Exploring the Genetic Variability of Gmelina arborea Roxb. in Mexico with Molecular Markers to Establish an Efficient Improvement Program
Abstract
:1. Introduction
2. Results
2.1. Gmelina Arborea Plants and DNA Samples
2.2. SPAR Markers Analysis
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. DNA Isolation
4.3. SPAR Marker Analysis
4.4. Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Carle, J.; Holmgren, P. Wood from planted forests: Global outlook to 2030. In Planted Forests: Uses, Impacts and Sustainability; Evans, J., Ed.; CABI: Wallingford, UK, 2009; pp. 47–59. [Google Scholar] [CrossRef]
- Comisión Nacional Forestal (CONAFOR). Available online: https://www.conafor.gob.mx/transparencia/docs/2023/Programa_Anual_de_Trabajo_2023.pdf (accessed on 4 November 2024).
- Secretaría de Medio Ambiente y Recursos Naturales (SEMARNAT). Available online: https://www.gob.mx/cms/uploads/attachment/file/756773/MEDIO-AMBIENTE_4to_InformeLabores_web.pdf (accessed on 22 October 2024).
- Comisión Nacional Forestal (CONAFOR). Available online: https://snif.cnf.gob.mx/produccion_y_productividad#plantacionesForestalesC. (accessed on 5 November 2024).
- Reyes, J.; Pimienta de la Torre, D.D.J.; Rodríguez, J.A.; Fuentes, M.A.; Palomeque, E. Plant quality of Gmelina arborea Roxb. produced with different substrate mixtures at the nursery. Rev. Mex. Cienc. For. 2018, 9, 111–130. [Google Scholar] [CrossRef]
- Dvorak, W.S. World view of Gmelina arborea: Opportunities and challenges. New. For. 2004, 28, 111–126. [Google Scholar] [CrossRef]
- Kumar, A. Growth performance and variability in different clones of Gmelina arborea (Roxb.). Silvae Genet. 2007, 56, 32–36. [Google Scholar] [CrossRef]
- Pathala, D.; Harini, A.; Hegde, P.L. A review on gambhari (Gmelina arborea Roxb.). J. Pharmacogn Phytochem. 2015, 4, 127–132. Available online: https://www.phytojournal.com/archives/2015/vol4issue2/PartB/4-2-38.1.pdf (accessed on 24 September 2024).
- Rotenberg, J.A. Ecological role of a tree (Gmelina arborea) plantation in Guatemala: An assessment of an alternative land use for tropical avian conservation. Auk 2007, 124, 316–330. [Google Scholar] [CrossRef]
- Lauridsen, E.B.; Kjaer, E.D. Provenance research in Gmelina arborea Linn., Roxb. A summary of results from three decades of research and a discussion of how to use them. Int. For. Rev. 2002, 4, 20–29. Available online: https://www.jstor.org/stable/43740942 (accessed on 27 January 2025).
- Moya, R.; Tomazelo, M.; Canessa, E. Fiber morphology in fast growth Gmelina arborea plantations. Madera Bosques 2007, 13, 3–13. Available online: https://www.scielo.org.mx/pdf/mb/v13n2/1405-0471-mb-13-02-3.pdf (accessed on 2 December 2024). [CrossRef]
- Vanoye-Eligio, M.; López-García, L.L.; García-Vela, J.A.; Alavez-Góngora, J.A. Aprovechamiento del fruto de la melina (Gmelina arborea Roxb.) como colorante natural y antimicrobiano. Agron. Costarric. 2020, 44, 105–112. [Google Scholar] [CrossRef]
- Payn, K.G. Molecular genetic diversity and population genetic structure of the commercially important tropical forest tree species Eucalyptus urophylla. Degree of Doctor of Philosophy Forestry and Genetics. Ph.D. Thesis, North Carolina State University, Raleigh, NC, USA, 2008. Available online: https://repository.lib.ncsu.edu/server/api/core/bitstreams/c7f30caf-6e33-4b97-8462-cecc072e7174/content (accessed on 3 December 2024).
- Porth, I.; El-Kassaby, Y.A. Assessment of the genetic diversity in forest tree populations using molecular markers. Diversity 2014, 6, 283–295. [Google Scholar] [CrossRef]
- Tereba, A.; Konecka, A.; Nowakowska, J.A. Application of selected molecular markers in studies on forest trees. Folia For. Pol. 2017, 59, 146–151. [Google Scholar] [CrossRef]
- Adhikari, S.; Biswas, A.; Saha, S.; Biswas, A.; Ghosh, P. SPAR methods reveal high genetic diversity within populations and moderate gene flow of pointed gourd (Trichosanthes dioica Roxb.) germplasm. Biocatal. Agric. Biotechnol. 2020, 29, 101760. [Google Scholar] [CrossRef]
- Dvorak, W.S.; Hamrick, J.L.; Furman, B.J.; Hodge, G.R.; Jordan, A.P. Conservation strategies for Pinus maximinoi based on provenance, RAPD and allozyme information. For. Genet. 2002, 9, 267–278. Available online: https://www.cabidigitallibrary.org/doi/full/10.5555/20033126302 (accessed on 14 January 2025).
- Castañeda-Cardona, C.C.; Murillo-Coronado, Y.; Murillo-Coronado, A.C.; Ochoa, I. Genetic diversity in oil palm (Elaeis guineensis Jacq) using RAM (Random Amplified Microsatellites). Bragantia 2018, 77, 546–556. [Google Scholar] [CrossRef]
- Leite, S.M.M.; Bonine, C.A.; Mori, E.S.; Valle, C.D.; Marino, C.L. Genetic variability in a breeding population of Eucalyptus urophylla ST Blake. Silvae Genet. 2002, 51, 253–255. [Google Scholar]
- de Toledo Picoli, E.A.; Alfenas, A.C.; Cruz, C.D.; Moura, D.F.; dos Santos Dias, L.A. Sample size for number of RAPD markers to estimate genetic diversity in Eucalyptus. Crop Breed. Appl. Biot. 2004, 4, 384–390. Available online: https://cbab.sbmp.org.br/2023/09/26/article-sample-size-for-number-of-rapd-markers-to-estimate-genetic-diversity-in-eucalyptus/ (accessed on 16 October 2024). [CrossRef]
- Tapia-Tussell, R.; Quijano-Ramayo, A.; Rojas-Herrera, R.; Larque-Saavedra, A.; Perez-Brito, D. A fast, simple, and reliable high-yielding method for DNA extraction from different plant species. Mol. Biotechnol. 2005, 31, 137–139. [Google Scholar] [CrossRef]
- Trejo-Saavedra, D.L.; Rodríguez-Negrete, E.A.; Rivera-Bustamante, R.F. Detección de transgenes en Organismos Genéticamente Modificados (OGM) y sus subproductos. Acta Univ. 2015, 25, 24–39. Available online: https://www.redalyc.org/pdf/416/41648311003.pdf (accessed on 18 June 2024).
- Weiguo, Z.; Zhihua, Z.; Xuexia, M.; Sibao, W.; Lin, Z.; Yile, P.; Yongping, H. Genetic related among cultivated and wild mulberry (Moraceae: Morus) as revealed by inter-simple sequence repeat analysis in China. Can. J. Plant Sci. 2005, 86, 251–257. [Google Scholar] [CrossRef]
- Verma, S.; Rana, T.S. Genetic relationship among wild and cultivated accessions of curry leaf plant (Muraya koenigii (L.) Spreng.), as revealed by DNA Fingerprinting methods. Mol. Biotechnol. 2013, 53, 139–149. [Google Scholar] [CrossRef]
- Jaccard, P. Nouvelles recherché sur la distribution florale. Bull. Soc. Vaudoise Sci. Nat. 1908, 44, 223–270. [Google Scholar]
- CIMMYT. Laboratory Protocols: CIMMYT Applied Molecular Genetics Laboratory, 3rd ed.; CIMMYT: Veracruz, Mexico, 2005; pp. 41–44. [Google Scholar]
- Rohlf, F.J. NTSYS-pc: Numerical Taxonomy and Multivariate Analysis System; Exeter Publishing: Setauket, NY, USA, 2000. [Google Scholar]
- Anderson, J.A.; Churchill, G.A.; Autrique, J.E.; Tanksley, S.D.; Sorrels, M.E. Optimizing parental selection for genetic linkage maps. Genome 1992, 36, 181–186. Available online: https://cdnsciencepub.com/doi/abs/10.1139/g93-024 (accessed on 2 December 2024). [CrossRef]
Location Key | State | Municipality | Number of Samples |
---|---|---|---|
M1-M12, M14-M21 | Tabasco | Cárdenas | 20 |
AGS1-AGS5 | Chiapas | Salto de Agua | 5 |
AGS6-AGS8 | Chiapas | Palenque | 3 |
EC1A1-EC1A4; EC1A7-EC1A24; EC1A26-EC1A27; EC1A29; EC1A31-EC1A34 | Tabasco | Emiliano Zapata | 29 |
EC2A1; EC2A3-EC2A5; EC2A8; EC2A10-EC2A11 | Tabasco | Balancán | 7 |
H1–H9 | Tabasco | Nacajuca | 9 |
H10-H12 | Veracruz | Moloacán | 3 |
Br01; Br29; Br39; Br49 | Chiapas | Reforma | 4 |
Fyt1-Fyt5 * | Tabasco | Nacajuca | 5 |
Total | 85 |
SPARMarkers | Primer Name | Number of Amplified Bands | Number of Polymorphic Bands | Allele Size | High Frequency Allele | PIC | |
---|---|---|---|---|---|---|---|
Range (bp) | Size (bp) | Frequency (%) | |||||
DAMD | 33.6 | 98 | 98 | 220–3700 | 1650 | 51 | 0.973 |
HVV | 70 | 70 | 330–4000 | 1350 | 47 | 0.978 | |
HVA | 71 | 71 | 300–3200 | 575 | 60 | 0.973 | |
HVR | 75 | 75 | 340–3900 | 975 | 43 | 0.986 | |
M13 | 29 | 29 | 770–4700 | 4700 3700 2800 1520 1190 | 64 | 0.789 | |
Total | - | 343 | 343 | 220–4700 | - | - | - |
Average | - | 68 | 68 | - | - | - | 0.940 |
ISSR | IS01 | 83 | 83 | 160–3800 | 1300 320 | 51 | 0.958 |
IS13 | 59 | 59 | 300–3000 | 950 | 67 | 0.974 | |
IS14 | 57 | 56 | 170–2000 | 690 | 100 | 0.886 | |
IS17 | 85 | 85 | 126–3850 | 1050 | 76 | 0.966 | |
IS19 | 100 | 100 | 180–2700 | 330 | 55 | 0.968 | |
Total | - | 384 | 383 | 126–3850 | - | - | - |
Average | - | 76 | 76 | - | - | - | 0.950 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ortega-Ramírez, M.E.; Magaña-Álvarez, A.; Pérez-Brito, D.; Cortés-Velázquez, A.; Nexticapan-Garcéz, Á.; Tapia-Tussell, R.; Martín-Mex, R. Exploring the Genetic Variability of Gmelina arborea Roxb. in Mexico with Molecular Markers to Establish an Efficient Improvement Program. Plants 2025, 14, 1888. https://doi.org/10.3390/plants14121888
Ortega-Ramírez ME, Magaña-Álvarez A, Pérez-Brito D, Cortés-Velázquez A, Nexticapan-Garcéz Á, Tapia-Tussell R, Martín-Mex R. Exploring the Genetic Variability of Gmelina arborea Roxb. in Mexico with Molecular Markers to Establish an Efficient Improvement Program. Plants. 2025; 14(12):1888. https://doi.org/10.3390/plants14121888
Chicago/Turabian StyleOrtega-Ramírez, Marynor E., Anuar Magaña-Álvarez, Daisy Pérez-Brito, Alberto Cortés-Velázquez, Ángel Nexticapan-Garcéz, Raúl Tapia-Tussell, and Rodolfo Martín-Mex. 2025. "Exploring the Genetic Variability of Gmelina arborea Roxb. in Mexico with Molecular Markers to Establish an Efficient Improvement Program" Plants 14, no. 12: 1888. https://doi.org/10.3390/plants14121888
APA StyleOrtega-Ramírez, M. E., Magaña-Álvarez, A., Pérez-Brito, D., Cortés-Velázquez, A., Nexticapan-Garcéz, Á., Tapia-Tussell, R., & Martín-Mex, R. (2025). Exploring the Genetic Variability of Gmelina arborea Roxb. in Mexico with Molecular Markers to Establish an Efficient Improvement Program. Plants, 14(12), 1888. https://doi.org/10.3390/plants14121888