Floral Biology, Breeding System and Conservation Implications for the Azorean Endemic Azorina vidalii (Campanulaceae)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Seasonal Phenology Characterisation in the Field
2.3. Flower Phenology Analysis in a Garden Experiment
2.4. Floral Morphometrics
2.5. Pollen Grains and Stigma Observations
2.6. Characterisation of the Breeding System and Evaluation of the Reproductive Success
2.6.1. Pollen/Ovule Ratio Determination
2.6.2. Controlled Manual-Pollination Experiments in a Natural Population
2.6.3. Seed Viability and Germination
2.7. Data Analysis
3. Results
3.1. Floral Biology and Pollination Syndromes
3.1.1. Seasonal Phenology
3.1.2. Floral Phenology
- (I)
- Bud (bud length: 2.36–2.59 cm): The corolla was enclosed by the calyx, with five bright green fleshy robust sepals;
- (II)
- Bud with visible corolla (bud length: 2.61–2.99 cm): As the corolla elongated, the sepals began to separate, remaining adpressed to the corolla base. The corolla, completely visible, showed a greenish-white or pale-yellow colour (Figure 3). Prior to anthesis, the stamens were rigid, forming a narrow tube around the stigma (filament length (FL): 6.80–7.72 mm; anther length (AL): 10.50–11.01 mm); five closed anthers were slightly in contact with the stigma (style length (SL): 9.70 mm); the three stigmata (~2.60 mm) were immature and tightly closed; and the stamens and pistil extended at the same level, occupying ¾ of the space inside the corolla. The hypanthium diameter reached about 11.30 mm;
- (III)
- Bud, in pre-anthesis (bud length: 3.30–3.62 cm): Corolla colour changes to the usual white or pale pink; the stamens and pistil developed (FL: 10.11–14.00 mm; AL: 11.40–12.84 mm; SL: 10.98–13.90 mm); filaments arched inwards and anthers touched and enclosed the portion of the style with pollen-collecting hairs, and the unexpanded immature stigmata elongated (4.00–5.16 mm). At the end of this stage, the bud started to open slightly, the anthers dehisced introrsely by longitudinal apertures and formed a closed cylinder around the style, releasing pollen through the inside of the anther tube, representing the beginning of the male phase. The hypanthium also attained its maximum size (diameter: 13.81–15.40 mm);
- (IV)
- Flower, in male function: On average, the male function lasted 78.65 ± 15.45 h. The corolla lobes opened, becoming completely recurved at the end of this stage, exposing the sexual organs in the middle of the orange hypanthium. After 24 h of anthesis, the anthers slowly became empty, and complete dehiscence occurred (24–36 h). As the style extended up (14.10–15.40 mm) through the anther tube, sticky pollen was brushed up by stylar hairs (secondary pollen presentation). After shedding pollen, the anthers withered. In this moment, the transition between sex functions started, since the style and stigma elongated to the maximum, and the three stigmata started to open, showing slight receptivity as shown by the peroxidase activity test. Overlapping of functions probably occurred since some pollen was occasionally present in the style and outer part of the stigmas. Dichogamy was apparently incomplete;
- (V)
- Flower, in female function: This phase lasted 90.70 ± 17.50 h. The corolla remained rigid, and the opened stigmata reached the maximum length, recurving completely towards the style, without touching it. Pollen remnants could still be trapped in a few stylar hairs, which did not retract. At this stage the flower was ready for pollination. The stigma was completely receptive, as revealed by the H2O2 reaction, forming bubbles on the surface of the stigmata (Figure 3). In the following days, the remaining pollen-collecting hairs retracted, and the style became glabrous;
- (VI)
- Withered flower: After three to four days in the pistilate phase, the corolla turned brownish-white and enclosed the pistil.
3.1.3. Lizard Foraging in the Flowers of Azorina vidalii
3.2. Flower Morphology Analysis
Floral Morphometrics and Detection of Geographic Differentiation
3.3. Breeding System and Reproductive Success Evaluation in Azorina vidalii
3.3.1. Determinations of the Ratio Pollen/Ovule
3.3.2. Controlled Hand-Pollination Experiments
3.3.3. Seed Germination
4. Discussion
4.1. Influence of Environmental Conditions in the Seasonal Phenology of Azorina vidalii
4.2. Floral Longevity, Dichogamy and Sexual Functions
4.3. Floral Features and Pollination Syndromes
Lizards as Pollinators or Floral Predators?
4.4. Morphological Variation and Geographical Differentiation
4.5. Breeding Systems and Reproductive Success
Self-Incompatibility in A. vidalii Following Field Experiments
4.6. Conservation Remarks
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tandon, R.; Koul, M.; Shivanna, K.R. Reproductive Ecology of Flowering Plants: An Introduction. In Reproductive Ecology of Flowering Plants: Patterns and Processes; Tandon, R., Shivanna, K.R., Koul, M., Eds.; Springer: Singapore, 2020; pp. 1–24. [Google Scholar]
- Barrett, S.C. Darwin’s legacy: The forms, function and sexual diversity of flowers. Philos. Trans. R. Soc. Lond. 2010, 365, 351–368. [Google Scholar] [CrossRef] [PubMed]
- Sapir, Y.; Brunet, J.; Byers, D.L.; Imbert, E.; Schönenberger, J.; Staedler, Y. Floral evolution: Breeding systems, pollinators, and beyond. Int. J. Plant Sci. 2019, 180, 929–933. [Google Scholar] [CrossRef]
- Crawford, D.J.; Moura, M.; Borges Silva, L.; Mort, M.E.; Kerbs, B.; Schaefer, H.; Kelly, J.K. The transition to selfing in Azorean Tolpis (Asteraceae). Plant Syst. Evol. 2019, 305, 305–317. [Google Scholar] [CrossRef]
- Stebbins, G.L. Self-fertilization and population variability in the higher plants. Am. Nat. 1957, 91, 337–354. [Google Scholar] [CrossRef]
- Wright, S.I.; Kalisz, S.; Slotte, T. Evolutionary consequences of self-fertilization in plants. Proc. R. Soc. B 2013, 280, 20130133. [Google Scholar] [CrossRef]
- Bazzicalupo, M.; Masullo, I.; Duffy, K.J.; Fay, M.F.; Calevo, J. Seed quality and germination performance increase with cross-pollination in members of subtribe Orchidinae (Orchidaceae). Bot. J. Linn. Soc. 2025, 207, 1–9. [Google Scholar] [CrossRef]
- Subaşı, Ü.; Güvensen, A. Floral biology, pollination and reproductive success of Campanula tomentosa Lam. in west Anatolia. Biol. Divers. Conserv. 2025, 18, 20–30. [Google Scholar] [CrossRef]
- Brys, R.; Jacquemyn, H.; Endels, P.; Van Rossum, F.; Hermy, M.; Triest, L.; De Bruyn, L.; Blust, G.D.E. Reduced reproductive success in small populations of the self-incompatible Primula vulgaris. J. Ecol. 2004, 92, 5–14. [Google Scholar] [CrossRef]
- Steffan-Dewenter, I.; Tscharntke, T. Effects of habitat isolation on pollinator communities and seed set. Oecologia 1999, 121, 432–440. [Google Scholar] [CrossRef]
- POWO Plants of the World Online. Facilitated by the Royal Botanic Gardens, Kew. 2025. Available online: https://powo.science.kew.org/ (accessed on 19 May 2025).
- Nyman, Y. The pollen-collecting hairs of Campanula (Campanulaceae). II. Function and adaptive significance in relation to pollination. Am. J. Bot. 1993, 80, 1437–1443. [Google Scholar]
- Galloway, L.F.; Cirigliano, T.; Gremski, K. The contribution of display size and dichogamy to potential geitonogamy in Campanula americana. Int. J. Plant Sci. 2002, 163, 133–139. [Google Scholar] [CrossRef]
- Nyman, Y. The pollen-collecting hairs of Campanula (Campanulaceae). I. Morphological variation and the retractive mechanism. Am. J. Bot. 1993, 80, 1427–1436. [Google Scholar]
- D’Antraccoli, M.; Roma-Marzio, F.; Benelli, G.; Canale, A.; Peruzzi, L. Dynamics of secondary pollen presentation in Campanula medium (Campanulaceae). J. Plant Res. 2019, 132, 251–261. [Google Scholar] [CrossRef] [PubMed]
- Good-Avila, S.V.; Frey, F.; Stephenson, A.G. The effect of partial self-incompatibility on the breeding system of Campanula rapunculoides L. (Campanulaceae) under conditions of natural pollination. Int. J. Plant Sci. 2001, 162, 1081–1087. [Google Scholar] [CrossRef]
- Inoue, K.; Amano, M. Evolution of Campanula punctata Lam. in the Izu Islands: Changes of pollinators and evolution of breeding systems. Plant Species Biol. 1986, 1, 89–97. [Google Scholar] [CrossRef]
- Kruszewski, L.J.; Galloway, L.F. Explaining outcrossing rate in Campanulastrum americanum (Campanulaceae): Geitonogamy and cryptic self-incompatibility. Int. J. Plant Sci. 2006, 167, 455–461. [Google Scholar] [CrossRef]
- Shetler, S.G. Pollen-collecting hairs of Campanula (Campanulaceae), I: Historical review. Taxon 1979, 28, 205–215. [Google Scholar] [CrossRef]
- Richardson, T.E.; Stephenson, A.G. Pollen removal and pollen deposition affect the duration of the staminate and pistillate phases in Campanula rapunculoides. Am. J. Bot. 1989, 76, 532–538. [Google Scholar] [CrossRef]
- Leins, P.; Erbar, C. On the mechanisms of secondary pollen presentation in the Campanulales-Asterales-complex. Bot. Acta 1990, 103, 87–92. [Google Scholar] [CrossRef]
- Harder, L.D.; Johnson, S.D. Darwin’s beautiful contrivances: Evolutionary and functional evidence for floral adaptation. New Phytol. 2009, 183, 530–545. [Google Scholar] [CrossRef]
- Lau, J.A.; Galloway, L.F. Effects of low-efficiency pollinators on plant fitness and floral trait evolution in Campanula americana (Campanulaceae). Oecologia 2004, 141, 577–583. [Google Scholar] [CrossRef] [PubMed]
- Olesen, J.M.; Alarcón, M.; Ehlers, B.K.; Aldasoro, J.J.; Roquet, C. Pollination, biogeography and phylogeny of oceanic island bellflowers (Campanulaceae). Perspect. Plant Ecol. Evol. Syst. 2012, 14, 169–182. [Google Scholar] [CrossRef]
- Milet-Pinheiro, P.; Santos, P.S.C.; Prieto-Benítez, S.; Ayasse, M.; Dötterl, S. Differential evolutionary history in visual and olfactory floral cues of the bee-pollinated genus Campanula (Campanulaceae). Plants 2021, 10, 1356. [Google Scholar] [CrossRef] [PubMed]
- Franks, S.J. Genetics, evolution, and conservation of island plants. J. Plant Biol. 2009, 53, 1–9. [Google Scholar] [CrossRef]
- Stuessy, T.F.; Takayama, K.; López-Sepúlveda, P.; Crawford, D.J. Interpretation of patterns of genetic variation in endemic plant species of oceanic islands. Bot. J. Linn. Soc. 2014, 174, 276–288. [Google Scholar] [CrossRef]
- Ronse De Craene, L. Understanding the role of floral development in the evolution of angiosperm flowers: Clarifications from a historical and physico-dynamic perspective. J. Plant Res. 2018, 131, 367–393. [Google Scholar] [CrossRef]
- Weber, U.K.; Nuismer, S.L.; Espíndola, A. Patterns of floral morphology in relation to climate and floral visitors. Ann. Bot. 2020, 125, 433–445. [Google Scholar] [CrossRef]
- Savriama, Y. A Step-by-Step Guide for Geometric Morphometrics of Floral Symmetry. Front. Plant Sci. 2018, 9, 1433. [Google Scholar] [CrossRef]
- Gardère, M.L.; Florence, J.; Muller, S.; Savriama, Y.; Dubuisson, J.Y. Codonographia Gorgonum, or the Description of a Pleiad of Bellflowers (Campanula, Campanulaceae) from the Cabo Verde Archipelago. Candollea 2021, 76, 13–40. [Google Scholar] [CrossRef]
- Watson, H.C. Hooker’s Icones Plantarum 7 t. 684. Walp. Repert. Bot. 1844, 6, 387. [Google Scholar]
- Menezes, T.; Romeiras, M.M.; de Sequeira, M.M.; Moura, M. Phylogenetic Relationships and Phylogeography of Relevant Lineages within the Complex Campanulaceae Family in Macaronesia. Ecol. Evol. 2018, 8, 88–108. [Google Scholar] [CrossRef] [PubMed]
- Rego, R.M.C.; Moura, M.; Olangua-Corral, M.; Roxo, G.; Resendes, R.; Silva, L. Anthropogenic disturbance has altered the habitat of two Azorean endemic coastal plants. BMC Ecol. Evol. 2024, 24, 111. [Google Scholar] [CrossRef] [PubMed]
- Franco, J.A. Nova Flora de Portugal (Continente e Açores), Volume II, Clethraceae—Compositae, 1st ed.; Author’s Edition: Lisbon, Portugal, 1984. [Google Scholar]
- Weissmann, J.A.; Schaefer, H. The Importance of Generalist Pollinator Complexes for Endangered Island Endemic Plants. Arquipélago Life Mar. Sci. 2018, 35, 23–40. [Google Scholar]
- Rego, R.M.C.; Roxo, G.; Febles, R.; Olangua-Corral, M.; Fernández-Palacios, O.; Silva, L.; Moura, M. Breeding Systems of Azorean Endemic Species: An Overview. In Proceedings of the International Symposium FloraMac 2022, La Gomera, Canary Islands, 2022; p. 29. [Google Scholar]
- Inoue, K. Evolution of Mating Systems in Island Populations of Campanula microdonta: Pollinator Availability Hypothesis. Plant Species Biol. 1990, 5, 57–64. [Google Scholar] [CrossRef]
- Faegri, K.; van der Pijl, L. The Principles of Pollination Ecology; Pergamon Press: Oxford, UK, 1979. [Google Scholar]
- Menezes, T. Germinação e Desenvolvimento de Azorina vidalii (HC Watson) Feer (Campanulaceae) a partir de Sementes com Origem em Exemplares Silvestres da Ilha de São Miguel. Bachelor’s Dissertation, University of the Azores, Ponta Delgada, Portugal, 2013. [Google Scholar]
- Maciel, G.B. Conservação de Espécies Vasculares Endémicas dos Açores: Ecofisiologia da Germinação de Sementes de Alguns Taxa e Identificação e Caracterização de Microssatélites de Rubus hochstetterorum Seub. Ph.D. Dissertation, University of the Azores, Ponta Delgada, Portugal, 2004. [Google Scholar]
- QGIS Development Team. QGIS Geographic Information System. Open Source Geospatial Foundation Project. 2025. Available online: http://qgis.osgeo.org (accessed on 19 May 2025).
- Vogado, N.O.; Camargo, M.G.G.; Locosselli, G.M.; Morellato, L.P.C. Edge effects on the phenology of the guamirim, Myrcia guianensis (Myrtaceae), a cerrado tree, Brazil. Trop. Conserv. Sci. 2016, 9, 291–312. [Google Scholar] [CrossRef]
- Escobar, D.F.; Silveira, F.A.; Morellato, L.P.C. Timing of seed dispersal and seed dormancy in Brazilian savanna: Two solutions to face seasonality. Ann. Bot. 2018, 121, 1197–1209. [Google Scholar] [CrossRef]
- Dafni, A.; Maués, M.M. A rapid and simple procedure to determine stigma receptivity. Sex. Plant Reprod. 1998, 11, 177–180. [Google Scholar] [CrossRef]
- Pérez de Paz, J.; Febles, R.; Fernández-Palacios, O.; Olangua-Corral, M.; Rivero, E. Manual Para la Detección de Micro-Marcadores Morfológico-Reproductivos en la Flora Canaria, 2nd ed.; INTERREG IIIB—BIOMABANC (2004–2006); Cabildo de Gran Canaria, Jardín Botánico Canario “Viera y Clavijo”: Las Palmas, Spain, 2013; p. 130. [Google Scholar]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef] [PubMed]
- Cruden, R.W. Pollen-Ovule Ratios: A conservative indicator of breeding systems in flowering plants. Evolution 1977, 31, 32–46. [Google Scholar] [CrossRef]
- Olangua-Corral, M. El Género Argyranthemum Webb ex Sch. Bip. (Asteraceae Anthemidae) en Gran Canaria: Evaluación de la Biodiversidad, Biología Reproductiva y Viabilidad de sus Poblaciones Naturales. Ph.D. Dissertation, University of Las Palmas de Gran Canaria, Las Palmas, Spain, 2016. [Google Scholar]
- Karron, J.D. A comparison of levels of genetic polymorphism and self-compatibility in geographically restricted and widespread plant congeners. Evol. Ecol. 1987, 1, 47–58. [Google Scholar] [CrossRef]
- Charlesworth, D.; Charlesworth, B. Inbreeding Depression and Its Evolutionary Consequences. Annu. Rev. Ecol. Syst. 1987, 18, 237–268. [Google Scholar] [CrossRef]
- Zapata, T.R.; Arroyo, M.T.K. Plant reproductive ecology of a secondary deciduous tropical forest in Venezuela. Biotropica 1978, 10, 221–230. [Google Scholar] [CrossRef]
- Côme, D. Germination. In Croissance et Développement. Physiologie Végétale; Mazliak, P., Ed.; Hermann: Paris, France, 1982; pp. 129–225. [Google Scholar]
- Kaiser, H.F. The application of electronic computers to factor analysis. Educ. Psychol. Meas. 1960, 20, 141–151. [Google Scholar] [CrossRef]
- Lozano-Isla, F.; Benites-Alfaro, O.E.; Pompelli, M.F. GerminaR: An R package for germination analysis with the interactive web application “GerminaQuant for R”. Seed Sci. Res. 2019, 34, 339–346. [Google Scholar] [CrossRef]
- Ranal, M.A.; Santana, D.G. How and why to measure the germination process? Braz. J. Bot. 2006, 29, 1–11. [Google Scholar] [CrossRef]
- Azevedo, E.B.; Rodrigues, M.C.; Fernandes, J.F. O Clima dos Açores. In Atlas Básico dos Açores; Forjaz, V.H., Ed.; Observatório Vulcanológico e Geotérmico dos Açores: Ponta Delgada, Portugal, 2004; pp. 25–48. [Google Scholar]
- Zheng, Y.; Yang, Z.; Xu, C.; Wang, L.; Huang, H.; Yang, S. The Interactive Effects of Daytime High Temperature and Humidity on Growth and Endogenous Hormone Concentration of Tomato Seedlings. HortScience 2020, 55, 1575–1583. [Google Scholar] [CrossRef]
- Vogler, D.W.; Peretz, S.; Stephenson, A.G. Floral Plasticity in an Iteroparous Plant: The Interactive Effects of Genotype, Environment, and Ontogeny in Campanula rapunculoides (Campanulaceae). Am. J. Bot. 1999, 86, 482–494. [Google Scholar] [CrossRef]
- Niu, G.; Heins, R.D.; Cameron, A.; Carlson, W. Temperature and Daily Light Integral Influence Plant Quality and Flower Development of Campanula carpatica ‘Blue Clips’, ‘Deep Blue Clips’, and Campanula ‘Birch Hybrid’. HortScience 2001, 36, 664–668. [Google Scholar] [CrossRef]
- Tun, W.; Yoon, J.; Jeon, J.S.; An, G. Influence of Climate Change on Flowering Time. J. Plant Biol. 2021, 64, 193–203. [Google Scholar] [CrossRef]
- Gaudinier, A.; Blackman, B.K. Evolutionary Processes from the Perspective of Flowering Time Diversity. New Phytol. 2020, 225, 1883–1898. [Google Scholar] [CrossRef]
- Zhu, J.K. Abiotic Stress Signaling and Responses in Plants. Cell 2016, 167, 313–324. [Google Scholar] [CrossRef] [PubMed]
- Evanhoe, L.; Galloway, L.F. Floral Longevity in Campanula americana (Campanulaceae): A Comparison of Morphological and Functional Gender Phases. Am. J. Bot. 2002, 89, 587–591. [Google Scholar] [CrossRef]
- Devlin, B.; Stephenson, A.G. Factors That Influence the Duration of the Staminate and Pistillate Phases of Lobelia cardinalis Flowers. Bot. Gaz. 1984, 145, 323–328. [Google Scholar] [CrossRef]
- Koptur, S.; Dávila, E.N.; Gordon, D.R.; McPhail, B.D.; Murphy, C.G.; Slowinski, J.B. The Effect of Pollen Removal on the Duration of the Staminate Phase of Centropogon talamancensis. Brenesia 1990, 33, 15–18. [Google Scholar]
- Strzałkowska-Abramek, M.; Jachuła, J.; Wrzesień, M.; Bożek, M.; Dąbrowska, A.; Denisow, B. Nectar Production in Several Campanula Species (Campanulaceae). Acta Sci. Pol. Hortorum Cultus 2018, 17, 127–136. [Google Scholar] [CrossRef]
- Gao, J.; Xiong, Y.-Z.; Huang, S.-Q. Effects of Floral Sexual Investment and Dichogamy on Floral Longevity. J. Plant Ecol. 2015, 8, 116–121. [Google Scholar] [CrossRef]
- Bernardello, G.; Anderson, G.J.; Stuessy, T.F.; Crawford, D.J. A Survey of Floral Traits, Breeding Systems, Floral Visitors, Pollination Systems of the Angiosperms of the Juan Fernandez Islands (Chile). Bot. Rev. 2001, 67, 255–308. [Google Scholar] [CrossRef]
- Yoder, J.B.; Gomez, G.; Carlson, C.J. Zygomorphic Flowers Have Fewer Potential Pollinator Species. Biol. Lett. 2020, 16, 20200307. [Google Scholar] [CrossRef] [PubMed]
- Krishna, S.; Keasar, T. Morphological Complexity as a Floral Signal: From Perception by Insect Pollinators to Co-Evolutionary Implications. Int. J. Mol. Sci. 2018, 19, 1681. [Google Scholar] [CrossRef]
- Kobayashi, S.; Inoue, K.; Kato, M. Mechanism of Selection Favoring a Wide Tubular Corolla in Campanula punctata. Evolution 1999, 53, 752–757. [Google Scholar] [CrossRef]
- Crowl, A.A.; Miles, N.W.; Visger, C.J.; Hansen, K.; Ayers, T.; Haberle, R.; Cellinese, N. A Global Perspective on Campanulaceae: Biogeographic, Genomic, and Floral Evolution. Am. J. Bot. 2016, 103, 233–245. [Google Scholar] [CrossRef]
- Pacini, E.; Hesse, M. Pollenkitt–Its Composition, Forms and Functions. Flora 2005, 200, 399–415. [Google Scholar] [CrossRef]
- De Oliveira, D.; Gomes, A.; Ilharco, F.A.; Manteigas, A.M.; Pinto, J.; Ramalho, J. Importance of Insect Pollinators for the Production in the Chestnut, Castanea sativa. Acta Hortic. 2001, 561, 269–273. [Google Scholar] [CrossRef]
- Morgado, L.N.; Gonçalves-Esteves, V.; Resendes, R.; Ventura, M.A.M. A Pollen Inventory of Endemic Species from the Azores Archipelago, Portugal. Palynology 2018, 42, 273–289. [Google Scholar] [CrossRef]
- Moore, D. Insects of Palm Flowers and Fruits. In Insects on Palms; Howard, F.W., Moore, D., Giblin-Davis, R.M., Abad, R.G., Eds.; CABI Publishing: Wallingford, UK, 2001; pp. 233–266. [Google Scholar]
- Coberly, L.C.; Rausher, M.D. Analysis of a Chalcone Synthase Mutant in Ipomoea purpurea Reveals a Novel Function for Flavonoids: Amelioration of Heat Stress. Mol. Ecol. 2003, 5, 1113–1124. [Google Scholar] [CrossRef]
- Koski, M.H.; Galloway, L.F. Geographic Variation in Pollen Color Is Associated with Temperature Stress. New Phytol. 2018, 218, 370–379. [Google Scholar] [CrossRef] [PubMed]
- Oschwald, M. Observations sur la Biologie Florale des Campanules. Bull. Soc. Bot. Genéve 1919, 11, 64–69. [Google Scholar]
- Yamada, T.; Kodama, K.; Maki, M. Floral Morphology and Pollinator Fauna Characteristics of Island and Mainland Populations of Ligustrum ovalifolium (Oleaceae). Bot. J. Linn. Soc. 2014, 174, 489–501. [Google Scholar] [CrossRef]
- Thompson, S.W.; Lammers, T.G. Phenetic analysis of morphological variation in the Lobelia cardinalis complex (Campanulaceae: Lobelioideae). Syst. Bot. 1997, 22, 315–331. [Google Scholar] [CrossRef]
- Schaefer, H.; Moura, M.; Belo Maciel, M.G.; Silva, L.; Rumsey, F.J.; Carine, M.A. The Linnean Shortfall in Oceanic Island Biogeography: A Case Study in the Azores. J. Biogeogr. 2011, 38, 1345–1355. [Google Scholar] [CrossRef]
- Nogales, M.; Heleno, R.; Traveset, A.; Vargas, P. Evidence for Overlooked Mechanisms of Long-Distance Seed Dispersal to and between Oceanic Islands. New Phytol. 2012, 194, 313–317. [Google Scholar] [CrossRef]
- Ridley, H.N. The Dispersal of Plants Throughout the World; Reeve: Ashford, UK, 1930. [Google Scholar]
- Fuster-Calvo, A.; Nogales, M.; Heleno, R.; Vera, C.; Vargas, P. Sea Dispersal Potential and Colonization of the Galápagos Littoral Flora. J. Biogeogr. 2021, 48, 1904–1916. [Google Scholar] [CrossRef]
- Good-Avila, S.V.; Nagel, T.; Vogler, D.W.; Stephenson, A.G. Effects of Inbreeding on Male Function and Self-Fertility in the Partially Self-Incompatible Herb Campanula rapunculoides (Campanulaceae). Am. J. Bot. 2003, 90, 1736–1745. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Rodríguez, M.C.; Valido, A. Consequences of Plant–Pollinator and Floral–Herbivore Interactions on the Reproductive Success of the Canary Islands Endemic Canarina canariensis (Campanulaceae). Am. J. Bot. 2011, 98, 1465–1474. [Google Scholar] [CrossRef]
- Cupido, C.N.; Nelson, L.J. Floral Functional Structure, Sexual Phases, Flower Visitors and Aspects of Breeding System in Roella ciliata (Campanulaceae) in a Fragmented Habitat. Plant Syst. Evol. 2012, 298, 931–936. [Google Scholar] [CrossRef]
- Nyman, Y. Pollination mechanisms in six Campanula species (Campanulaceae). Plant Syst. Evol. 1992, 181, 97–108. [Google Scholar] [CrossRef]
- Kaothien-Nakayama, P.; Isogai, A.; Takayama, S. Self-Incompatibility Systems in Flowering Plants. In Plant Developmental Biology—Biotechnological Perspectives; Pua, E., Davey, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; Volume 1, pp. 459–485. [Google Scholar]
- Good-Avila, S.V.; Stephenson, A.G. The Inheritance of Modifiers Conferring Self-Fertility in the Partially Self-Incompatible Perennial, Campanula rapunculoides L. (Campanulaceae). Evolution 2002, 56, 263–272. [Google Scholar]
- Good-Avila, S.V.; Stephenson, A.G. Parental Effects in a Partially Self-Incompatible Herb Campanula rapunculoides L. (Campanulaceae): Influence of Variation in the Strength of Self-Incompatibility on Seed Set and Progeny Performance. Am. Nat. 2003, 161, 615–630. [Google Scholar] [CrossRef] [PubMed]
- Grossenbacher, D.L.; Brandvain, Y.; Auld, J.R.; Burd, M.; Cheptou, P.O.; Conner, J.K.; Grant, A.G.; Hovick, S.M.; Pannell, J.R.; Pauw, A.; et al. Self-Compatibility Is Over-Represented on Islands. New Phytol. 2017, 215, 469–478. [Google Scholar] [CrossRef]
- Yamamoto, M.; Nishimura, K.; Kitashiba, H.; Sakamoto, W.; Nishio, T. High Temperature Causes Breakdown of S-Haplotype-Dependent Stigmatic Self-Incompatibility in Self-Incompatible Arabidopsis thaliana. J. Exp. Bot. 2019, 70, 5745–5751. [Google Scholar] [CrossRef]
- Montalt, R.; Prósper, L.; Vives, M.C.; Navarro, L.; Ollitrault, P.; Aleza, P. Breakdown of Self-Incompatibility in Citrus by Temperature Stress, Bud Pollination and Polyploidization. Agriculture 2022, 12, 273. [Google Scholar] [CrossRef]
- De Mesquita Rodrigues, J.E. Notas sobre a Cariologia de Cistus palhinhaii Ingram, C. crispus L., Plantago maritima L. e Campanula vidalii Watson. Bol. Soc. Brot. 1954, 28, 117–129. [Google Scholar]
- Novikova, P.Y.; Kolesnikova, U.K.; Scott, A.D. Ancestral Self-Compatibility Facilitates the Establishment of Allopolyploids in Brassicaceae. Plant Reprod. 2023, 36, 125–138. [Google Scholar] [CrossRef] [PubMed]
- Morelatto, L.P.C.; Alberton, B.; Alvarado, S.T.; Borges, B.; Buisson, E.; Camargo, M.G.G.; Cancian, L.F.; Carstensen, D.W.; Escobar, D.F.E.; Leite, P.T.P.; et al. Linking Plant Phenology to Conservation Biology. Biol. Conserv. 2016, 195, 60–72. [Google Scholar] [CrossRef]
Treatment | Variable Name (Unit) | M ± SD |
---|---|---|
Hand self-pollination (HSP) | Weight (mg) | 0.5 ± 0.2 |
Mean size (mm) | 0.827 ± 0.029 | |
Grs (number) | 14.0 ± 1.054 | |
Grp (%) | 93.333 ± 7.027 | |
Mgt (days) | 4.149 ± 0.163 | |
Mgr (day−1) | 0.241 ± 0.009 | |
Gsp (%) | 24.136 ± 0.906 | |
Unc (bit) | 0.413 ± 0.386 | |
Syn | 0.820 ± 0.180 | |
Vgt (day2) | 0.246 ± 0.294 | |
Sdg (days) | 0.380 ± 0.337 | |
Cvg (%) | 8.928 ± 7.782 | |
Cross-pollination (X) | Weight (mg) | 0.6 ± 0.3 |
Mean size (mm) | 0.812 ± 0.029 | |
Grs (number) | 12.30 ± 3.831 | |
Grp (%) | 82.0 ± 25.541 | |
Mgt (days) | 4.198 ± 0.306 | |
Mgr (day−1) | 0.239 ± 0.015 | |
Gsp (%) | 23.920 ± 1.543 | |
Unc (bit) | 0.442 ± 0.429 | |
Syn | 0.803 ± 0.197 | |
Vgt (day2) | 0.635 ± 1.552 | |
Sdg (days) | 0.460 ± 0.686 | |
Cvg (%) | 10.057 ± 13.870 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Correia Rego, R.M.; Caperta, A.D.; Moura, M.; Silva, L.; Roxo, G.; Resendes, R.; Olangua-Corral, M. Floral Biology, Breeding System and Conservation Implications for the Azorean Endemic Azorina vidalii (Campanulaceae). Plants 2025, 14, 1774. https://doi.org/10.3390/plants14121774
Correia Rego RM, Caperta AD, Moura M, Silva L, Roxo G, Resendes R, Olangua-Corral M. Floral Biology, Breeding System and Conservation Implications for the Azorean Endemic Azorina vidalii (Campanulaceae). Plants. 2025; 14(12):1774. https://doi.org/10.3390/plants14121774
Chicago/Turabian StyleCorreia Rego, Rúben M., Ana Delaunay Caperta, Mónica Moura, Luís Silva, Guilherme Roxo, Roberto Resendes, and Maria Olangua-Corral. 2025. "Floral Biology, Breeding System and Conservation Implications for the Azorean Endemic Azorina vidalii (Campanulaceae)" Plants 14, no. 12: 1774. https://doi.org/10.3390/plants14121774
APA StyleCorreia Rego, R. M., Caperta, A. D., Moura, M., Silva, L., Roxo, G., Resendes, R., & Olangua-Corral, M. (2025). Floral Biology, Breeding System and Conservation Implications for the Azorean Endemic Azorina vidalii (Campanulaceae). Plants, 14(12), 1774. https://doi.org/10.3390/plants14121774