Evolution of the Soil Bacterial Community as a Function of Crop Management: A Metagenomic Study in Orange Tree (Citrus sinensis) Plantations
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design and Soil Samples
2.2. Agronomic Characterization of Soil Samples
2.3. rRNA Sequencing
2.4. Bioinformatics Procedures and Analysis
3. Results
3.1. Soil Bacterial Community Without Anti-Weed Mesh (S0, S1-T1, S1-T2)
3.1.1. Alpha Diversity: Variations in Soil Bacterial Community: Richness and Evenness
3.1.2. Beta Diversity: Changes in Structure and Phylogenetic Differentiation
3.1.3. Taxonomic Composition and Relative Abundance Patterns
3.2. Soil Bacterial Community with Anti-Weed Mesh (S0, S2-T1, S2-T2)
3.2.1. Alpha Diversity: Temporal Effects on the Bacterial Community
3.2.2. Beta Diversity: Diversity Between Samples S0, S2-T1, and S2-T2
3.2.3. Taxonomic Profile in S0, S2-T1, and S2-T2: Relative Abundance
4. Discussion
4.1. Dynamics of Soil Bacterial Communities Without Anti-Weed Mesh (S0, S1-T1, S1-T2)
4.2. Dynamics of Soil Bacterial Communities with Anti-Weed Mesh (S0, S2-T1, S2-T2)
4.3. Comparison of Metagenomic Evolution in Soils with and Without Anti-Weed Mesh
4.3.1. Alpha Diversity: Combined Impact of Time with Anti-Weed Control Mesh and Without Anti-Weed Control Mesh from the Start
4.3.2. Beta Diversity: Structural Contrast Between Treatments and Times from the Start
4.3.3. Taxonomic Profile: Changes in Distribution and Dominance of Key Taxa Across All Treatments
4.3.4. Soil Bacterial Functionality: Predicting Metabolic Pathways Using KEGG
4.4. Comparison of Soil Metagenomic Dynamics with and Without Anti-Weed Mesh over a 9-Month Period
4.4.1. Alpha Diversity: Combined Impact of Time and Anti-Weed Control Mesh and Whithout Anti-Weed Control Mesh
4.4.2. Beta Diversity: Structural Contrast Between Treatments with and Without Anti-Weed Mesh and Times
4.4.3. Taxonomic Profile: Changes in Distribution and Dominance of Key Taxa with and Without Anti-Weed Mesh
4.4.4. Functional Prediction of Soil Bacterial Community Using KEGG: Analysis of Metabolic Pathways and Their Ecological Implication
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Van Der Heijden, M.G.A.; Bardgett, R.D.; Van Straalen, N.M. The Unseen Majority: Soil Microbes as Drivers of Plant Diversity and Productivity in Terrestrial Ecosystems. Ecol. Lett. 2008, 11, 296–310. [Google Scholar] [CrossRef] [PubMed]
- Jansson, J.K.; Hofmockel, K.S. Soil Microbiomes and Climate Change. Nat. Rev. Microbiol. 2020, 18, 35–46. [Google Scholar] [CrossRef]
- Lehmann, J.; Bossio, D.A.; Kögel-Knabner, I.; Rillig, M.C. The Concept and Future Prospects of Soil Health. Nat. Rev. Earth Environ. 2020, 1, 544–553. [Google Scholar] [CrossRef] [PubMed]
- Dai, Z.; Liu, G.; Chen, H.; Chen, C.; Wang, J.; Ai, S.; Wei, D.; Li, D.; Ma, B.; Tang, C.; et al. Long-Term Nutrient Inputs Shift Soil Microbial Functional Profiles of Phosphorus Cycling in Diverse Agroecosystems. ISME J. 2020, 14, 757–770. [Google Scholar] [CrossRef] [PubMed]
- Kong, M.; Huang, M.-J.; Zhang, Z.-X.; Long, J.; Siddique, K.H.M.; Zhang, D.-M. Effects of Plastic Film Mulching on Soil Microbial Carbon Metabolic Activity and Functional Diversity at Different Maize Growth Stages in Cool, Semi-Arid Regions. Front. Microbiol. 2024, 15, 1492149. [Google Scholar] [CrossRef]
- Wang, S.; Ding, L.; Liu, W.; Wang, J.; Qian, Y. Effect of Plastic Mulching on Soil Carbon and Nitrogen Cycling-Related Bacterial Community Structure and Function in a Dryland Spring Maize Field. Agriculture 2021, 11, 1040. [Google Scholar] [CrossRef]
- Mancuso, G.; Lavrnić, S.; Toscano, A. Chapter Three-Reclaimed Water to Face Agricultural Water Scarcity in the Mediterranean Area: An Overview Using Sustainable Development Goals Preliminary Data. In Advances in Chemical Pollution, Environmental Management and Protection; Verlicchi, P., Ed.; Wastewater treatment and Reuse—Present and Future Perspectives in Technological Developments and Management Issues; Elsevier: Amsterdam, The Netherlands, 2020; Volume 5, pp. 113–143. [Google Scholar]
- Montanarella, L.; Vargas, R. Global Governance of Soil Resources as a Necessary Condition for Sustainable Development. Curr. Opin. Environ. Sustain. 2012, 4, 559–564. [Google Scholar] [CrossRef]
- Bardgett, R.D.; van der Putten, W.H. Belowground Biodiversity and Ecosystem Functioning. Nature 2014, 515, 505–511. [Google Scholar] [CrossRef]
- Moreno-Maroto, J.M.; Alonso-Azcárate, J. Evaluation of the USDA Soil Texture Triangle through Atterberg Limits and an Alternative Classification System. Appl. Clay Sci. 2022, 229, 106689. [Google Scholar] [CrossRef]
- UNE-EN ISO 10390:2022 (Ratificada) Residuos Biológicos Tratados. Determinación del pH (ISO 10390:2021) (Ratificada por la Asociación Española de Normalización en abril de 2022). AENOR: Madrid, Spain. Available online: https://www.une.org/encuentra-tu-norma/busca-tu-norma/norma?c=N0068663 (accessed on 4 May 2025).
- UNE-EN 13038:2012; Mejoradores del Suelo y Sustratos de Cultivo. Determinación de la Conductividad Eléctrica. AENOR: Madrid, Spain. Available online: https://www.une.org/encuentra-tu-norma/busca-tu-norma/norma?c=N0049334 (accessed on 4 May 2025).
- Huang, Y.; Pang, J.; Zhang, S.; Huang, W. Pretreatment Methods in Ion Chromatography: A Review. J. Chromatogr. A 2024, 1730, 465162. [Google Scholar] [CrossRef]
- Carter, M.R.; Gregorich, E.G. (Eds.) Soil Sampling and Methods of Analysis, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2007; ISBN 978-0-429-12622-2. [Google Scholar]
- Sparks, D.L.; Page, A.L.; Helmke, P.A.; Loeppert, R.H. Methods of Soil Analysis, Part 3: Chemical Methods; John Wiley & Sons: Hoboken, NJ, USA, 2020; ISBN 978-0-89118-825-4. [Google Scholar]
- UNE-EN ISO/IEC 17025:2017 Requisitos Generales Para La Compete. Available online: https://www.en.une.org/encuentra-tu-norma/busca-tu-norma/norma?c=N0059467 (accessed on 4 May 2025).
- Custodio, M.; Huaraca-Meza, F.; Peñaloza, R.; Alvarado-Ibañez, J.C.; De la Cruz-Solano, H. Composición Bacteriana En Suelos de Cultivo de Maca (Lepidium Meyenii Walp) Analizada Mediante Metagenómica: Un Estudio En Los Andes Centrales Del Perú. Sci. Agropecu. 2021, 12, 175–183. [Google Scholar] [CrossRef]
- Hong, B.-Y.; Driscoll, M.; Gratalo, D.; Jarvie, T.; Weinstock, G.M. Improved DNA Extraction and Amplification Strategy for 16S RRNA Gene Amplicon-Based Microbiome Studies. Int. J. Mol. Sci. 2024, 25, 2966. [Google Scholar] [CrossRef] [PubMed]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Reproducible, Interactive, Scalable and Extensible Microbiome Data Science Using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-Resolution Sample Inference from Illumina Amplicon Data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef]
- Wang, Q.; Garrity, G.M.; Tiedje, J.M.; Cole, J.R. Naïve Bayesian Classifier for Rapid Assignment of RRNA Sequences into the New Bacterial Taxonomy. Appl. Environ. Microbiol. 2007, 73, 5261–5267. [Google Scholar] [CrossRef]
- Pruesse, E.; Quast, C.; Knittel, K.; Fuchs, B.M.; Ludwig, W.; Peplies, J.; Glöckner, F.O. SILVA: A Comprehensive Online Resource for Quality Checked and Aligned Ribosomal RNA Sequence Data Compatible with ARB. Nucleic Acids Res. 2007, 35, 7188–7196. [Google Scholar] [CrossRef]
- Venables, W.N.; Ripley, B.D. Modern Applied Statistics with S, 4th ed.; Springer: Berlin/Heidelberg, Germany, 2002; Available online: https://www.stats.ox.ac.uk/pub/MASS4/ (accessed on 7 April 2025).
- Anderson, M.J.; Walsh, D.C.I. PERMANOVA, ANOSIM, and the Mantel Test in the Face of Heterogeneous Dispersions: What Null Hypothesis Are You Testing? Ecol. Monogr. 2013, 83, 557–574. [Google Scholar] [CrossRef]
- Katoh, K.; Standley, D.M. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef] [PubMed]
- Price, M.N.; Dehal, P.S.; Arkin, A.P. FastTree: Computing Large Minimum Evolution Trees with Profiles Instead of a Distance Matrix. Mol. Biol. Evol. 2009, 26, 1641–1650. [Google Scholar] [CrossRef]
- Douglas, G.M.; Maffei, V.J.; Zaneveld, J.R.; Yurgel, S.N.; Brown, J.R.; Taylor, C.M.; Huttenhower, C.; Langille, M.G.I. PICRUSt2 for Prediction of Metagenome Functions. Nat. Biotechnol. 2020, 38, 685–688. [Google Scholar] [CrossRef]
- Kanehisa, M.; Goto, S.; Sato, Y.; Furumichi, M.; Tanabe, M. KEGG for Integration and Interpretation of Large-Scale Molecular Data Sets. Nucleic Acids Res. 2012, 40, D109–D114. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Yi, N. NBZIMM: Negative Binomial and Zero-Inflated Mixed Models, with Application to Microbiome/Metagenomics Data Analysis. BMC Bioinform. 2020, 21, 488. [Google Scholar] [CrossRef] [PubMed]
- Lozupone, C.; Hamady, M.; Knight, R. UniFrac—An Online Tool for Comparing Microbial Community Diversity in a Phylogenetic Context. BMC Bioinform. 2006, 7, 371. [Google Scholar] [CrossRef]
- Pathan, S.I.; Roccotelli, A.; Petrovičovà, B.; Romeo, M.; Badagliacca, G.; Monti, M.; Gelsomino, A. Temporal Dynamics of Total and Active Prokaryotic Communities in Two Mediterranean Orchard Soils Treated with Solid Anaerobic Digestate or Managed under No-Tillage. Biol. Fertil. Soils 2021, 57, 837–861. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, Y.; Sun, L.; Qiu, C.; Ding, Y.; Gu, H.; Wang, L.; Wang, Z.; Ding, Z. Organic Mulching Positively Regulates the Soil Microbial Communities and Ecosystem Functions in Tea Plantation. BMC Microbiol. 2020, 20, 103. [Google Scholar] [CrossRef]
- Shi, Y.; Gahagan, A.C.; Morrison, M.J.; Gregorich, E.; Lapen, D.R.; Chen, W. Stratified Effects of Tillage and Crop Rotations on Soil Microbes in Carbon and Nitrogen Cycles at Different Soil Depths in Long-Term Corn, Soybean, and Wheat Cultivation. Microorganisms 2024, 12, 1635. [Google Scholar] [CrossRef]
- Alvarez-Yela, A.C.; Alvarez-Silva, M.C.; Restrepo, S.; Husserl, J.; Zambrano, M.M.; Danies, G.; Gómez, J.M.; González Barrios, A.F. Influence of Agricultural Activities in the Structure and Metabolic Functionality of Paramo Soil Samples in Colombia Studied Using a Metagenomics Analysis in Dynamic State. Ecol. Model. 2017, 351, 63–76. [Google Scholar] [CrossRef]
- Ding, G.-C.; Piceno, Y.M.; Heuer, H.; Weinert, N.; Dohrmann, A.B.; Carrillo, A.; Andersen, G.L.; Castellanos, T.; Tebbe, C.C.; Smalla, K. Changes of Soil Bacterial Diversity as a Consequence of Agricultural Land Use in a Semi-Arid Ecosystem. PLOS ONE 2013, 8, e59497. [Google Scholar] [CrossRef]
- Huang, J.; Gao, K.; Yang, L.; Lu, Y. Successional Action of Bacteroidota and Firmicutes in Decomposing Straw Polymers in a Paddy Soil. Environ. Microbiome 2023, 18, 76. [Google Scholar] [CrossRef]
- Trivedi, P.; Delgado-Baquerizo, M.; Anderson, I.C.; Singh, B.K. Response of Soil Properties and Microbial Communities to Agriculture: Implications for Primary Productivity and Soil Health Indicators. Front. Plant Sci. 2016, 7. [Google Scholar] [CrossRef]
- Navarrete, A.A.; Tsai, S.M.; Mendes, L.W.; Faust, K.; de Hollander, M.; Cassman, N.A.; Raes, J.; van Veen, J.A.; Kuramae, E.E. Soil Microbiome Responses to the Short-Term Effects of Amazonian Deforestation. Mol. Ecol. 2015, 24, 2433–2448. [Google Scholar] [CrossRef] [PubMed]
- Nan, L.; Guo, Q.; Cao, S.; Zhan, Z. Diversity of Bacterium Communities in Saline-Alkali Soil in Arid Regions of Northwest China. BMC Microbiol. 2022, 22, 11. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wang, L.; Yu, Z.; Tian, Y.; Xu, Y.; Wu, L.; Wang, H.; Guo, K.; Wang, X. Differential Responses of Bacterial Communities in Rhizosphere and Bulk Soils of Cotton to Long-Term Amelioration Practices Based on Freezing Saline Water Irrigation and Plastic Mulching in a Coastal Saline Soil. Agronomy 2024, 14, 103. [Google Scholar] [CrossRef]
- Watson, S.E.; Taylor, C.H.; Bell, V.; Bellamy, T.R.; Hooper, A.S.; Taylor, H.; Jouault, M.; Kille, P.; Perkins, R.G. Impact of Copper Sulphate Treatment on Cyanobacterial Blooms and Subsequent Water Quality Risks. J. Environ. Manage. 2024, 366, 121828. [Google Scholar] [CrossRef]
- Wu, X.-T.; He, Y.-Q.; Qiu, M.; Li, G.-X.; Ou, X.-B.; Wu, Y.-B.; Bao, P. Adaptive Changes in Bacterial and Archaeal Community Structures and Functions Occur under Primordial Conditions. ACS Earth Space Chem. 2024, 8, 1470–1479. [Google Scholar] [CrossRef]
- Ye, J.; Chen, Y.; Qu, S.; Zhao, W.-C. Effects of Different Microbial Fertilizers on Soil Quality and Maize Yield in Coastal Saline Soil. Huan Jing Ke Xue Huanjing Kexue 2024, 45, 4279–4292. [Google Scholar] [CrossRef]
- Klimek, D.; Herold, M.; Calusinska, M. Comparative Genomic Analysis of Planctomycetota Potential towards Complex Polysaccharide Degradation Identifies Phylogenetically Distinct Groups of Biotechnologically Relevant Microbes. bioRxiv 2024. [Google Scholar] [CrossRef]
- Cai, S.; Wang, W.; Sun, L.; Li, Y.; Sun, Z.; Gao, Z.; Zhang, J.; Li, Y.; Wei, D. Bacteria Affect the Distribution of Soil-Dissolved Organic Matter on the Slope: A Long-Term Experiment in Black Soil Erosion. Agriculture 2024, 14, 352. [Google Scholar] [CrossRef]
- Buckley, D.H.; Huangyutitham, V.; Nelson, T.A.; Rumberger, A.; Thies, J.E. Diversity of Planctomycetes in Soil in Relation to Soil History and Environmental Heterogeneity. Appl. Environ. Microbiol. 2006, 72, 4522–4531. [Google Scholar] [CrossRef]
- Li, W.; Zhang, Y.; Mao, W.; Wang, C.; Yin, S. Functional Potential Differences between Firmicutes and Proteobacteria in Response to Manure Amendment in a Reclaimed Soil. Can. J. Microbiol. 2020, 66, 689–697. [Google Scholar] [CrossRef]
- Mucsi, M.; Borsodi, A.K.; Megyes, M.; Szili-Kovács, T. Response of the Metabolic Activity and Taxonomic Composition of Bacterial Communities to Mosaically Varying Soil Salinity and Alkalinity. Sci. Rep. 2024, 14, 7460. [Google Scholar] [CrossRef] [PubMed]
- Santini, G.; Probst, M.; Gómez-Brandón, M.; Manfredi, C.; Ceccherini, M.T.; Pietramellara, G.; Santorufo, L.; Maisto, G. Microbiome Dynamics of Soils Covered by Plastic and Bioplastic Mulches. Biol. Fertil. Soils 2024, 60, 183–198. [Google Scholar] [CrossRef]
- Romano, I.; Ventorino, V.; Schettino, M.; Magaraci, G.; Pepe, O. Changes in Soil Microbial Communities Induced by Biodegradable and Polyethylene Mulch Residues Under Three Different Temperatures. Microb. Ecol. 2024, 87, 101. [Google Scholar] [CrossRef]
- Ju, Z.; Du, X.; Feng, K.; Li, S.; Gu, S.; Jin, D.; Deng, Y. The Succession of Bacterial Community Attached on Biodegradable Plastic Mulches During the Degradation in Soil. Front. Microbiol. 2021, 12, 785737. [Google Scholar] [CrossRef]
- Li, Y.; Xie, H.; Ren, Z.; Ding, Y.; Long, M.; Zhang, G.; Qin, X.; Siddique, K.H.M.; Liao, Y. Response of Soil Microbial Community Parameters to Plastic Film Mulch: A Meta-Analysis. Geoderma 2022, 418, 115851. [Google Scholar] [CrossRef]
- Anderson, C.R.; Peterson, M.E.; Frampton, R.A.; Bulman, S.R.; Keenan, S.; Curtin, D. Rapid Increases in Soil PH Solubilise Organic Matter, Dramatically Increase Denitrification Potential and Strongly Stimulate Microorganisms from the Firmicutes Phylum. PeerJ 2018, 6, e6090. [Google Scholar] [CrossRef]
- Kruczyńska, A.; Kuźniar, A.; Podlewski, J.; Słomczewski, A.; Grządziel, J.; Marzec-Grządziel, A.; Gałązka, A.; Wolińska, A. Bacteroidota Structure in the Face of Varying Agricultural Practices as an Important Indicator of Soil Quality – a Culture Independent Approach. Agric. Ecosyst. Environ. 2023, 342, 108252. [Google Scholar] [CrossRef]
- de León-Lorenzana, A.S.; Delgado-Balbuena, L.; Domínguez-Mendoza, C.; Navarro-Noya, Y.E.; Luna-Guido, M.; Dendooven, L. Reducing Salinity by Flooding an Extremely Alkaline and Saline Soil Changes the Bacterial Community but Its Effect on the Archaeal Community Is Limited. Front. Microbiol. 2017, 8, 466. [Google Scholar] [CrossRef]
- Dai, Z.; Su, W.; Chen, H.; Barberán, A.; Zhao, H.; Yu, M.; Yu, L.; Brookes, P.C.; Schadt, C.W.; Chang, S.X.; et al. Long-Term Nitrogen Fertilization Decreases Bacterial Diversity and Favors the Growth of Actinobacteria and Proteobacteria in Agro-Ecosystems across the Globe. Glob. Change Biol. 2018, 24, 3452–3461. [Google Scholar] [CrossRef]
- Yang, C.; Huang, Y.; Long, B.; Gao, X. Effects of Biodegradable and Polyethylene Film Mulches and Their Residues on Soil Bacterial Communities. Environ. Sci. Pollut. Res. 2022, 29, 89698–89711. [Google Scholar] [CrossRef]
- Bandopadhyay, S.; Liquet y González, J.E.; Henderson, K.B.; Anunciado, M.B.; Hayes, D.G.; DeBruyn, J.M. Soil Microbial Communities Associated With Biodegradable Plastic Mulch Films. Front. Microbiol. 2020, 11, 587074. [Google Scholar] [CrossRef] [PubMed]
- Bo, L.; Shukla, M.K.; Mao, X. Long-Term Plastic Film Mulching Altered Soil Physicochemical Properties and Microbial Community Composition in Shiyang River Basin, Northwest China. Appl. Soil Ecol. 2024, 193, 105108. [Google Scholar] [CrossRef]
- Tian, L.; Cao, X.; Zhang, L.; Yang, T.; Feng, B. Plastic Film Mulching Regime Altered Fungal, but Not Bacterial Community Structure at the Regional Scale. Agric. Ecosyst. Environ. 2023, 347, 108356. [Google Scholar] [CrossRef]
- Xue, Y.; Jin, T.; Gao, C.; Li, C.; Zhou, T.; Wan, D.; Yang, M. Effects of Biodegradable Film Mulching on Bacterial Diversity in Soils. Arch. Microbiol. 2022, 204, 195. [Google Scholar] [CrossRef]
- Liu, J.; Li, S.; Yue, S.; Tian, J.; Chen, H.; Jiang, H.; Siddique, K.H.M.; Zhan, A.; Fang, Q.; Yu, Q. Soil Microbial Community and Network Changes after Long-Term Use of Plastic Mulch and Nitrogen Fertilization on Semiarid Farmland. Geoderma 2021, 396, 115086. [Google Scholar] [CrossRef]
- Jiang, Y.; Han, S.; Luo, X. Role of Generalists, Specialists and Opportunists in Nitrospira Community Assembly in Soil Aggregates from Nearby Cropland and Grassland Areas in a Campus. Appl. Soil Ecol. 2024, 198, 105377. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, L.; Zhang, J.; Li, D.; Yu, J.; Gao, H.; Li, H.; Zhao, Z. Soil Phytoremediation Reveals Alteration in Soil Microbial Metabolic Activities along Time Gradient of Cover Crop Mulching. Environ. Res. 2022, 209, 112884. [Google Scholar] [CrossRef] [PubMed]
- Tian, L.; Zhang, F.; Zhang, L.; Gao, X.; Feng, B. Use of Metagenomics and Metabolomics to Quantify Changes in Rhizosphere Soil Microbial Function in Response to Mulching Regimes. Land Degrad. Dev. 2023, 34, 3033–3048. [Google Scholar] [CrossRef]
- Wang, B.; Wang, X.-C.; Wang, Z.-W.; Chen, Z.-X.; Wu, W.-M. The Responses of a Grapevine Rhizosphere System to Mulching Using Amplicon Sequencing and Transcriptomic Analysis. Agronomy 2023, 13, 1656. [Google Scholar] [CrossRef]
- Bill, M.; Chidamba, L.; Gokul, J.K.; Labuschagne, N.; Korsten, L. Bacterial Community Dynamics and Functional Profiling of Soils from Conventional and Organic Cropping Systems. Appl. Soil Ecol. 2021, 157, 103734. [Google Scholar] [CrossRef]
- Núñez-Gómez, D.; Melgarejo, P.; Martínez-Nicolás, J.J.; Hernández, F.; Martínez-Font, R.; Lidón, V.; Legua, P. Effects of Marine Sediment as Agricultural Substrate on Soil Microbial Diversity: An Amplicon Sequencing Study. Environ. Microbiome 2023, 18, 69. [Google Scholar] [CrossRef] [PubMed]
Sample | Time Elapsed Since Planting (Months) | Anti-Weed Mesh |
---|---|---|
S0 | 0 | No |
S1-T1 | 9 | No |
S2-T1 | 9 | Yes |
S1-T2 | 18 | No |
S2-T2 | 18 | Yes |
Taxa | S0 | S1-T1 (Without Mesh) | S1-T2 (Without Mesh) | S2-T1 (With Mesh) | s2-T2 (With Mesh) | Time (p-Value) |
---|---|---|---|---|---|---|
Planctomycetota | 18.47 | 20.50 | 23.45 | 22.06 | 20.64 | 0.00 |
Proteobacteria | 15.20 | 16.18 | 17.20 | 13.93 | 16.85 | 0.02 |
Actinobacteriota | 14.90 | 9.09 | 7.11 | 12.64 | 12.75 | 0.00 |
Bacteroidota | 14.46 | 10.80 | 15.19 | 6.03 | 16.00 | 0.00 |
Acidobacteriota | 11.31 | 11.84 | 11.14 | 12.58 | 9.23 | 0.00 |
Chloroflexi | 9.33 | 7.35 | 8.36 | 8.14 | 7.92 | 0.00 |
Gemmatimonadota | 5.69 | 5.26 | 4.69 | 6.20 | 5.22 | 0.00 |
Verrucomicrobiota | 3.05 | 3.29 | 3.28 | 2.96 | 3.03 | 0.92 |
Crenarchaeota | 1.59 | 1.44 | 1.22 | 1.88 | 1.52 | 0.34 |
Myxococcota | 1.37 | 2.48 | 1.75 | 2.06 | 1.27 | 0.00 |
Methylomirabilota | 0.93 | 0.83 | 0.87 | 0.97 | 0.83 | 0.76 |
Firmicutes | 0.92 | 7.30 | 1.14 | 5.96 | 1.43 | 0.00 |
Patescibacteria | 0.87 | 0.63 | 1.76 | 1.32 | 1.26 | 0.00 |
Nitrospirota | 0.51 | 1.21 | 1.03 | 0.85 | 0.52 | 0.00 |
Others | 0.33 | 0.38 | 0.66 | 0.84 | 0.91 | 0.00 |
Latescibacterota | 0.35 | 0.20 | 0.22 | 0.32 | 0.08 | 0.03 |
Desulfobacterota | 0.23 | 0.47 | 0.33 | 0.47 | 0.11 | 0.00 |
Bdellovibrionota | 0.14 | 0.21 | 0.20 | 0.15 | 0.13 | 0.00 |
Thermoplasmatota | 0.12 | 0.02 | 0.04 | 0.56 | 0.21 | 0.00 |
Taxa | S1 (Without Mesh) | S2 (With Mesh) | Mesh (p-Value) | Time (p-Value) | Time-Mesh (p-Value) |
---|---|---|---|---|---|
Planctomycetota | 21.28 | 22.04 | 0.28 | 0.26 | 0.00 |
Proteobacteria | 15.06 | 17.02 | 0.03 | 0.00 | 0.09 |
Acidobacteriota | 12.21 | 10.18 | 0.33 | 0.00 | 0.03 |
Actinobacteriota | 10.87 | 9.93 | 0.00 | 0.12 | 0.09 |
Bacteroidota | 8.41 | 15.59 | 0.00 | 0.00 | 0.00 |
Chloroflexi | 7.74 | 8.14 | 0.52 | 0.12 | 0.02 |
Firmicutes | 6.63 | 1.29 | 0.19 | 0.00 | 0.02 |
Gemmatimonadota | 5.73 | 4.96 | 0.00 | 0.00 | 0.58 |
Verrucomicrobiota | 3.12 | 3.15 | 0.38 | 0.92 | 0.91 |
Myxococcota | 2.27 | 1.51 | 0.00 | 0.00 | 0.30 |
Crenarchaeota | 1.66 | 1.37 | 0.12 | 0.25 | 0.85 |
Patescibacteria | 0.97 | 1.51 | 0.60 | 0.00 | 0.00 |
Nitrospirota | 1.03 | 0.77 | 0.00 | 0.01 | 0.20 |
Others | 0.86 | 0.89 | 0.00 | 0.00 | 0.00 |
Methylomirabilota | 0.90 | 0.85 | 0.58 | 0.52 | 0.34 |
Desulfobacterota | 0.47 | 0.22 | 0.04 | 0.00 | 0.00 |
Sumerlaeota | 0.16 | 0.21 | 0.00 | 0.00 | 0.00 |
Latescibacterota | 0.26 | 0.15 | 0.00 | 0.00 | 0.00 |
Thermoplasmatota | 0.29 | 0.13 | 0.00 | 0.00 | 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giménez-Valero, C.; Maciá-Vázquez, A.A.; Núñez-Gómez, D.; Conesa, A.; Lidón, V.; Melgarejo, P. Evolution of the Soil Bacterial Community as a Function of Crop Management: A Metagenomic Study in Orange Tree (Citrus sinensis) Plantations. Plants 2025, 14, 1781. https://doi.org/10.3390/plants14121781
Giménez-Valero C, Maciá-Vázquez AA, Núñez-Gómez D, Conesa A, Lidón V, Melgarejo P. Evolution of the Soil Bacterial Community as a Function of Crop Management: A Metagenomic Study in Orange Tree (Citrus sinensis) Plantations. Plants. 2025; 14(12):1781. https://doi.org/10.3390/plants14121781
Chicago/Turabian StyleGiménez-Valero, Carlos, Alejandro Andy Maciá-Vázquez, Dámaris Núñez-Gómez, Agustín Conesa, Vicente Lidón, and Pablo Melgarejo. 2025. "Evolution of the Soil Bacterial Community as a Function of Crop Management: A Metagenomic Study in Orange Tree (Citrus sinensis) Plantations" Plants 14, no. 12: 1781. https://doi.org/10.3390/plants14121781
APA StyleGiménez-Valero, C., Maciá-Vázquez, A. A., Núñez-Gómez, D., Conesa, A., Lidón, V., & Melgarejo, P. (2025). Evolution of the Soil Bacterial Community as a Function of Crop Management: A Metagenomic Study in Orange Tree (Citrus sinensis) Plantations. Plants, 14(12), 1781. https://doi.org/10.3390/plants14121781