potential of T. virens against Phytophthora capsici on chili pepper. Biol. Control 2020, 145, 104261. [Google Scholar] [CrossRef]
- Rokni, N.; Alizadeh, H.S.; Bazgir, E.; Darvishnia, M.; Mirzaei-Najafgholi, H. The tripartite consortium of Serendipita indica, Trichoderma simmonsii, and bell pepper (Capsicum annum). Biol. Control 2021, 158, 104608. [Google Scholar] [CrossRef]
- Guo, K.; Sui, Y.; Li, Z.; Huang, Y.; Zhang, H.; Wang, W. Colonization of Trichoderma viride Tv-1511 in perppermint (Mentha × piperita L.) roots promotes essential oil production by triggering ROS-mediated MAPK activation. Plant Physiol. Biochem. 2020, 151, 705–718. [Google Scholar] [CrossRef]
- Mishra, R.K.; Pandey, S.; Hazra, K.K.; Mishra, M.; Naik, S.J.S.; Bohra, A.; Parihar, A.K.; Rathore, U.S.; Naimuddin, K.K.; Singh, B.; et al. Biocontrol efficacy and induced defense mechanisms of indigenous Trichoderma strains against Fusarium wilt (F. udum (Butler) in pigeonpea. Physiol. Mol. Plant Pathol. 2023, 127, 102122. [Google Scholar] [CrossRef]
- Dehriya, K.; Shukla, A.; Ganaie, M.A.; Vyas, D. Individual and interactive role of Trichoderma and Mycorrhizae in controlling wilt disease and growth reduction in Cajanus cajan caused by Fusarium udum. Arch. Phytopathol. Plant Prot. 2015, 48, 50–61. [Google Scholar] [CrossRef]
- Kelley, W.D. Interactions of Phytophthora cinnamomi and Trichoderma spp. in relation to propagule production in soil cultures at 26 °C. Can. J. Microbiol. 1977, 23, 288–294. [Google Scholar] [CrossRef] [PubMed]
- Mollah, M.M.I.; Hassan, N. Efficacy of Trichoderma harzianum, as a biological fungicide against fungal diseases of potato, late blight and early blight. J. Nat. Pest Res. 2023, 5, 100047. [Google Scholar] [CrossRef]
- Hassan, M.M.; Soliman, M.M.; Al-Otaibi, S.; El-Shehawi, A.M.; Taha, E.-K.A.; Sayed, S. The effectiveness of Xanthium strumamrium L. extract and Trichoderma spp. against pomegranate isolated. J. King Saud. Univ. Sci. 2022, 34, 102185. [Google Scholar] [CrossRef]
- Metz, N.; Hausladen, H. Trichoderma spp. as potential biological control agent against Alternaria solani in potato. Biol. Control 2022, 166, 104820. [Google Scholar] [CrossRef]
- Ommati, F.; Zaker, M. In vitro and greenhouse evaluations of Trichoderma isolates for biological control of potato wilt disease (Fusarium solani). Arch. Phytopathol. Plant Prot. 2012, 45, 1715–1723. [Google Scholar] [CrossRef]
- Sivakumar, D.; Wijeratnam, R.S.; Wijesundera, R.L.; Marikar, F.M.; Abeyesekere, M. Antagonistic effect of Trichoderna harzianm on postharvest pathogens of rambutan (Nephelium lappaceum). Phytoparasitica 2000, 28, 240–247. [Google Scholar] [CrossRef]
- Pandey, A.K.; Kumar, A.; Samota, M.K.; Tanti, A. Trichoderma reesei as an elicitor triggers defense responses in tea plant and delays gray blight symptoms. Pest Biochem. Physiol. 2022, 188, 105279. [Google Scholar] [CrossRef]
- Klaram, R.; Jantasorn, A.; Dethoup, T. Efficacy of marine antagonist, Trichoderma spp. as halo-tolerant biofungicide in controlling rice diseases and yield improvement. Biol. Control 2022, 172, 104985. [Google Scholar] [CrossRef]
- Chen, L.-H.; Zhang, J.; Shao, X.-H.; Wang, S.-S.; Miao, Q.-S.; Mao, X.-Y.; Zhai, Y.-M.; She, D.-L. Development and evaluation of Trichoderma asperellum preparation for control of sheath blight of rice (Oryza sativa L.). Biocontrol Sci. Technol. 2015, 25, 316–328. [Google Scholar] [CrossRef]
- Parizi, T.E.; Ansari, M.; Elaminejad, T. Evaluation of the potential of Trichoderma viride in the control of fungal pathogens of Roselle (Hibiscus sabdariffa L.) in vitro. Microbiol. Pathogen. 2012, 52, 201–205. [Google Scholar] [CrossRef]
- Elad, Y.; Chet, I.; Boyle, P.; Henis, Y. Parasitism of Trichoderma spp. on rhizoctonia solani and Sclerotium rolfsii-scanning electron microscopy and fluorescence microscopy. Phytopathology 1983, 73, 85–88. [Google Scholar] [CrossRef]
- Vecstaudza, D.; Grantina-levina, L.; Makarenkova, G.; Kasparinskis, R.; Selga, T.; Steinberga, V.; Stelmahere, S.; Steiner, C.; Muter, O. The impact of wood-derived biochar on the survival of Trichoderma spp. and growth of Secale cereale L. in sandy soil. Biocontrol Sci. Technol. 2018, 28, 341–358. [Google Scholar] [CrossRef]
- Arellano, A.D.V.; Dilva, G.M.D.; Guatimosim, E.; Dorneles, K.D.R.; Moreira, L.G.; Dallagnol, L.J. Seeds coated with Trichoderma atroviride and soil amended with silicon improve the resistance of Lolium multiflorum against Pyricularia oryzae. Biol. Control 2021, 154, 104499. [Google Scholar] [CrossRef]
- John, R.P.; Tyagi, R.D.; Prevost, D.; Brar, S.K.; Pouleur, S.; Surampalli, R.Y. Mycoparasitic Trichoderma viride as a biocontrol agent against Fusarium oxysporum f. sp. adzuki and Pythium arrhenomanes and as a growth promoter of soybean. Crop Prot. 2010, 29, 1452–1459. [Google Scholar] [CrossRef]
- Conte, E.D.; Magro, T.D.; Bem, L.C.D.; Dalmina, J.C.; Matte, J.A.; Schenkel, V.O.; Schwambach, J. Use of Trichoderma spp. in no-tillage system: Effect of soil and soybean crop. Biol. Control 2022, 171, 104941. [Google Scholar] [CrossRef]
- Ulrich, A.; Muller, C.; Gasparetto, I.G.; Bonafin, F.; Diering, N.L.; Camargo, A.F.; Reichert Junior, F.W.; Paudel, S.R.; Treichel, H.; Mossi, A.J. Bioherbicide effects of Trichoderma koningiopsis associated with commercial formulations of glyphosate in weeds and soybean plants. Crop Prot. 2023, 172, 106346. [Google Scholar] [CrossRef]
- Camatti, G.; Santos, F.M.D.; Rodrigues Junior, G.L.D.S.; Camargo, D.P.; Mandio, G.S.; Santos, J.R.P.; Silva, J.C.P.D. Bacillus- and Trichoderma-based products control the spiral nematode Helicotylenchus dihystera in soybean. Rhizosphere 2023, 27, 100717. [Google Scholar] [CrossRef]
- Gashash, E.A.; El-Sayed, S.A.; Kamel, W.M.; Sarhan, E.A.D. Evaluation of the potential of native Trichoderma spp. against root-rot diseases of soybean. Arch. Phytopathol. Plant Prot. 2023, 56, 1–14. [Google Scholar] [CrossRef]
- Sofy, M.; Mohamed, H.; Dawood, M.; Abu-Elsaoud, A.; Soliman, M. Integrated usage of Trichoderma harzianum and biochar to ameliorate salt stress on spinach plants. Arch. Agron. Soil Sci. 2022, 68, 2005–2026. [Google Scholar] [CrossRef]
- Naher, L.; Yusuf, U.K.; Ismail, A.; Hossain, K. Trichoderma spp.: A biocontrol agent for sustainable managment of plant diseases. Pak. J. Bot. 2014, 46, 1489–1493. [Google Scholar]
- Qiu, Y.-L.; Wang, N.; Zhang, J.-F.; Chen, Z.-H.; Yan, Y.-T.; Wu, F.; Li, H.-L. Application of indigenous honeybees in dispersing Trichoderma harzianum spores for control of the strawberry grey mould. Biocontrol Sci. Technol. 2021, 31, 418–429. [Google Scholar] [CrossRef]
- Kappel, L.; Kosa, N.; Gruber, S. The multilateral efficacy of chitosan and Trichoderma on sugar beet. J. Fungi 2022, 8, 137. [Google Scholar] [CrossRef] [PubMed]
- Paramasivan, M.; Chandrasekaran, A.; Mohan, S.; Muthukrishnan, N. Ecological management of tropical sugar beet (TSB) root rot (Sclerotium rolfsii (Sacc.) by rhizosphere Trichoderma species. Arch. Phytopathol. Plant Prot. 2014, 47, 1629–1644. [Google Scholar] [CrossRef]
- Upadhyay, J.P.; Mukhopadhyay, A.N. Biological control of Sclerotium rolfsii by Trichoderma harzianum in sugarbeet. Trop Pest Manag. 1986, 32, 215–220. [Google Scholar] [CrossRef]
- Kakvan, N.; Heydari, A.; Zamanizadeh, H.R.; Rezaee, S.; Naraghi, L. Development of new bioformulations using Trichoderma and Talaromyces fungal antagonists for biological control of sugar beet damping-off disease. Crop Prot. 2013, 53, 80–84. [Google Scholar] [CrossRef]
- Shukla, S.K.; Jaiswal, V.P.; Sharma, L.; Tiwari, R.; Pathak, A.D.; Gaur, A.; Awasthi, S.K.; Srivastava, A. Trash management and Trichoderma harzianum influencing photosynthesis, soil carbon sequestration, and growth and yield of sugarcane ratoon in subtropical India. Eur. J. Agron. 2022, 141, 126631. [Google Scholar] [CrossRef]
- Devi, S.S.; Sreenivasulu, Y.; Saritha, S.; Kumar, M.R.; Kumar, K.P.; Sudharak, P. Molecular diversity of native Trichoderma isolates against Fusarium oxysporum f. sp. lycopersici (Sacc.). A causal agent of Fusarium wilt in tomato (Lycopersicon esculentum Mill.). Arch. Phytopathol. Plant Prot. 2012, 45, 686–698. [Google Scholar] [CrossRef]
- Mushtaq, S.; Bareen, F.; Tayyeb, A.; Nazir, A. Autochthonous strains of trichoderma isolated from tannery solid waste improve phytoextraction potential of heavy metals by sunflower. Int. J. Phytoremed. 2023, 25, 1435–1454. [Google Scholar] [CrossRef]
- Arzanlou, M.; Khodaei, S.; Narmani, A.; Babai-Ahari, A.; Azar, A.M. Inhibitory effect of Trichoderma isolates on growth of Alternaria alternata, the causal agent of leaf spot disease on sunflower, under laboratory conditions. Arch. Phytopathol. Plant Prot. 2014, 47, 1592–1599. [Google Scholar] [CrossRef]
- Yadav, A.; Yadva, K.; Aggarwal, A. Impact of arbuscular mycorrhizal fungi with Trichoderma viride and Pseudomonas flurescens on growth, yield, and oil content in Helianthus annuus L. J. Essent Oil Bear Plants 2015, 18, 444–454. [Google Scholar] [CrossRef]
- Mathews, J.R.; Sivparsad, B.J.; Laing, M.D. Greenhouse evaluation of Trichoderma harzianum for the control of Sclerotinia wilt (Sclerotinia sclerotiorum) of sunflower. S. Afr. J. Plant Soil 2019, 36, 69–72. [Google Scholar] [CrossRef]
- Ozer, N.; Coskuntuna, A.; Sabudak, T. Trichoderma harzianum-induced defense in sunflower (Helianthus annuus L.) against Plasmopara halstedii with changes in metabolite profiling of roots. Biocontrol Sci. Technol. 2021, 31, 1403–1418. [Google Scholar] [CrossRef]
- Wang, X.; Xu, S.; Wu, S.; Feng, S.; Bai, Z.; Zhuang, G.; Zhuang, X. Effect of Trichoderma viride biofertilizer on ammonia volatilization from an alkaline soil in Northern China. J. Environ. Sci. 2018, 66, 199–207. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Han, S.; Wang, G.; Liu, X.; Amombo, E.; Xie, Y.; Fu, J. The fungus Aspergillus aculeatus enhances salt-stress tolerance, metabolite accumulation, and improves forage quality in perennial ryegrass. Front. Microbiol. 2017, 8, 1664. [Google Scholar] [CrossRef] [PubMed]
- Andrzejak, R.; Janowska, B. Flowering, nutritioal status, and content of chloroplast pigments in leaves of Gladiolus hybridus L. Advances Red after application of Trichoderma spp. Sustainability 2022, 14, 4576. [Google Scholar] [CrossRef]
- Pandey, A.K.; Samota, M.K.; Tanti, A.J.; Babu, A. Trichoderma reesei induces defense-related biochemical markers associated with resistance to Fusarim dieback in tea crop. Biol. Control 2023, 180, 105200. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, C.; Gao, Z.-F.; Qiu, C.-W.; Shi, S.-H.; Chen, Z.-H.; Ali, M.A.; Wang, F.; Wu, F. Integrated physiological and omics analyses reveal the mechanism of beneficial fungi Trichoderma sp. alleviating cadmium toxicity in tobacco (Nicotiana tabacum L.). Ecotoxicol. Environ. Saf. 2023, 267, 115631. [Google Scholar] [CrossRef]
- Khalil, M.I.I.; Youssef, S.A.; Tartoura, K.A.; Eldesoky, A.A. Comparative evaluation of physiological and biochemical alteration in tomato plants infected by Alternaria alternata in response to Trichoderma viride and Chaetomium globosum application. Physiol. Mol. Plant Pathol. 2021, 115, 101671. [Google Scholar] [CrossRef]
- Olowe, O.M.; Nicola, L.; Asemoloye, M.D.; Akanmu, A.O.; Babalola, O.O. Trichoderma: Potential bio-resource for the management of tomato root rot diseases in Africa. Microbiol. Res. 2022, 257, 126978. [Google Scholar] [CrossRef]
- Devi, S.S.; Sreenivasulu, Y.; Rao, K.V.B. Protective role of Trichoderma logibrachiatum (WT2) on lead induced oxidative stress in Helianthus annus L. Indian J. Exp. Biol. 2017, 55, 235–241. [Google Scholar] [CrossRef]
- Singh, J.; Kumar, V.; Srivastava, S.; Kumar, A.; Singh, V.P. In vitro evaluation of Trichoderma species against Fusarium oxysporum f. sp. lycopersici causing tomato wilt. Plant Pathol. J. 2018, 17, 59–64. [Google Scholar] [CrossRef]
- Zehra, A.; Aamir, M.; Dubey, M.L.; Ansari, W.A.; Meena, M.; Swapnil, P.; Upadhyay, R.S.; Ali, M.A.; Al-Ghamdi, A.A.; Lee, J. Enhanced protection of tomato against Fusarium wilt through biopriming with Trichoderma harzianum. J. King Saud Univ. Sci. 2023, 35, 102466. [Google Scholar] [CrossRef]
- Al-Hazmi, A.S.; TariqJaveed, M. Effects of different inoculum densities of Trichoderma harzianum and Trichoderma viride against Meloidogyne javanica on tomato. Saudi J. Biol. Sci. 2016, 23, 288–292. [Google Scholar] [CrossRef] [PubMed]
- Malolepsza, U.; Nawrocka, J.; Szczech, M. Trichoderma virens 106 inoculation stimulates defense enzyme activities and enhances phenolic levels in tomato plants leading to lowered Rhizoctonia solani infection. Biocontrol Sci. Technol. 2017, 27, 180–199. [Google Scholar] [CrossRef]
- Yan, Y.; Mao, Q.; Wang, Y.; Zhao, J.; Fun, Y.; Yang, Z.; Peng, X.; Zhang, M.; Bai, B.; Liu, A.; et al. Trichoderma harzianum induces resistance to root-knot nematodes by increasing secondary metabolite synthesis and defense-related enzyme activity in Solanum lycopersicum L. Biol. Control 2021, 158, 104609. [Google Scholar] [CrossRef]
- Islam, M.M.; Hossain, D.M.; Nonaka, M.; Harada, N. Biological control of tomato collar rot induced by Sclerotium rolfsii using Trichoderma species isolated in Bangladesh. Arch. Phytopathol. Plant Prot. 2017, 50, 109–116. [Google Scholar] [CrossRef]
- Rubio, M.B.; Dominguez, S.; Monte, E.; Hermosa, R. Comparative study of Trichoderma gene expression in interactions with tomato plants using high density oligonucleotide microarrays. Microbiology 2012, 158, 119–128. [Google Scholar] [CrossRef]
- Sani, M.N.H.; Hasan, M.; Uddain, J.; Subramaniam, S. Impact of application of Trichoderma and biochar on growth, productivity and nutritional quality of tomato under reduced N-P-K fertilization. Annal Agric. Sci. 2020, 65, 107–115. [Google Scholar] [CrossRef]
- Natsiopoulos, D.; Tziolias, A.; Lagogiannis, I.; Mantzoukas, S.; Eliopoulos, P.A. Growth-promoting and protective effect of Trichoderma atrobrunneum and T. simmonssi on tomato against soil-borne fungal pathogens. Crops 2022, 2, 202–217. [Google Scholar] [CrossRef]
- Tripathi, R.; Keswani, C.; Tewari, R. Trichoderma koningii enhances tolerance against thermal stress by regulating ROS metabolism in tomato (Solanum lycopersicum L.) plants. J. Plant Interact. 2021, 16, 116–126. [Google Scholar] [CrossRef]
- Mona, S.A.; Hashem, A.; Abd Allah, E.F.; Alqarawi, A.A.; Soliman, D.W.K.; Wirth, S.; Egamberdieva, D. Increased resistance of drought by Trichoderma harzianum fungal treatment correlates with increased secondary metabolites and proline content. J. Integr. Agric. 2017, 16, 1751–1757. [Google Scholar] [CrossRef]
- Shanmugaraj, C.; Kamil, D.; Kundu, A.; Singh, P.K.; Das, A.; Hussain, Z.; Gogoi, R.; Shashnak, P.R.; Gangaraj, R.; Chaithra, M. Exploring the potential biocontrol isolates of Trichoderma asperellum for management of collar rot disease in tomato. Horticulturae 2023, 9, 1116. [Google Scholar] [CrossRef]
- Sharma, A.; Salwan, R.; Sharma, V. Extracellular proteins of Trichoderma and their roles in plant health. S. Afr. J. Bot. 2022, 147, 359–369. [Google Scholar] [CrossRef]
- Vinale, F.; Sivasithamparam, K.; Ghisalberti, E.L.; Marra, R.; Barbetti, M.J.; Li, H.; Woo, S.L.; Lorito, M. A novel role for Trichoderma secondary metabolites in the interactions with plants. Physiol. Mol. Plant Pathol. 2008, 72, 80–86. [Google Scholar] [CrossRef]
- Carillo, P.; Woo, S.L.; Comite, E.; El-nakhel, C.; Rouphael, Y.; Fusco, G.M.; Borzacchiello, A.; Lanzuise, S.; Vinale, F. Application of Trichoderma harzianum, 6-Pentyl-a-Pyrone and plant biopolymer formulations modulate plant metabolism and fruit quality of plum tomatoes. Plants 2020, 9, 771. [Google Scholar] [CrossRef]
- De Palma, M.; Docimo, T.; Guida, G.; Salzano, M.; Albrizio, R.; Giorio, P.; Ruocco, M.; Tucci, M. Transcriptome modulation by the beneficial fungus Trichoderma longibrachiatum drives water stress response and recovery in tomato. Environ. Experim. Bot. 2021, 190, 104588. [Google Scholar] [CrossRef]
- Andrzejak, R.; Janowska, B.; Renska, B.; Kosiada, T. Effect of Trichoderma spp. and fertilization on the flowering of Begonia X tuberhybrida voss. Picotee sunburst. Agronomy 2021, 11, 1278. [Google Scholar] [CrossRef]
- Ghosh, S.K.; Pal, S.; Banerjee, S. Identification and pathogenicity Alternaria alternata causing leaf blight of Bacopa monnieri (L.) Wettst. and its biocontrol by Trichoderma species in agrifields—An ecofriendly approach. J. Appl. Res. Med. Aromat Plants 2022, 31, 100406. [Google Scholar] [CrossRef]
- Villa-Rodriguez, E.; Lugo-Enriquez, C.; Ferguson, S.; Parra-Cota, F.I.; Cira-Chavez, L.A.; Santos-Villalobos, S.D.I. Trichoderma harzianum sensu lato TSM39: A wheat microbiome fungus that mitigates spot blotch disease of wheat (Triticum turgidum L. subsp. durum) caused by Bipolaris sorokiniana. Biol. Control 2022, 175, 105055. [Google Scholar] [CrossRef]
- Javaid, A.; Sli, S. Herbicidal activity of culture filtrates of Trichoderma spp. against two problematic weeds of wheat. Nat. Prod. Res. 2011, 25, 730–740. [Google Scholar] [CrossRef]
- Makhlouf, K.E.; Boungab, K.; Mokrani, S. Synergistic effect of Pseudomonas azotoformans and Trichoderma gamsii in management of Fusarium crown rot of wheat. Arch. Phytopathol. Plant Prot. 2023, 56, 108–126. [Google Scholar] [CrossRef]
- Alvarez-Garcia, S.; Manga-Robles, A.; Encina, A.; Gutierrez, S.; Casquero, P.A. Novel culture chamber to evaluate in vitro plant-microbe volatile interactions; Effects of Trichoderma harzianum volatiles on wheat plantlets. Plant Sci. 2022, 320, 111286. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.; Dou, K.; Wang, S.; Wu, Q.; Ni, M.; Zhang, T.; Lu, Z.; Tang, J.; Chen, J. Elicitor hydrophobin Hyd1 interacts with ubiquilin1-like to induce maize systemic resistance. J. Integr. Plant Biol. 2020, 62, 509–526. [Google Scholar] [CrossRef] [PubMed]
- Karuppiah, V.; He, A.; Lu, Z.; Wang, X.; Li, Y.; Chen, J. Trichoderma asperellum GDFS1009-mediated maize resistance against Fusarium graminearum stalk rot and mycotoxin degradation. Biol. Control 2022, 174, 105026. [Google Scholar] [CrossRef]
- Abbey, J.A.; Percival, D.; Anku, K.; Schilder, A.; Asiedu, S. Managing Botrytis blossom bligh of wild blueberry through field sanitation, lime sulfur and Trichoderma application. Can. J. Plant Pathol. 2022, 44, 361–371. [Google Scholar] [CrossRef]
- Bello, F.; Montironi, I.D.; Medina, M.B.; Munitz, M.S.; Ferreira, F.V.; Williman, C.; Vazquez, D.; Cariddi, L.N.; Musumeci, M.A. Mycofumigation of postharvest blueberries with volatile compounds from Trichoderma atroviride IC-11 is a promising tool to control rots caused by Botrytis cinerea. Food Microbiol. 2022, 106, 104040. [Google Scholar] [CrossRef]
Plant | Plant Family | Penicillium spp. Species | Key Point | References |
---|---|---|---|---|
Azalea | Ericaceae | P. janthinellum | It can be used as a biological control agent of phytophthora root rot in azalea. | [97] |
Banana | Musaceae | P. citrinum BTF08 | It has great potential against the pathogenic F. oxysporum f. sp. cubense race 4 (FocR4) | [107] |
Choy sum (Brassica rapa var. parachinensis) | Brassicaceae | P. citrinum | It can significantly increase yield and chemical metabolites. | [98] |
Cotton (Gossypium hirsutum L.) | Malvaceae | Dry mycelium of P. chrysogenum | It is effective in controlling fungal diseases. It can be used against soil-borne pathogens that may penetrate the cotton root. It is important against wilt diseases. | [99] |
Dry mycelium of P. chrysogenum | It is effective in controlling Verticillium dahliae Kleb (Vd) and F. oxysporum f. sp vasinfectum (Fov) as well as the accumulation of pathogenesis-related protein transcripts. | [108] | ||
It is important in increasing resistance against Verticillium dahliae in cotton, which is the main cause of wilt in cotton. | [109] | |||
Cucumber (Cucumis sativus L.) | Cucurbitaceae | P. chrysogenum | It can enhance the germination rate, germination index, and seed germination as well as increase the potential biocontrol against the root-knot nematode (Meloidogyne incognita) in cucumber. | [88] |
Ginseng (Panax ginseng L.) | Araliaceae | P. citrinum YW322 | It has special potency in controlling ginseng root rot disease caused by F. oxysporum. | [110] |
Jujube (Ziziphus jujuba L.) | Rhamnaceae | P. chrysogenum | The endophyte P. chrysogenum has shown plant-growth-promoting activity and flowering-promoting activity. | [111] |
Lettuce (Lactuca sativa L.) | Asteraceae | P. pinophilum | Inoculation with it can increase plant tolerance to Rhizophagus intraradices and Penicillium pinophilum. | [112] |
Maize (Zea mays L.) | Poaceae | P. chrysogenum strain 34-P | Inoculation with it can influence maize seedling growth with significantly higher fresh biomass, dry biomass, and total chlorophyll. | [102] |
Melon (Cucumis melo L.) | Cucurbitaceae | The extract of dead P. chrysogenum | It can enhance resistance against Fusarium wilt in melon. | [113] |
Pearl millet (Pennisetum glaucum L.) | Poaceae | P. chrysogenum (PenC-JSB9) | It can positively promote growth, increase seed germination and shoot and root length, and induce resistance to downy mildew disease caused by Sclerospora graminicola. | [103] |
Pineapple (Ananas comosus (L.) Merr.) | Bromeliaceae | Penicillium sp. | It can control pineapple internal browning. It can change the endophyte fungi community structure and abundance during storage. Exogenous inoculation may control internal browning by increasing the plant’s antioxidative capacity. | [114] |
Pomegranate (Punica granatum L.) | Punicaceae | P. pinophilum (NFCCI2498) | Its inoculation into soil was found to promote nutrient uptake and induce a higher photosynthetic rate and leaf area index. | [115] |
Rice (Oryza sativa L.) | Poaceae | P. citreonigrum | It can improve the yield and reduce the risk of harmful toxins. | [116] |
Tobacco (Nicotiana glutinosa L.) (Nicotiana benthamiana) (Nicotiana glutinosa) | Solanaceae | Dry mycelium of P. chrysogenum | The crude peptides derived from it can be used to protect Nicotiana glutinosa against tobacco mosaic virus (TMV) by accelerating a TMV-N gene-triggered hypersensitive response (HR) rather than by priming callose deposition. | [117,118] |
P. chrysogenum | It can be used to prevent TMV spread in N. benthamiana plants. | [119] | ||
Dry mycelium of P. chrysogenum | It can activate defense responses in tobacco BY-2 cell suspensions, including the expression of defense responses genes and the accumulation of secondary metabolites against TMV. | [120] | ||
P. chrysogenum | It can protect flue-cured tobacco against brown spot and wildfire disease. | [121] | ||
Dry mycelium of P. chrysogenum | The abscisic acid biosynthetic pathway and β-1,3-glucanase, a callose-degrading enzyme, have significant roles in enhancing the defense response against TMV. | [122] | ||
Dry mycelium of P. chrysogenum | A polypeptide and a polysaccharide extract of it can induce the production of hydrogen peroxide and nitric oxide and improve the resistance of Peruvian tobacco (Nicotiana glutinosa) to TMV. | [123] | ||
Tomato (Solanum lycopersicum L.) | Solanaceae | Dry mycelium of P. chrysogenum | It can promote resistance in plants against the root-knot nematode Meloidogyne javanica. | [104] |
P. janthinellum LK5 | It can modulate stress responses through a reduction in the level of jasmonic acid and the synthesis of ABA. It can increase the resistance of plants to salinity stress by activating defensive mechanisms and the production of gibberellins in the hosts. | [105] | ||
P. janthinellum LK5 (PjLK5) | Its application could enhance metal phytoextraction while promoting crop physiological homeostasis. | [106] | ||
Wheat (Triticum aestivum L.) | Poaceae | P. chrysogenum #5TAKL-3a | It is an appropriate substitute that can be used to increase the adaptability of plants under drought stress. It can also increase the resistance of plants to drought stress by increasing the production of ammonia, gibberellic acid, and IAA. | [124] |
Environment | Trichoderma spp. Species | References |
---|---|---|
Desert soil | T. afroharzianum, T. atrobrunneum, T. longibrachiatum | [175] |
Forest soil | T. afroharzianum, T. asperellum, T. atroviride, T. citrinoviride, T. fertile, T. harzianum, T. longibrachiatum, T. oblongisporum, T. pararogersonii, T. paraviridescens, T. pleurotum, T. piluliferum, T. polysporum, T. rossicum, T. saturnisporum, T. viridescens | [176,177] |
Soil from garlic crops | T. asperelloides, T. azevedoi, T. hamatum, T. koningiopsis, T. longibrachiatum, T. peberdy | [178] |
Soil from maize crops | T. asperellum, T. brevicompactum, T. fertile, T. hamatum, T. harzianum, T. koningiopsis, T. longibrachiatum, T. pleuroticola, T. virens | [179] |
Soil from onion crops | T. afroharzianum, T. asperelloides, T. asperellum, T. azevedoi, T. erinaceum, T. lentiforme, T. longibrachiatum, T. peberdyi | [178] |
Soil from rice crops | T. asperellum, T. atroviride, T. brevicompactum, T. capillare, T. erinaceum, T. fertile, T. hamatum, T. harzianum, T. koningiopsis, T. longibrachiatum, T. polysporum, T. saturnisporum, T. spirale, T. velutinum, T. virens | [179] |
Soil from wheat crops | T. asperellum, T. atroviride, T. brevicompactum, T. erinaceum, T. hamatum, T. harzianum, T. koningiopsis, T. virens | [179] |
Soil from plant roots | T. afroharzianum, T. asperelloides, T. asperellum, T. guizhouense, T. harzianum, T. reesei, T. strigosum, T. virens | [180] |
Soil from tree bark | T. atroviride, T. erinaceum, T. harzianum, T. hebeiensis, T. longibrachiatum, T. parareesei, T. reesei | [181] |
From decaying wood | T. atroviride, T. citrinoviride, T. cremeum, T. gamsii, T. harzianum, T. koningii, T. koningiopsis, T. longibrachiatum, T. longipile, T. paraviridescens, T. trixiae, T. viride, T. viridescens | [182] |
From lignocellulosic compost | T. asperellum, T. citrinoviride, T. harzianum, and T. lixii | [183,184] |
Plant | Plant Family | Trichoderma Species | Key Points | References |
---|---|---|---|---|
Apple (Malus robusta) | Rosaceae | T. virens 6PS-2 | It was effective in controlling apple replant disease (ARD) and improved the growth and final quality of fruits. | [234] |
T. asperellum | Significant reduction in the negative impacts caused in the host by F. proliferatum was reported. | [234] | ||
Arabidopsis (Arabidopsis thaliana) | Brassicaceae | T. virens | It could secrete 1-octen-3-ol, which enhanced plant resistance against pathogens by activating JA/ET-dependent defense pathways. | [235,236] |
T. virens | It could be used for biocontrol goals, balancing between herbicidal activity and plant-growth promotion. | [220] | ||
Avocado (Persea americana Mill) | Lauraceae | T. harzianum; T. hamatum | They could increase the tolerance of plants to P. cinnamomi. | [221] |
T. harzianum | It could be used as a biological control agent to suppress post-harvest pathogens like Phomopsis perseae, Diaporthe sp., Colletotrichum gloeosporioides, and Neofusicoccum parvum. | [237] | ||
T. atroviride; T. virens | They could promote the control of avocado white root rot. | [238] | ||
Banana (Musa sp. L.) | Musaceae | T. harzianum ALL42 and IBLF006; T. asperellum T00 | They could promote plant growth and reduce the negative impacts of Meloidogyne javanica. | [239,240] |
T. longibrachiatum | It could promote the performance of banana seedlings. | [241] | ||
T. asperellum | Inoculation with it could increase the root potassium and phosphorus content. | [242] | ||
T. piluliferum | It is an important biocontrol agent for anthracnose caused by Colletotrichum musae. | [243] | ||
Bean (Phaseolus vulgaris L.) | Fabaceae | T. harzianum | It can induce plant resistance to R. solani by increasing the synthesis of squalene and ergosterol and by promoting the stability and integrity of plant cell membranes. | [244,245,246] |
T. viride | It can enhance the levels of total phenols, polyphenol, peroxidase, phenylalanine ammonia-lyase, and photosynthetic pigments and protect plants against fungal infections. | [247] | ||
T. longibrachiatum AD-1 | It can be used to control root rot diseases caused by Fusarium spp. RT-qPCR revealed that applying a cell-free culture filtrate of Trichoderma in common beans resulted in significant up-regulation of the defense-related genes PR1, PR2, PR3, and PR4. | [248] | ||
T. gamsii IT-62 | It could lead to increased soil fertility and significantly improve the root and shoot weight and levels of total protein, and photosynthetic pigments. | [249] | ||
T. gamsii IT-62 | It can be used to control common bean damping-off caused by pathogens. | [250] | ||
T. asperellum BRM-29104 | It can be used against white mold caused by Sclerotinia sclerotiorum. | [251] | ||
Black pepper (Piper nigrum L.) | Piperaceae | T. viride; T. harzianum | They can significantly protect black pepper plants from anthracnose by increasing the chlorophyll content, increasing the overall plant health, suppressing the disease incidence and improving the innate defense system and plant health. | [252,253,254,255] |
Cacao (Theobroma cacao L.) | Malvaceae | T. asperellum PR11 | It could be used against cacao black pod rot (BPR) caused by Phytophthora megakarya. | [256,257,258] |
Canola (Brassica napus L.) | Brassicaceae | T. harzianum (ARCTr281, ARCTr272, and ARCTr418) | They were effective antagonists in controlling canola rot disease and increasing plant traits. | [259] |
Cassava (Manihot esculenta Crantz) | Euphorbiaceae | T. aureoviride URM5158 | It could manage cassava root rot. | [260] |
Castor (Ricinus communis L.) | Euphorbiaceae | T. asperellum 7316, T. asperellum N13 | They showed special antagonistic ability against the fungal pathogen (Alternaria ricini). | [261,262] |
Chickpea (Cicer arietinum L.) | Fabaceae | T. harzianum | It was effective in the control of chickpea Fusarium wilt. | [223] |
T. harzianum | It could reduce the adverse impacts of salt stress and fungal diseases. | [224] | ||
T. harzianum; T virens | They could increase root and shoot lengths and grain yield as well as reduce the dry root rot incidence. | [263] | ||
Chili (Capsicum frutescens L.) | Solanaceae | T. asperellum; T. harzianum; T virens; T. pseudokoningii | They could increase the resistance of plants to Colletotrichum truncatum by enhancing the activity of defensive and antioxidative enzymes in plants, decreasing the accumulation of reactive oxygen in plants. | [264] |
Chinese cabbage (Brassica rapa L.) | Brassicaceae | Trichoderma spp. | They could increase nutrient uptake and increase tolerance to environmental stresses as well as improve the quality of products. | [265] |
Citrus (Citrus L.) | Rutaceae | T. harzianum | It can affect Guignardia citricarpa and deactivate the hydrolytic enzymes of pathogens. | [266] |
Cacao tree (Theobroma cacao L.) | Malvaceae | T. hamatum | It could increase stomatal conductance, green fluorescence emission, net photosynthesis, and improve drought tolerance. | [267] |
Coffee (Coffea L.) | Rubiaceae | T. asperellum GD040 | It is suggested for managing coffee anthracnose caused by Colletotrichum cairnsense. | [268] |
Cotton (Gossypium hirsutum L.) | Malvaceae | T. virens | It can increase terpenoid synthesis and is toxic to R. solani. | [269] |
T. virens and T. longibrachiatum | They could metabolize pathogen propagule germination against R. oryzae. | [270,271] | ||
T. hamatum | It has a great capacity to control leaf worm (Spodoptera littoralis). | [272] | ||
T. viride | It decreased the root rot incidence and improved yield and dry matter production. | [273] | ||
T. viride NBAITv23; T. harzianum NBAIITh1 | Because of their antifungal activities, they can be used against R. solani, which is the cotton seed rotting pathogen. | [274] | ||
Cowpea (Vigna unguiculata L.) | Fabaceae | T. harzianum | It was effective in the control of root-knot nematode disease. | [275] |
Cucumber (Cucumis sativus L.) | Cucurbitaceae | T. atroviride | It can lead to resistance to R. solani by increasing the accumulation of volatile organic compounds, increasing the activity of antioxidative enzymes in the plant, and reducing lipid peroxidation. | [276,277] |
T. longibrachiatum | It can increase plant resistance against Botrytis cinerea by increasing the contents of jasmonic acid, salicylic acid, and ethylene. | [278] | ||
T. asperellum | In high-salinity conditions, it could increase the level of abscisic acid, auxins, and gibberellin. | [279] | ||
T. asperellum | It could enhance local defense responses and plant root colonization with the secretion of swollenin. | [280] | ||
T. asperellum FJ035 | It was effective against cucumber Fusarium wilt and improved the plant height, root length, fresh weight, stem thickness, and quality. | [281] | ||
T. asperellum; T. pseudokoningii | They have shown high potential as biocontrol fungi against cucumber Fusarium wilt. | [282] | ||
T. koningiopsis | An alternative bioherbicide against different fungi of the cucumber plants due to its ability to produce enzymes that increase its phytotoxic effects. | [283] | ||
Dragon fruit (Hylocereus costaricensis) | Cactaceae | T. asperellum K1-02 | It has shown antifungal activity against stem canker caused by the fungus Neoscytalidium dimidiatum. | [284] |
Eucalyptus trees (Eucalyptus globulus) | Myrtaceae | T. asperellum; T. longibrachiatum | They could effectively suppress the growth of Neofusicoccum parvum and Lasiodiplodia theobromae fungal species. | [285] |
Faba bean (Vicia fabae L.) | Fabaceae | T. viride, T. harzianum, T. virens, T. atroviride, T. longibrachiatum | They can be used to reduce the growth of Alternaria spp., R. solani, Botrytis spp., Penicillium spp., Aspergillus spp., F. solani, and F. oxysporum. | [286,287] |
Finger millet (Eleusine coracana L.) | Poaceae | T. harzianum | Its application induced a higher root canopy and a better root biomass and final yield. | [288] |
Forage cactus (Nopalea cochenillifera L.) | Cactaceae | Trichoderma spp.; T. aureoviride URM 6668 | They have shown high efficiency against the soil fungi F. solani and Lasiodiplodia theobromae. | [289] |
Forskolin (Coleus forskohlii (Willd.) Briq.) | Lamiaceae | T. viride | Its inoculation could enhance the root biomass and forskolin content and reduce nematode infections. | [290] |
Grapevine (Vitis vinifera L.) | Vitaceae | T. koningiopsis | It could be used to reduce copper levels and fight against Plasmopara viticola, the causal agent of downy mildew. | [291] |
T. harzianum | It has positive impacts in controlling soil-borne plant pathogens like F. solani, F. oxysporum, and Macrophomina phaseolina. | [292] | ||
T. simmonsii; T. afroharzianum; T. gamsii; T. orientale | They could significantly improve D-glucose and the D-fructose concentrations. | [293] | ||
T. harzianum T118 | Its application induced higher total antioxidative activity and levels of ascorbate peroxidase and flavonoids. | [294] | ||
Groundnut (Arachis hypogaea L.) | Fabaceae | T. viride JAU60 | It can be used to combat the oxidative burst produced by invading pathogens, especially against Aspergillus niger Van Tieghem, which causes collar rot. | [295,296] |
T. longibrachiatum; T. asperellum | They showed an important role in the resistance to Sclerotium rolfsii. | [297] | ||
T. asperellum SH16 | It was important in controlling diseases such as root rot, stem rot, and pod rot. | [298] | ||
T. asperelloides SKRU-01 | It can be used for mitigating the negative impacts of Aspergillus species infestation and for increasing aflatoxin B1 degradation. | [299] | ||
T. harzianum ITEM 3636 | It could be used against F. solani and reduced the severity of brown root rot. | [300,301] | ||
T. viride F7 | It could enhance peanut performance and decrease peanut Cd concentrations. | [302] | ||
Jerusalem artichoke (Helianthus tuberosus L.) | Asteraceae | T. harzianum | It is suggested for the biological control of southern stem rot caused by Sclerotium rolfsii. | [303] |
Lettuce (Lactuca sativa L.) | Asteraceae | T. azevedoi CEN1241 | It could increase the levels of volatile organic compounds and decreased the negative impacts of white mold caused by the fungus Sclerotinia sclerotiorum. | [304] |
T. asperellum T76-1 | It could inhibit fungal growth of two leaf-spot fungal pathogens, namely Curvularia aeria and Corynespora cassiicola. | [305] | ||
T. spirale T76-1 | It could decrease the native effects of leaf spot caused by Curvularia aeria and Corynespora cassiicola. | [306] | ||
T. harzianum T22; T. atroviride P1 | They could alleviate abiotic stresses and improved plant growth. | [307] | ||
Mango (Mangifera indica L.) | Anacardiaceae | T. asperellum T8a | It can enhance the control of anthracnose via cellulase activity as well as mango production. | [308] |
T. pinnatum LS029-3 | It could improve the activity of mango defense enzymes such as total phenol, peroxidase, and polyphenol oxidase and reduced the content of ascorbic acid content and glutathione enzyme, and thus be useful against mango stem-end rot disease. | [309] | ||
Maize (Zea mays L.) | Poaceae | T. viride; T. harzianum | They are effective against F. verticillioides and F. proliferatum strains. | [310,311] |
T. asperelloides; T. longibrachiatum | These two species increase seedlings’, wet biomass and increase the resistance of plants against late wilt. | [312] | ||
T. harzianum | It elicited plant defense responses through the secretion of Hyd1 hydrophobin. | [313] | ||
T. harzianum | It induced ISR in plants via ET or JA pathways via the secretion of cellulases. | [314] | ||
T. asperellum GDFS1009 | It could significantly reduce maize stalk rot caused by F. graminearum. | [315] | ||
T. gamsii | It could improve plant growth and increase the resistance of plants to F. verticillioides. | [316] | ||
Milk thistle (Silybum marianum (L.) Gaertn.) | Asteraceae | Trichoderma strain M7, KHB, G124-1, G46-3, and G46-7 | They could promote growth and increased the production of silymarin, isosilybin, and silychristin. | [317] |
Monterey pine (Pinus radiata) | Pinaceae | T. hamatum | Its application in seedlings and roots could increase the dry root weight, shoot growth promotion, and root penetration. | [318,319] |
Mulberry (Morus spp.) | Moraceae | T. pseudokoningii | It could decrease the negative impacts of soil-borne diseases and improved plant growth. | [266] |
Mung bean (Vigna radiata L.) | Fabaceae | T. harzianum | It was effective against dry root rot. | [228] |
Muskmelon (Cucumis melo L.) | Cucurbitaceae | T. asperelloides PSU-P1 | It revealed antifungal characteristics and increased the defense response against gummy stem blight through cell-wall-degrading enzymes and defense-related enzymes. | [320] |
Mustard (Brassica juncea L.) | Brassicaceae | T. viride 1433 mutant strains | They could improve the tolerance of plants to Pythium aphanidermatum in both field and lab experiments. | [321] |
Oil palm (Elaeis guineensis) | Palmaceae | T. asperellum T76-14 | It is an important choice to improve plants against Ganoderma boninense infection. | [322] |
Olive (Olea europaea L.) | Oleaceae | T. harzianum strain Ths97 | It could increase plant tolerance to F. solani. | [323] |
Onion (Allium cepa L.) | Amaryllidaceae | T. viride | The combined application of T. viride and AMF altered amino acid concentrations. | [324] |
T. viride | The combined application of T. viride and AMF significantly improved the levels of total free amino acids, the soluble protein content, and onion biomass. | [324] | ||
T. asperellum | In the presence of heavy metals, it could decrease lipid peroxidation and regulate the level of proline in the plants. | [325] | ||
T. longibrachiatum | It could decrease electrolyte levels elevated by infection and salinity and decrease the damage caused by infection with Sclerotium cepivorum. | [326] | ||
T. azevedoi CEN1241; T. koningiopsis CEN1513; T. asperelloides CEN1559 | They could increase the weight of onion bulbs promote seedling growth, and be useful against soil fungi, especially Sclerotium rolfsii. | [327] | ||
T. harzianum; T. atroviride | They could mitigate the adverse effects of Fusarium basal rot caused by F. oxysporum f. sp. cepae. | [328] | ||
Pak Choi (Brassica campestris spp. Chinensis) | Brassicaceae | T. viride | Its inoculation can increase plant growth, with significant impacts on suppressing clubroot disease (Plasmodiophora brassicae). | [329] |
T. harzianum | It could boost plant growth and the activity of antioxidative enzymes such as peroxidase, glutathione reductase, catalase, superoxide dismutase, and ascorbic acid peroxide. | [330] | ||
Pearl millet (Pennisetum glaucum (L.) R.Br.) | Poaceae | T. virens | Its oligosaccharides can increase resistance against downy mildew disease. | [331] |
T. asperellum DL-81 | It is suggested as an important biological control agent of downy mildew disease. | [332] | ||
Pepper (Capsicum annuum L.) | Solanaceae | T. polysporum T1 | It was effective in the control of leaf curl virus (PeLCV) by releasing salicylic acid. | [333] |
T. atroviride T32l; Trichoderma sp. N97 | Sustainable candidates for the biological control of root rot pathogen and pepper wilt. | [334,335] | ||
T. asperellum | It has a positive effect in controlling root-knot nematodes arising from Meloidogyne incognita. | [336] | ||
T. virens HZA14 | It could reduce the disease incidence and delayed the occurrence of chili pepper blight caused by Phytophthora capsici. | [337] | ||
T. simmonsii | It could increase crop nutrition and stimulated the plant tolerance to P. capsici. | [338] | ||
Peppermint (Mentha × piperita L.) | Lamiaceae | T. viride Tv-1511 | Its inoculation can enhance concentrations of pulegone, menthol, and menthone. | [339] |
Pigeon pea (Cajanus cajan L.) | Fabaceae | T. asperellum IIPRTH-31; T. afroharzianum IIPRTh-33 | They could be effective in the biocontrol of Fusarium wilt through defense-related enzymes. | [340] |
T. harzianum; T. viride | They could increase growth and resistance against Fusarium sp. | [341] | ||
Pine (Pinus sylvestris) | Pinaceae | T. harzianum | It could increase plant tolerance to Phytophthora cinnamon under greenhouse conditions. | [342,343] |
Pomegranate (Punica granatum L.) | Punicaceae | Trichoderma spp. (strains ABSA18, TSA17, and ABSA16) | They were effective against pathogenic fungi of pomegranate such F. chlamydosporum, F. oxysporun, A. niger, and A. alternata. | [344] |
Potato (Solanum tuberosum L.) | Solanaceae | Trichoderma spp. | It could be used as an important alternative against Alternaria solani, which is the main pathogen causing early blight in potato. | [345] |
T. brevicompactum | It was effective in the biological control of potato wilt disease (F. solani). | [346] | ||
Rambutan (Nephelium lappaceum L.) | Sapindaceae | T. harzianum | It could reduce the occurrence of post-harvest diseases caused by pathogens such as Botryodiplodia theobromae, Colletotrichum gloeosporioides, Gliocephalotrichum microchlamydosporum and improve the color and quality of the fruits. | [347] |
Rice (Oryza sativa L.) | Poaceae | T. harzianum | It could increase the activity of antioxidative enzymes and reduce lipid peroxidation during drought stress. | [348] |
T. hamatum KUFA 0042 | It showed high biocontrol activity against R. solani and Bipolaris oryzae. | [349] | ||
T. asperellum T12 | It was effective in the biocontrol of sheath blight. | [350] | ||
Roselle (Hibiscus sabdariffa L.) | Malvaceae | T. viride | It could reduce the mycelial growth of different pathogens such as R. solani, F. nygamai, and Phoma exigua. | [351] |
Rye (Secale cereale L.) | Poaceae | T. harzianum | It could increase the plant tolerance to R. solani and Sclerotium rolfsii under both field and greenhouse conditions. | [352] |
Trichoderma spp. | They have a positive influence on the growth and final yield of plants. | [353] | ||
Ryegrass (Lolium multiflorum L.) | Poaceae | T. atroviride | It could promote resistance against Pyricularia oryzae in ryegrass through physical and biochemical defenses. | [354] |
Soybean (Glycine max L.) | Fabaceae | T. viride | It can be used as a biocontrol agent against two fungal pathogens, namely Pythium arrhenomanes and F. oxysporun. It could promote the root system and enhance the root and shoot systems. | [355] |
Trichoderma strains | They have shown positive effects against charcoal rot caused by Macrophomina phaseolina (Tassi) Goid. | [272] | ||
Trichoderma spp. | They could improve the absorption of Mn and K and reduce the severity and incidence of diseases. | [356] | ||
T. koningiopsis | It is an important alternative for weed control. | [357] | ||
Trichoderma spp. | Trichoderma-based products could control the spiral nematode (Helicotylenchus dihystera). | [358] | ||
T. harzianum; T. viride; T. koningii | They could significantly inhibit the mycelial growth of F. oxysporum, F. solani, and R. solani. | [359] | ||
T. harzianum ALL 42 | It has shown special potential in the biological control of Pratylenchus branchyrus, an important nematode. | [275] | ||
Sorghum (Sorghum bicolour L.) | Poaceae | T. asperellum | It can improve the resistance of plants to Colletotrichum graminicola by increasing lignification in plants and improving the activity of antioxidative enzymes. | [232] |
Spinach (Spinacia oleracea L.) | Amaranthaceae | T. harzianum | It could reduce the negative impacts of salt stress and improve the fresh and dry weight, root length, chlorophyll content, and mineral contents. | [360] |
Stevia (Stevia rebaudiana) | Asteraceae | T. asperellum | It was effective in fighting against Fusarium wilt. | [233] |
Strawberry (Fragaria × ananassa Duch.) | Rosaceae | T. atrobrunneum | It could increase plant tolerance to Armillaria mellea. | [361] |
T. harzianum | It was appropriate for preventing and controlling gray mold in plants. | [362] | ||
Sugar beet (Beta vulgaris spp. vulgaris) | Amaranthaceae | T. atroviride | It can induce stress-related defense genes, such as the expression of a pathogenesis-related gene (PR-3), in plants. | [363] |
T. viride TVB1 | It could decrease root rot disease and improve root yield. | [364] | ||
T. harzianum | It could reduce the incidence of Sclerotium root rot and enhanced the green foliage, sucrose yield per ha, and the root yield. | [365] | ||
T. harzianum; T. asperellum | They can be considered potential biocontrol agents for controlling R. solani-induced sugar beet damping-off disease. | [366] | ||
Sugarcane (Saccharum officinarum L.) | Poaceae | T. harzianum | It could increase soil carbon sequestration, photosynthesis, yield, and growth in sugarcane ratoon. | [367] |
Sunflower (Helianthus annuus L.) | Asteraceae | T. longibrachiatum | It could increase the activity of antioxidative enzymes in plants in the presence of heavy metals. | [368,369] |
T. harzianum T22 | It could increase the tolerance of plants to Alternaria alternata in lab experiments. | [370] | ||
T. viride | Its application together with P. fluorescens could increase the oil content and growth of plants. | [371] | ||
T. harzianum T22 | It could decrease sclerotia formation caused by Sclerotinia sclerotiorum in sunflower. | [372] | ||
T. harzianum TRIC8 | It was effective in improving the resistance of plants to downy mildew disease caused by Plasmopara halstedii. | [373] | ||
Sweet sorghum (Sorghum bicolor (L.) Moench) | Poaceae | T. viride | It had an important role in reducing NH3 volatilization and simultaneously improved the effectiveness of nitrogen fertilizers. | [374] |
Sweet corn (Zea mays convar. saccharata var. rugosa) | Poaceae | T. harzianum | It reduced the infection of northern corn leaf blight in sweet corn as well as improved plant growth. | [375] |
Sword lily (Gladiolus hybridus) | Iridaceae | T. hamatum | It could increase chlorophyll a and b levels and the uptake of both macro and micronutrients and enhanced inflorescence elongation. | [376] |
Tea (Camellia sinensis L.) | Theaceae | T. reesei TRPATH01 | It could increase the shoot height, stem diameter, and fresh weight and improved the resistance of plants to Fusarium dieback caused by F. solani. | [377] |
T. reesei | It can be considered for the biological control of gray blight. | [348] | ||
T. asperellum TC01 | It could be applied to fight against Colletotrichum gloeosporioides C62. It could increase the root dry weight, shoot dry weight, stem diameter, and shoot height. | [348] | ||
Tobacco (Nicotiana tabacum L.) | Solanaceae | T. nigricans T32781 | It could result in lower Cd uptake and contamination in plants and improved tobacco growth. | [378] |
Tomato (Solanum lycopersicum L.) | Solanaceae | T. viride | Its inoculation could significantly increase the root fresh weight and shoot fresh weight. Its application was more effectual in controlling early blight disease caused by Alternaria alternata. | [379,380] |
T. harzianum | It could improve the final yield and inhibited the radial growth of F. oxysporum f. sp. lycopersici. | [381,382,383] | ||
T. harzianum; T. viride | Both of them could be used against root galling and the nematode reproduction of Meloidogyne javanica. | [384,385,386] | ||
T. harzianum; T. viride | They could promote growth and increase the yield of tomato plants. | [384] | ||
T. harzianum TR05; T. viride TR06; T. asperellum TR08 | They have been suggested as biological control agents of collar rot. | [387] | ||
T. hamatum | Its application on seedlings could enhance lateral development. | [388] | ||
T. simmonsii; T. atrobrunneum | They are effective in suppressing disease development and colony growth of soil-borne pathogens. | [389,390] | ||
T. koningii | It could increase the activity of antioxidative enzyme in plants at high temperatures as well as regulate the level of starch, proline, phenols, and proteins. | [391] | ||
T. harziaum | At low temperatures, it could decrease lipid peroxidation, regulate the level of osmolites, and increase the water content of the leaves. | [391] | ||
T. harziaum | During drought stress, it could increase the level of abscisic acid, gibberellin, and auxins in the plant. | [392] | ||
T. asperellum | It is promising for the successful management of collar rot disease (Agroathelia rolfsii). | [393,394] | ||
T. harziaum; T. atroviride | They could secret 6PP, which can increase the leaf area and plant height, develop the root system, and enhance the lycopene content in fruits. | [395,396] | ||
T. longibrachiatum | It could influence genes involved in the mitigation of stress damage. | [397] | ||
Tuberous begonias (Begonia × tuberhybrida) | Begoniaceae | T. hamatum | Its application to root tubers could increase the blooming size of the flowers and chlorophyll production and promote the uptake of boron, iron, and zinc. | [398] |
Water hyssop (Bacopa monnieri L.) | Plantaginaceae | T. harzianum; T. asperellum | Their application was effective against Alternaria alternata causing leaf blight. | [399] |
Wheat (Triticum aestivum L.) | Poaceae | T. longibrachiatum | It could increase the level of salicylic acid, reduce the level of hydrogen peroxide, and improve the activity of antioxidative enzymes in plants under salinity conditions. | [400] |
T. harzianum sensu lato TSM39 | It is a potential biocontrol agent against Bipolaris sorokiniana, the causal agent of wheat spot blotch. | [400] | ||
T. harzianum; T. pseudokoningii | They have been introduced as having herbicidal potential in the control of Rumex dentatus L. | [401] | ||
T. gamsii MK361 138 | It could reduce the severity of crown rot disease and improve growth parameters. | [402] | ||
T. harzianum; T. viride | They showed higher efficiency against Alternaria alternata, which can cause black point disease in wheat. | [403,404] | ||
T. atroviride Vel1 | It is involved in mycoparasitism, sporulation, secondary metabolite production, and disease control and is especially appropriate for controlling the wheat root rot disease caused by F. graminearum. | [405] | ||
Wild blueberries (Vaccinium angustifolium) | Ericaceae | T. harzianum T-22; T. atroviride IC-11 | Its combination with calcium polysulphide could manage botrytis blossom blight in wild blueberry. | [406,407] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, W.; Shahrajabian, M.H.; Guan, L. The Biocontrol and Growth-Promoting Potential of Penicillium spp. and Trichoderma spp. in Sustainable Agriculture. Plants 2025, 14, 2007. https://doi.org/10.3390/plants14132007
Sun W, Shahrajabian MH, Guan L. The Biocontrol and Growth-Promoting Potential of Penicillium spp. and Trichoderma spp. in Sustainable Agriculture. Plants. 2025; 14(13):2007. https://doi.org/10.3390/plants14132007
Chicago/Turabian StyleSun, Wenli, Mohamad Hesam Shahrajabian, and Lijie Guan. 2025. "The Biocontrol and Growth-Promoting Potential of Penicillium spp. and Trichoderma spp. in Sustainable Agriculture" Plants 14, no. 13: 2007. https://doi.org/10.3390/plants14132007
APA StyleSun, W., Shahrajabian, M. H., & Guan, L. (2025). The Biocontrol and Growth-Promoting Potential of Penicillium spp. and Trichoderma spp. in Sustainable Agriculture. Plants, 14(13), 2007. https://doi.org/10.3390/plants14132007