Combined Analysis of BSA-Seq and RNA-Seq Reveals Candidate Genes for qGS1 Related to Sorghum Grain Size
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. BSA Sequencing and Data Analysis
2.3. Molecular Marker Design and Genetic Map Construction
2.4. RNA-Seq Analysis
2.5. Quantitative PCR (qPCR)
2.6. Statistical Analysis
3. Results
3.1. Grain Phenotypic Analysis of Parents
3.2. Distribution of 1000-Grain Weight in the F2 Segregating Population
3.3. BSA Sequencing Analysis and Fine Mapping of qGS1
3.4. Transcriptome Analysis
3.5. Screening of qGS1 Candidate Genes by Integrating BSA-Seq and RNA-Seq Analyses
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- McGinnis, M.J.; Painter, J.E. Sorghum: History, use, and health benefits. Nutr. Today 2020, 55, 38–44. [Google Scholar] [CrossRef]
- Kalpande, H.; Surashe, S.; Badigannavar, A.; More, A.; Ganapathi, T. Induced variability and assessment of mutagenic effectiveness and efficiency in sorghum genotypes [Sorghum bicolor (L.) Moench]. Int. J. Radiat. Biol. 2022, 98, 230–243. [Google Scholar] [CrossRef] [PubMed]
- Abah, C.; Ishiwu, C.; Obiegbuna, J.; Oladejo, A. Sorghum grains: Nutritional composition, functional properties and its food applications. Eur. J. Nutr. Food Saf. 2020, 12, 101–111. [Google Scholar] [CrossRef]
- Figueiredo, D.D.; Köhler, C. Auxin: A molecular trigger of seed development. Genes Dev. 2018, 32, 479–490. [Google Scholar] [CrossRef]
- Zhao, L.; Chen, J.; Zhang, Z.; Wu, W.; Lin, X.; Gao, M.; Yang, Y.; Zhao, P.; Yao, Y.; Zhang, A. Unraveling wheat endosperm development: Epigenetic regulation and novel regulators for enhanced yield and quality. bioRxiv 2024. [Google Scholar]
- Huang, H.; Xie, S.; Xiao, Q.; Wei, B.; Zheng, L.; Wang, Y.; Cao, Y.; Zhang, X.; Long, T.; Li, Y. Sucrose and ABA regulate starch biosynthesis in maize through a novel transcription factor, ZmEREB156. Sci. Rep. 2016, 6, 27590. [Google Scholar] [CrossRef]
- Ma, B.; Zhang, L.; He, Z. Understanding the regulation of cereal grain filling: The way forward. J. Integr. Plant Biol. 2023, 65, 526–547. [Google Scholar] [CrossRef] [PubMed]
- Xiao, W.; Brown, R.C.; Lemmon, B.E.; Harada, J.J.; Goldberg, R.B.; Fischer, R.L. Regulation of seed size by hypomethylation of maternal and paternal genomes. Plant Physiol. 2006, 142, 1160–1168. [Google Scholar] [CrossRef]
- Ji, Y.; Hewavithana, T.; Sharpe, A.G.; Jin, L. Understanding grain development in the Poaceae family by comparing conserved and distinctive pathways through omics studies in wheat and maize. Front. Plant Sci. 2024, 15, 1393140. [Google Scholar] [CrossRef]
- Baye, W.; Xie, Q.; Xie, P. Genetic architecture of grain yield-related traits in sorghum and maize. Int. J. Mol. Sci. 2022, 23, 2405. [Google Scholar] [CrossRef]
- Tao, Y.; Mace, E.; George-Jaeggli, B.; Hunt, C.; Cruickshank, A.; Henzell, R.; Jordan, D. Novel grain weight loci revealed in a cross between cultivated and wild sorghum. Plant Genome 2018, 11, 170089. [Google Scholar] [CrossRef] [PubMed]
- Cao, N.; Ding, Y.; Xu, J.; Cheng, B.; Gao, X.; Li, W.; Zou, G.; Zhang, L. QTL analysis of sorghum grain traits based on high-density genetic map. J. Appl. Genet. 2024, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Zou, G.; Zhai, G.; Yan, S.; Li, S.; Zhou, L.; Ding, Y.; Liu, H.; Zhang, Z.; Zou, J.; Zhang, L. Sorghum qTGW1a encodes a G-protein subunit and acts as a negative regulator of grain size. J. Exp. Bot. 2020, 71, 5389–5401. [Google Scholar] [CrossRef]
- Han, L.; Chen, J.; Mace, E.S.; Liu, Y.; Zhu, M.; Yuyama, N.; Jordan, D.R.; Cai, H. Fine mapping of qGW1, a major QTL for grain weight in sorghum. Theor. Appl. Genet. 2015, 128, 1813–1825. [Google Scholar] [CrossRef]
- Tao, Y.; Luo, H.; Xu, J.; Cruickshank, A.; Zhao, X.; Teng, F.; Hathorn, A.; Wu, X.; Liu, Y.; Shatte, T. Extensive variation within the pan-genome of cultivated and wild sorghum. Nat. Plants 2021, 7, 766–773. [Google Scholar] [CrossRef]
- Zhang, D.; Tang, S.; Liu, F.; Zhao, K.; Li, C.; Xia, R.; Yu, F.; Xie, Q.; Xie, P. Natural variations in Multi-Grain Spikelet 1 enhance grain number in sorghum. J. Integr. Plant Biol. 2025, 67, 1441–1443. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Gou, Y.; Heng, Y.; Ding, W.; Li, Y.; Zhou, D.; Li, X.; Liang, C.; Wu, C.; Wang, H. Targeted manipulation of grain shape genes effectively improves outcrossing rate and hybrid seed production in rice. Plant Biotechnol. J. 2023, 21, 381–390. [Google Scholar] [CrossRef]
- Wang, G.; Zhao, Y.; Mao, W.; Ma, X.; Su, C. QTL analysis and fine mapping of a major QTL conferring kernel size in maize (Zea mays). Front. Genet. 2020, 11, 603920. [Google Scholar] [CrossRef]
- Belide, S.; Vanhercke, T.; Petrie, J.R.; Singh, S.P. Robust genetic transformation of sorghum (Sorghum bicolor L.) using differentiating embryogenic callus induced from immature embryos. Plant Methods 2017, 13, 109. [Google Scholar] [CrossRef]
- Tang, W.; Huang, L.; Bu, S.; Zhang, X.; Wu, W. Estimation of QTL heritability based on pooled sequencing data. Bioinformatics 2018, 34, 978–984. [Google Scholar] [CrossRef]
- Takagi, H.; Abe, A.; Yoshida, K.; Kosugi, S.; Natsume, S.; Mitsuoka, C.; Uemura, A.; Utsushi, H.; Tamiru, M.; Takuno, S. QTL-seq: Rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. Plant J. 2013, 74, 174–183. [Google Scholar] [CrossRef] [PubMed]
- Sambrook, J.; David, W. Molecular Cloning: A Laboratory Manual, 3rd ed.; Cold Spring Harbor Laboratory Press: New York, NY, USA, 2001. [Google Scholar]
- Lander, E.S.; Green, P.; Abrahamson, J.; Barlow, A.; Daly, M.J.; Lincoln, S.E.; Newberg, L.A. Corrigendum to “MAPMAKER: An interactive computer package for constructing primary genetic linkage maps of experimental and natural populations” [Genomics 1 (1987) 174–181]. Genomics 2008, 93, 398. [Google Scholar] [CrossRef]
- Liu, R.H.; Meng, J. MapDraw: A microsoft excel macro for drawing genetic linkage maps based on given genetic linkage data. Yi Chuan = Hered. 2003, 25, 317–321. [Google Scholar]
- Modi, A.; Vai, S.; Caramelli, D.; Lari, M. The Illumina sequencing protocol and the NovaSeq 6000 system. In Bacterial Pangenomics: Methods and Protocols; Springer: Berlin/Heidelberg, Germany, 2021; pp. 15–42. [Google Scholar]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Hu, E.; Xu, S.; Chen, M.; Guo, P.; Dai, Z.; Feng, T.; Zhou, L.; Tang, W.; Zhan, L. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. Innovation 2021, 2, 100141. [Google Scholar] [CrossRef]
- Sudhakar Reddy, P.; Srinivas Reddy, D.; Sivasakthi, K.; Bhatnagar-Mathur, P.; Vadez, V.; Sharma, K.K. Evaluation of sorghum [Sorghum bicolor (L.)] reference genes in various tissues and under abiotic stress conditions for quantitative real-time PCR data normalization. Front. Plant Sci. 2016, 7, 529. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Swift, M.L. GraphPad prism, data analysis, and scientific graphing. J. Chem. Inf. Comput. Sci. 1997, 37, 411–412. [Google Scholar] [CrossRef]
- Darvasi, A.; Soller, M. Selective genotyping for determination of linkage between a marker locus and a quantitative trait locus. Theor. Appl. Genet. 1992, 85, 353–359. [Google Scholar] [CrossRef]
- Phansak, P.; Soonsuwon, W.; Hyten, D.L.; Song, Q.; Cregan, P.B.; Graef, G.L.; Specht, J.E. Multi-population selective genotyping to identify soybean [Glycine max (L.) Merr.] seed protein and oil QTLs. G3 Genes Genomes Genet. 2016, 6, 1635–1648. [Google Scholar] [CrossRef]
- Ćeran, M.; Đorđević, V.; Miladinović, J.; Vasiljević, M.; Đukić, V.; Ranđelović, P.; Jaćimović, S. Selective Genotyping and Phenotyping for Optimization of Genomic Prediction Models for Populations with Different Diversity. Plants 2024, 13, 975. [Google Scholar] [CrossRef] [PubMed]
- Charcosset, A.; Gallais, A. Estimation of the contribution of quantitative trait loci (QTL) to the variance of a quantitative trait by means of genetic markers. Theor. Appl. Genet. 1996, 93, 1193–1201. [Google Scholar] [CrossRef] [PubMed]
- Anuj, C.; Ramasamy, P.; Poudel, H.P.; Kebede, M.; Troy, O.; Lauren, F.; Meghnath, P.; Bean, S.R.; Sebela, D.; Raju, B. Genetic control of source–sink relationships in grain sorghum. Planta 2022, 255, 40. [Google Scholar]
- Tao, Y.; Zhao, X.; Wang, X.; Hathorn, A.; Hunt, C.; Cruickshank, A.W.; van Oosterom, E.J.; Godwin, I.D.; Mace, E.S.; Jordan, D.R. Large-scale GWAS in sorghum reveals common genetic control of grain size among cereals. Plant Biotechnol. J. 2020, 18, 1093–1105. [Google Scholar] [CrossRef] [PubMed]
- Cheng, F.; Huang, J.; Tang, P.; Li, Y.; Hu, Z.; Cui, B.; Xie, X.; Chen, Q.; Tian, J.; Gu, H. SlCHYR1, a RING and CHY zinc finger domain-containing protein, promotes tomato fruit ripening by reprograming abscisic acid and ethylene signaling. Sci. Hortic. 2022, 296, 110900. [Google Scholar] [CrossRef]
- Chai, G.; Qi, G.; Wang, D.; Zhuang, Y.; Xu, H.; Bai, Z.; Bai, M.-Y.; Hu, R.; Wang, Z.-y.; Zhou, G. The CCCH zinc finger protein C3H15 negatively regulates cell elongation by inhibiting brassinosteroid signaling. Plant Physiol. 2022, 189, 285–300. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, Q.; Li, W.; Zheng, Q.; Fu, M.; Wang, H.; Li, X.; Wang, Y.; Hu, L.; Yao, W. ZmZFP2 encoding a C4HC3-type RING zinc finger protein regulates kernel size and weight in maize. Crop J. 2025, 13, 418–431. [Google Scholar] [CrossRef]
- McCormick, R.F.; Truong, S.K.; Sreedasyam, A.; Jenkins, J.; Shu, S.; Sims, D.; Kennedy, M.; Amirebrahimi, M.; Weers, B.D.; McKinley, B. The Sorghum bicolor reference genome: Improved assembly, gene annotations, a transcriptome atlas, and signatures of genome organization. Plant J. 2018, 93, 338–354. [Google Scholar] [CrossRef]
- Enyew, M.; Feyissa, T.; Carlsson, A.S.; Tesfaye, K.; Hammenhag, C.; Seyoum, A.; Geleta, M. Genome-wide analyses using multi-locus models revealed marker-trait associations for major agronomic traits in Sorghum bicolor. Front. Plant Sci. 2022, 13, 999692. [Google Scholar] [CrossRef]
- Wang, H.; Liu, J.; Huang, J.; Xiao, Q.; Hayward, A.; Li, F.; Gong, Y.; Liu, Q.; Ma, M.; Fu, D.; et al. Mapping and Identifying Candidate Genes Enabling Cadmium Accumulation in Brassica napus Revealed by Combined BSA-Seq and RNA-Seq Analysis. Int. J. Mol. Sci. 2023, 24, 10163. [Google Scholar] [CrossRef]
- Gao, Y.; Yuan, Y.; Zhang, X.; Song, H.; Yang, Q.; Yang, P.; Gao, X.; Gao, J.; Feng, B. Conuping BSA-Seq and RNA-Seq Reveal the Molecular Pathway and Genes Associated with the Plant Height of Foxtail Millet (Setaria italica). Int. J. Mol. Sci. 2022, 23, 11824. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Yang, L.; Kang, L.; You, L.; Chen, H.; Xiao, H.; Qian, L.; Rao, Y.; Liu, Z. Integrated analysis of BSA-seq and RNA-seq identified the candidate genes for seed weight in Brassica juncea. Front. Plant Sci. 2024, 15, 1458294. [Google Scholar] [CrossRef] [PubMed]
Gene Number | Location | Function Annotation | Sg and Lg at 0 DAH | Sg and Lg at 14 DAH | KEGG |
---|---|---|---|---|---|
Sobic.001G229100 | Chr01: 22,212,463–22,214,140 | Acetylglucosaminyltransferase EXT1/exostosin 1 | Down | Down | - |
Sobic.001G229401 | Chr01: 22,286,190–22,287,167 | - | Down | Down | - |
Sobic.001G229850 | Chr01: 22,375,134–22,381,551 | DNA helicase PIF1/RRM3 | Down | Down | - |
Sobic.001G230700 | Chr01: 22,460,974–22,464,834 | Zn-finger protein | Down | Down | RCHY1/PIRH2 |
Sobic.001G233200 | Chr01: 22,987,418–22,988,410 | zinc-binding in reverse transcriptase | Down | Down | - |
Sobic.001G233300 | Chr01: 22,989,390–22,990,975 | - | Up | Up | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, Q.; Wang, K.; Hu, L.; Li, L.; Wang, L.; Wang, Y.; Wang, Y.-H.; Li, J. Combined Analysis of BSA-Seq and RNA-Seq Reveals Candidate Genes for qGS1 Related to Sorghum Grain Size. Plants 2025, 14, 1791. https://doi.org/10.3390/plants14121791
Shen Q, Wang K, Hu L, Li L, Wang L, Wang Y, Wang Y-H, Li J. Combined Analysis of BSA-Seq and RNA-Seq Reveals Candidate Genes for qGS1 Related to Sorghum Grain Size. Plants. 2025; 14(12):1791. https://doi.org/10.3390/plants14121791
Chicago/Turabian StyleShen, Qi, Kai Wang, Lu Hu, Lei Li, Lihua Wang, Yongfei Wang, Yi-Hong Wang, and Jieqin Li. 2025. "Combined Analysis of BSA-Seq and RNA-Seq Reveals Candidate Genes for qGS1 Related to Sorghum Grain Size" Plants 14, no. 12: 1791. https://doi.org/10.3390/plants14121791
APA StyleShen, Q., Wang, K., Hu, L., Li, L., Wang, L., Wang, Y., Wang, Y.-H., & Li, J. (2025). Combined Analysis of BSA-Seq and RNA-Seq Reveals Candidate Genes for qGS1 Related to Sorghum Grain Size. Plants, 14(12), 1791. https://doi.org/10.3390/plants14121791