Combined Analysis of BSA-Seq and RNA-Seq Reveals Candidate Genes for qGS1 Related to Sorghum Grain Size
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. BSA Sequencing and Data Analysis
2.3. Molecular Marker Design and Genetic Map Construction
2.4. RNA-Seq Analysis
2.5. Quantitative PCR (qPCR)
2.6. Statistical Analysis
3. Results
3.1. Grain Phenotypic Analysis of Parents
3.2. Distribution of 1000-Grain Weight in the F2 Segregating Population
3.3. BSA Sequencing Analysis and Fine Mapping of qGS1
3.4. Transcriptome Analysis
3.5. Screening of qGS1 Candidate Genes by Integrating BSA-Seq and RNA-Seq Analyses
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- McGinnis, M.J.; Painter, J.E. Sorghum: History, use, and health benefits. Nutr. Today 2020, 55, 38–44. [Google Scholar] [CrossRef]
- Kalpande, H.; Surashe, S.; Badigannavar, A.; More, A.; Ganapathi, T. Induced variability and assessment of mutagenic effectiveness and efficiency in sorghum genotypes [Sorghum bicolor (L.) Moench]. Int. J. Radiat. Biol. 2022, 98, 230–243. [Google Scholar] [CrossRef] [PubMed]
- Abah, C.; Ishiwu, C.; Obiegbuna, J.; Oladejo, A. Sorghum grains: Nutritional composition, functional properties and its food applications. Eur. J. Nutr. Food Saf. 2020, 12, 101–111. [Google Scholar] [CrossRef]
- Figueiredo, D.D.; Köhler, C. Auxin: A molecular trigger of seed development. Genes Dev. 2018, 32, 479–490. [Google Scholar] [CrossRef]
- Zhao, L.; Chen, J.; Zhang, Z.; Wu, W.; Lin, X.; Gao, M.; Yang, Y.; Zhao, P.; Yao, Y.; Zhang, A. Unraveling wheat endosperm development: Epigenetic regulation and novel regulators for enhanced yield and quality. bioRxiv 2024. [Google Scholar]
- Huang, H.; Xie, S.; Xiao, Q.; Wei, B.; Zheng, L.; Wang, Y.; Cao, Y.; Zhang, X.; Long, T.; Li, Y. Sucrose and ABA regulate starch biosynthesis in maize through a novel transcription factor, ZmEREB156. Sci. Rep. 2016, 6, 27590. [Google Scholar] [CrossRef]
- Ma, B.; Zhang, L.; He, Z. Understanding the regulation of cereal grain filling: The way forward. J. Integr. Plant Biol. 2023, 65, 526–547. [Google Scholar] [CrossRef] [PubMed]
- Xiao, W.; Brown, R.C.; Lemmon, B.E.; Harada, J.J.; Goldberg, R.B.; Fischer, R.L. Regulation of seed size by hypomethylation of maternal and paternal genomes. Plant Physiol. 2006, 142, 1160–1168. [Google Scholar] [CrossRef]
- Ji, Y.; Hewavithana, T.; Sharpe, A.G.; Jin, L. Understanding grain development in the Poaceae family by comparing conserved and distinctive pathways through omics studies in wheat and maize. Front. Plant Sci. 2024, 15, 1393140. [Google Scholar] [CrossRef]
- Baye, W.; Xie, Q.; Xie, P. Genetic architecture of grain yield-related traits in sorghum and maize. Int. J. Mol. Sci. 2022, 23, 2405. [Google Scholar] [CrossRef]
- Tao, Y.; Mace, E.; George-Jaeggli, B.; Hunt, C.; Cruickshank, A.; Henzell, R.; Jordan, D. Novel grain weight loci revealed in a cross between cultivated and wild sorghum. Plant Genome 2018, 11, 170089. [Google Scholar] [CrossRef] [PubMed]
- Cao, N.; Ding, Y.; Xu, J.; Cheng, B.; Gao, X.; Li, W.; Zou, G.; Zhang, L. QTL analysis of sorghum grain traits based on high-density genetic map. J. Appl. Genet. 2024, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Zou, G.; Zhai, G.; Yan, S.; Li, S.; Zhou, L.; Ding, Y.; Liu, H.; Zhang, Z.; Zou, J.; Zhang, L. Sorghum qTGW1a encodes a G-protein subunit and acts as a negative regulator of grain size. J. Exp. Bot. 2020, 71, 5389–5401. [Google Scholar] [CrossRef]
- Han, L.; Chen, J.; Mace, E.S.; Liu, Y.; Zhu, M.; Yuyama, N.; Jordan, D.R.; Cai, H. Fine mapping of qGW1, a major QTL for grain weight in sorghum. Theor. Appl. Genet. 2015, 128, 1813–1825. [Google Scholar] [CrossRef]
- Tao, Y.; Luo, H.; Xu, J.; Cruickshank, A.; Zhao, X.; Teng, F.; Hathorn, A.; Wu, X.; Liu, Y.; Shatte, T. Extensive variation within the pan-genome of cultivated and wild sorghum. Nat. Plants 2021, 7, 766–773. [Google Scholar] [CrossRef]
- Zhang, D.; Tang, S.; Liu, F.; Zhao, K.; Li, C.; Xia, R.; Yu, F.; Xie, Q.; Xie, P. Natural variations in Multi-Grain Spikelet 1 enhance grain number in sorghum. J. Integr. Plant Biol. 2025, 67, 1441–1443. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Gou, Y.; Heng, Y.; Ding, W.; Li, Y.; Zhou, D.; Li, X.; Liang, C.; Wu, C.; Wang, H. Targeted manipulation of grain shape genes effectively improves outcrossing rate and hybrid seed production in rice. Plant Biotechnol. J. 2023, 21, 381–390. [Google Scholar] [CrossRef]
- Wang, G.; Zhao, Y.; Mao, W.; Ma, X.; Su, C. QTL analysis and fine mapping of a major QTL conferring kernel size in maize (Zea mays). Front. Genet. 2020, 11, 603920. [Google Scholar] [CrossRef]
- Belide, S.; Vanhercke, T.; Petrie, J.R.; Singh, S.P. Robust genetic transformation of sorghum (Sorghum bicolor L.) using differentiating embryogenic callus induced from immature embryos. Plant Methods 2017, 13, 109. [Google Scholar] [CrossRef]
- Tang, W.; Huang, L.; Bu, S.; Zhang, X.; Wu, W. Estimation of QTL heritability based on pooled sequencing data. Bioinformatics 2018, 34, 978–984. [Google Scholar] [CrossRef]
- Takagi, H.; Abe, A.; Yoshida, K.; Kosugi, S.; Natsume, S.; Mitsuoka, C.; Uemura, A.; Utsushi, H.; Tamiru, M.; Takuno, S. QTL-seq: Rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. Plant J. 2013, 74, 174–183. [Google Scholar] [CrossRef] [PubMed]
- Sambrook, J.; David, W. Molecular Cloning: A Laboratory Manual, 3rd ed.; Cold Spring Harbor Laboratory Press: New York, NY, USA, 2001. [Google Scholar]
- Lander, E.S.; Green, P.; Abrahamson, J.; Barlow, A.; Daly, M.J.; Lincoln, S.E.; Newberg, L.A. Corrigendum to “MAPMAKER: An interactive computer package for constructing primary genetic linkage maps of experimental and natural populations” [Genomics 1 (1987) 174–181]. Genomics 2008, 93, 398. [Google Scholar] [CrossRef]
- Liu, R.H.; Meng, J. MapDraw: A microsoft excel macro for drawing genetic linkage maps based on given genetic linkage data. Yi Chuan = Hered. 2003, 25, 317–321. [Google Scholar]
- Modi, A.; Vai, S.; Caramelli, D.; Lari, M. The Illumina sequencing protocol and the NovaSeq 6000 system. In Bacterial Pangenomics: Methods and Protocols; Springer: Berlin/Heidelberg, Germany, 2021; pp. 15–42. [Google Scholar]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Hu, E.; Xu, S.; Chen, M.; Guo, P.; Dai, Z.; Feng, T.; Zhou, L.; Tang, W.; Zhan, L. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. Innovation 2021, 2, 100141. [Google Scholar] [CrossRef]
- Sudhakar Reddy, P.; Srinivas Reddy, D.; Sivasakthi, K.; Bhatnagar-Mathur, P.; Vadez, V.; Sharma, K.K. Evaluation of sorghum [Sorghum bicolor (L.)] reference genes in various tissues and under abiotic stress conditions for quantitative real-time PCR data normalization. Front. Plant Sci. 2016, 7, 529. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Swift, M.L. GraphPad prism, data analysis, and scientific graphing. J. Chem. Inf. Comput. Sci. 1997, 37, 411–412. [Google Scholar] [CrossRef]
- Darvasi, A.; Soller, M. Selective genotyping for determination of linkage between a marker locus and a quantitative trait locus. Theor. Appl. Genet. 1992, 85, 353–359. [Google Scholar] [CrossRef]
- Phansak, P.; Soonsuwon, W.; Hyten, D.L.; Song, Q.; Cregan, P.B.; Graef, G.L.; Specht, J.E. Multi-population selective genotyping to identify soybean [Glycine max (L.) Merr.] seed protein and oil QTLs. G3 Genes Genomes Genet. 2016, 6, 1635–1648. [Google Scholar] [CrossRef]
- Ćeran, M.; Đorđević, V.; Miladinović, J.; Vasiljević, M.; Đukić, V.; Ranđelović, P.; Jaćimović, S. Selective Genotyping and Phenotyping for Optimization of Genomic Prediction Models for Populations with Different Diversity. Plants 2024, 13, 975. [Google Scholar] [CrossRef] [PubMed]
- Charcosset, A.; Gallais, A. Estimation of the contribution of quantitative trait loci (QTL) to the variance of a quantitative trait by means of genetic markers. Theor. Appl. Genet. 1996, 93, 1193–1201. [Google Scholar] [CrossRef] [PubMed]
- Anuj, C.; Ramasamy, P.; Poudel, H.P.; Kebede, M.; Troy, O.; Lauren, F.; Meghnath, P.; Bean, S.R.; Sebela, D.; Raju, B. Genetic control of source–sink relationships in grain sorghum. Planta 2022, 255, 40. [Google Scholar]
- Tao, Y.; Zhao, X.; Wang, X.; Hathorn, A.; Hunt, C.; Cruickshank, A.W.; van Oosterom, E.J.; Godwin, I.D.; Mace, E.S.; Jordan, D.R. Large-scale GWAS in sorghum reveals common genetic control of grain size among cereals. Plant Biotechnol. J. 2020, 18, 1093–1105. [Google Scholar] [CrossRef] [PubMed]
- Cheng, F.; Huang, J.; Tang, P.; Li, Y.; Hu, Z.; Cui, B.; Xie, X.; Chen, Q.; Tian, J.; Gu, H. SlCHYR1, a RING and CHY zinc finger domain-containing protein, promotes tomato fruit ripening by reprograming abscisic acid and ethylene signaling. Sci. Hortic. 2022, 296, 110900. [Google Scholar] [CrossRef]
- Chai, G.; Qi, G.; Wang, D.; Zhuang, Y.; Xu, H.; Bai, Z.; Bai, M.-Y.; Hu, R.; Wang, Z.-y.; Zhou, G. The CCCH zinc finger protein C3H15 negatively regulates cell elongation by inhibiting brassinosteroid signaling. Plant Physiol. 2022, 189, 285–300. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, Q.; Li, W.; Zheng, Q.; Fu, M.; Wang, H.; Li, X.; Wang, Y.; Hu, L.; Yao, W. ZmZFP2 encoding a C4HC3-type RING zinc finger protein regulates kernel size and weight in maize. Crop J. 2025, 13, 418–431. [Google Scholar] [CrossRef]
- McCormick, R.F.; Truong, S.K.; Sreedasyam, A.; Jenkins, J.; Shu, S.; Sims, D.; Kennedy, M.; Amirebrahimi, M.; Weers, B.D.; McKinley, B. The Sorghum bicolor reference genome: Improved assembly, gene annotations, a transcriptome atlas, and signatures of genome organization. Plant J. 2018, 93, 338–354. [Google Scholar] [CrossRef]
- Enyew, M.; Feyissa, T.; Carlsson, A.S.; Tesfaye, K.; Hammenhag, C.; Seyoum, A.; Geleta, M. Genome-wide analyses using multi-locus models revealed marker-trait associations for major agronomic traits in Sorghum bicolor. Front. Plant Sci. 2022, 13, 999692. [Google Scholar] [CrossRef]
- Wang, H.; Liu, J.; Huang, J.; Xiao, Q.; Hayward, A.; Li, F.; Gong, Y.; Liu, Q.; Ma, M.; Fu, D.; et al. Mapping and Identifying Candidate Genes Enabling Cadmium Accumulation in Brassica napus Revealed by Combined BSA-Seq and RNA-Seq Analysis. Int. J. Mol. Sci. 2023, 24, 10163. [Google Scholar] [CrossRef]
- Gao, Y.; Yuan, Y.; Zhang, X.; Song, H.; Yang, Q.; Yang, P.; Gao, X.; Gao, J.; Feng, B. Conuping BSA-Seq and RNA-Seq Reveal the Molecular Pathway and Genes Associated with the Plant Height of Foxtail Millet (Setaria italica). Int. J. Mol. Sci. 2022, 23, 11824. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Yang, L.; Kang, L.; You, L.; Chen, H.; Xiao, H.; Qian, L.; Rao, Y.; Liu, Z. Integrated analysis of BSA-seq and RNA-seq identified the candidate genes for seed weight in Brassica juncea. Front. Plant Sci. 2024, 15, 1458294. [Google Scholar] [CrossRef] [PubMed]
Gene Number | Location | Function Annotation | Sg and Lg at 0 DAH | Sg and Lg at 14 DAH | KEGG |
---|---|---|---|---|---|
Sobic.001G229100 | Chr01: 22,212,463–22,214,140 | Acetylglucosaminyltransferase EXT1/exostosin 1 | Down | Down | - |
Sobic.001G229401 | Chr01: 22,286,190–22,287,167 | - | Down | Down | - |
Sobic.001G229850 | Chr01: 22,375,134–22,381,551 | DNA helicase PIF1/RRM3 | Down | Down | - |
Sobic.001G230700 | Chr01: 22,460,974–22,464,834 | Zn-finger protein | Down | Down | RCHY1/PIRH2 |
Sobic.001G233200 | Chr01: 22,987,418–22,988,410 | zinc-binding in reverse transcriptase | Down | Down | - |
Sobic.001G233300 | Chr01: 22,989,390–22,990,975 | - | Up | Up | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, Q.; Wang, K.; Hu, L.; Li, L.; Wang, L.; Wang, Y.; Wang, Y.-H.; Li, J. Combined Analysis of BSA-Seq and RNA-Seq Reveals Candidate Genes for qGS1 Related to Sorghum Grain Size. Plants 2025, 14, 1791. https://doi.org/10.3390/plants14121791
Shen Q, Wang K, Hu L, Li L, Wang L, Wang Y, Wang Y-H, Li J. Combined Analysis of BSA-Seq and RNA-Seq Reveals Candidate Genes for qGS1 Related to Sorghum Grain Size. Plants. 2025; 14(12):1791. https://doi.org/10.3390/plants14121791
Chicago/Turabian StyleShen, Qi, Kai Wang, Lu Hu, Lei Li, Lihua Wang, Yongfei Wang, Yi-Hong Wang, and Jieqin Li. 2025. "Combined Analysis of BSA-Seq and RNA-Seq Reveals Candidate Genes for qGS1 Related to Sorghum Grain Size" Plants 14, no. 12: 1791. https://doi.org/10.3390/plants14121791
APA StyleShen, Q., Wang, K., Hu, L., Li, L., Wang, L., Wang, Y., Wang, Y.-H., & Li, J. (2025). Combined Analysis of BSA-Seq and RNA-Seq Reveals Candidate Genes for qGS1 Related to Sorghum Grain Size. Plants, 14(12), 1791. https://doi.org/10.3390/plants14121791