Communities of Primary Producers in the Series of Reservoirs on the Sava River (Slovenia)
Abstract
:1. Introduction
2. Results
2.1. Phytoplankton Community Composition
2.2. Phytobenthos Community Composition
2.3. Comparisons of the Algal Communities
2.4. Influence of Environmental Factors on the Composition of the Phytoplanktonic and Phytobenthic Communities
2.5. Macrophyte Diversity
3. Discussion
3.1. Phytoplankton
3.2. Phytobenthos
3.3. The Influence of Environmental Factors on the Composition of Algal Communities
3.4. Macrophytes
4. Materials and Methods
4.1. Study Area
4.2. Sampling Methods
4.3. Preparation of Diatom Samples
4.4. Data Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ahmad, S.; Kothari, R.; Shankarayan, R.; Tyagi, V.V. Temperature dependent morphological changes on algal growth and cell surface with dairy industry wastewater: An experimental investigation. 3 Biotech 2020, 10, 24. [Google Scholar] [CrossRef] [PubMed]
- Alhassan, E.H. Seasonal variations in phytoplankton diversity in the Bui dam area of the Black Volta in Ghana during the pre- and post-impoundment periods. Rev. Biol. Trop. 2015, 63, 13–22. [Google Scholar] [CrossRef] [PubMed]
- Almeida, S.F.P.; Feio, M.J. DIATMOD: Diatom predictive model for quality assessment of Portuguese running waters. Hydrobiologia 2012, 695, 185–197. [Google Scholar] [CrossRef]
- Arts, G.H.P.; van Smeden, J.; Wolters, M.F.; Belgers, J.D.M.; Matser, A.M.; Hommen, U.; Bruns, E.; Heine, S.; Solga, A.; Taylor, S. Seasonal dynamics of the macrophyte test species Myriophyllum spicatum over two years in experimental ditches for population modeling application in risk assessment. Integr. Environ. Assess. Manag. 2022, 18, 1375–1386. [Google Scholar] [CrossRef]
- Bellinger, E.G.; Sigee, D.C. Freshwater Algae: Identification and Use as Bioindicators, 2nd ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2010. [Google Scholar]
- Biggs, B.J.F. New Zealand Periphyton Guideline: Detecting, Monitoring and Managing Enrichment of Streams; NIWA: Christchurch, New Zealand, 2000. [Google Scholar]
- Chen, Q.; Li, Q.; Lin, Y.; Zhang, J.; Xia, J.; Ni, J.; Cooke, S.J.; Best, J.; He, S.; Feng, T.; et al. River Damming Impacts on Fish Habitat and Associated Conservation Measures. Rev. Geophys. 2023, 61, e2023RG000819. [Google Scholar] [CrossRef]
- Cibils Martina, L.; Principe, R.; Gari, N. Effect of a dam on epilithic algal communities of a mountain stream: Before-after dam construction comparison. J. Limnol. 2013, 72, e7. [Google Scholar] [CrossRef]
- Dalu, T.; Wasserman, R.J. Cyanobacteria dynamics in a small tropical reservoir: Understanding spatio-temporal variability and influence of environmental variables. Sci. Total Environ. 2018, 643, 835–841. [Google Scholar] [CrossRef]
- EU Directive 2000/60 Water Framework Directive (WFD) 2000/60/EC—European Environment Agency. Available online: https://www.eea.europa.eu/policy-documents/water-framework-directive-wfd-2000 (accessed on 23 May 2025).
- Gamier, J.; Billen, G.; Coste, M. Seasonal succession of diatoms and Chlorophyceae in the drainage network of the Seine River: Observation and modeling. Limnol. Oceanogr. 1995, 40, 750–765. [Google Scholar] [CrossRef]
- Gross, E.M.; Johnson, R.L.; Hairston, N.G., Jr. Experimental evidence for changes in submersed macrophyte species composition caused by the herbivore Acentria ephemerella (Lepidoptera). Oecologia 2001, 127, 105–114. [Google Scholar] [CrossRef]
- Hammer, Ø.; Harper, D.A.T.; Ryan, P.D. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontol. Electron. 2001, 4, 1. [Google Scholar]
- Herry-Allani, S.E.; Bouaïcha, N. Cyanobacterial blooms in dams: Environmental factors, toxins, public health, and remedial measures. In Dams: Strucuture, Performance and Safety Management; Khilifi, S., Ed.; Nova Science Publishers Inc.: Hauppauge, NY, USA, 2013. [Google Scholar]
- Hilton, J.; O’Hare, M.; Bowes, M.J.; Jones, J.I. How green is my river? A new paradigm of eutrophication in rivers. Sci. Total Environ. 2006, 365, 66–83. [Google Scholar] [CrossRef]
- Ho, J.C.; Michalak, A.M. Exploring temperature and precipitation impacts on harmful algal blooms across continental U.S. lakes. Limnol. Oceanogr. 2020, 65, 992–1009. [Google Scholar] [CrossRef]
- Hoffman, G.; Werum, M.; Lange-Bertalot, H. Diatomeen im Süßwasser-Benthos von Mitteleuropa: Bestimmungsflora Kieselalgen für die ökologische Praxis; Koeltz Scientific Books: Hessen, Germany, 2013. [Google Scholar]
- Janauer, G.; Exler, N.; Anačkov, G.; Barta, V.; Berczik, Á.; Boža, P.; Dinka, M.; Georgiev, V.; Germ, M.; Holcar, M.; et al. Distribution of the Macrophyte Communities in the Danube Reflects River Serial Discontinuity. Water 2021, 13, 918. [Google Scholar] [CrossRef]
- Jones, P.E.; Consuegra, S.; Börger, L.; Jones, J.; Garcia de Leaniz, C. Impacts of artificial barriers on the connectivity and dispersal of vascular macrophytes in rivers: A critical review. Freshw. Biol. 2020, 65, 1165–1180. [Google Scholar] [CrossRef]
- Juneja, A.; Ceballos, R.; Murthy, G. Effects of Environmental Factors and Nutrient Availability on the Biochemical Composition of Algae for Biofuels Production: A Review. Energies 2013, 6, 4607–4638. [Google Scholar] [CrossRef]
- Karadžić, B.; Jarić, S.; Pavlović, P.; Mitrović, M. Aquatic and Wetland Vegetation Along the Sava River; Springer: Berlin/Heidelberg, Germany, 2015; pp. 249–316. [Google Scholar]
- Keller, S.; Maier, P.; Riese, F.; Norra, S.; Holbach, A.; Börsig, N.; Wilhelms, A.; Moldaenke, C.; Zaake, A.; Hinz, S. Hyperspectral Data and Machine Learning for Estimating CDOM, Chlorophyll a, Diatoms, Green Algae and Turbidity. Int. J. Environ. Res. Public Health 2018, 15, 1881. [Google Scholar] [CrossRef]
- Kim, J.; Kwak, J.; Ahn, J.M.; Kim, H.; Jeon, J.; Kim, K. Oscillation Flow Dam Operation Method for Algal Bloom Mitigation. Water 2022, 14, 1315. [Google Scholar] [CrossRef]
- Kohler, A.; Janauer, G.A. Zur Methodik der Untersuchung von aquatischen Makrophyten in Fließgewässern. In Handbuch Angewandte Limnologie; Steinberg, C., Bernhardt, H., Klapper, H., Eds.; Ecomed Verlag: Landsberg, Germany, 1995; pp. 3–22. [Google Scholar]
- Krammer, K.; Lange-Bertalot, H. Bacillariophyceae. 1. Teil. Naviculaceae. In Süsswasserflora von Mitteleuropa; Ett, J., Gerloff, J., Heymig, H., Mollenhauer, D., Eds.; Gustav Fischer Verlag: Stuttgart, Germany, 1986; pp. 1–876. [Google Scholar]
- Krammer, K.; Lange-Bertalot, H. Bacillariophyceae. 2. Teil: Bacillariaceae, Epithemiaceae, Surirellaceae. In Süsswasserflora von Mitteleuropa; Ettl, H., Gerloff, J., Heynig, H., Mollenhauer, D., Eds.; Gustav Fisher Verlag: Stuttgart, Germany, 1988. [Google Scholar]
- Krammer, K.; Lange-Bertalot, H. Bacillariophyceae. 3. Teil: Centrales, Fragilariaceae, Eunotiaceae. In Susswasserflora von Mitteleuropa; Ettl, H., Gerloff, J., Heynig, H., Mollenhauer, D., Eds.; Gustav Fisher Verlag: Stuttgart, Germany, 1991; pp. 1–576. [Google Scholar]
- Krammer, K.; Lange-Bertalot, H. Bacillariophyceae. 4 Teil, Achnanthaceae, Kritische Ergänzungen zu Navicula (Lineolatae) und Gomphonema Gesamtliteraturverzeichnis. In Susswasserflora von Mitteleuropa; Gustav Fisher Verlag: Stuttgart, Germany, 1991. [Google Scholar]
- Law, R.J.; Elliott, J.A.; Thackeray, S.J. Do functional or morphological classifications explain stream phytobenthic community assemblages? Diatom Res. 2014, 29, 309–324. [Google Scholar] [CrossRef]
- Mallin, M.A. Lotic Primary Producers. In River Ecology; Oxford University Press: Oxford, UK, 2023; pp. 51–86. [Google Scholar] [CrossRef]
- Mancuso, J.L.; Weinke, A.D.; Stone, I.P.; Hamsher, S.E.; Villar-Argaiz, M.; Biddanda, B.A. Cold and wet: Diatoms dominate the phytoplankton community during a year of anomalous weather in a Great Lakes estuary. J. Great Lakes Res. 2021, 47, 1305–1315. [Google Scholar] [CrossRef]
- Mazej Grudnik, Z.; Germ, M. Spatial pattern of native species Myriophyllum spicatum and invasive alien species Elodea nuttallii after introduction of the latter one into the Drava River (Slovenia). Biologia 2013, 68, 202–209. [Google Scholar] [CrossRef]
- Menegalija, T.; Kosi, G. Razširjenost kremenastih alg v izvirih na območju Julijskih Alp (SZ Slovenija). Nat. Slov. 2008, 10, 21–37. [Google Scholar] [CrossRef]
- Neal, C.; Hilton, J.; Wade, A.J.; Neal, M.; Wickham, H. Chlorophyll-a in the rivers of eastern England. Sci. Total Environ. 2006, 365, 84–104. [Google Scholar] [CrossRef]
- O’Hare, M.T.; Baattrup-Pedersen, A.; Baumgarte, I.; Freeman, A.; Gunn, I.D.M.; Lázár, A.N.; Sinclair, R.; Wade, A.J.; Bowes, M.J. Responses of aquatic plants to eutrophication in rivers: A revised conceptual model. Front. Plant Sci. 2018, 9, 451. [Google Scholar] [CrossRef]
- Panzeca, P.; Troia, A.; Madonia, P. Aquatic Macrophytes Occurrence in Mediterranean Farm Ponds: Preliminary Investigations in North-Western Sicily (Italy). Plants 2021, 10, 1292. [Google Scholar] [CrossRef]
- Perbiche-Neves, G.; Ferreira, R.A.R.; Nogueira, M.G. Phytoplankton structure in two contrasting cascade reservoirs (Paranapanema River, Southeast Brazil). Biologia 2011, 66, 967–976. [Google Scholar] [CrossRef]
- Resende, P.C.; Resende, P.; Pardal, M.; Almeida, S.; Azeiteiro, U. Use of biological indicators to assess water quality of the Ul River (Portugal). Environ. Monit. Assess. 2010, 170, 535–544. [Google Scholar] [CrossRef]
- Riis, T.; Olesen, B.; Clayton, J.S.; Lambertini, C.; Brix, H.; Sorrell, B.K. Growth and morphology in relation to temperature and light availability during the establishment of three invasive aquatic plant species. Aquat. Bot. 2012, 102, 56–64. [Google Scholar] [CrossRef]
- Rott, E.; Hofmann, G.; Pall, K.; Pfister, P.; Pipp, E. Indikationslisten für Aufwuchsalgen. Teil 1: Saprobielle Indikation. Bundesministerium für Land- und Forstwirtschaft; Bundesministerium für Land und Forstwirtschaft: Wien, Austria, 1997. [Google Scholar]
- Rott, E.; Pipp, E.; Pfister, P.; Van Dahm, H.; Ortler, K.; Binder, N.; Pall, K. Indikationslisten fur Aufwuchsalgen in Östereichen Fließgevessern, Teil 2: Trophienindikation so vie Geochemische Präferenz, Taxonomische und Toxicologische Anmerkungen; Bundesministerium für Land und Forstwirtschaft: Wien, Austria, 1999. [Google Scholar]
- Simić, S.B.; Karadžić, V.R.; Cvijan, M.V.; Vasiljević, B.M. Algal Communities Along the Sava River. In The Sava River; Milačič, R., Ščanar, J., Paunović, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 229–248. [Google Scholar]
- Slovenian Environmental Agency. Hydrological Archive with Data About Discharges and Water Temperatures of Slovenian Rivers. Available online: https://www.arso.gov.si/vode/podatki (accessed on 13 May 2025).
- Soininen, J.; Eloranta, P. Seasonal persistence and stability of diatom communities in rivers: Are there habitat specific differences? Eur. J. Phycol. 2004, 39, 153–160. [Google Scholar] [CrossRef]
- Stevenson, R.J. Algae of River Ecosystems. Encyclopedia of Inland Waters; Elsevier: Amsterdam, The Netherlands, 2009. [Google Scholar]
- Suren, A.M.; Smart, G.M.; Smith, R.A.; Brown, S.L.R. Drag coefficients of stream bryophytes: Experimental determinations and ecological significance. Freshw. Biol. 2000, 45, 309–317. [Google Scholar] [CrossRef]
- ter Braak, C.J.F.; Šmilauer, P. CANOCO Reference Maunal and CanoDraw for Windows User’s Guide: Software for Canonical Community Orditation (Version 4.5); Microcomputer Power: Ithaca, NY, USA, 2002; p. 500. [Google Scholar]
- Troia, A.; Ilardi, V.; Oddo, E. Monitoring of alien aquatic plants in the inland waters of Sicily (Italy). Webbia 2020, 75, 77–83. [Google Scholar] [CrossRef]
- Tundisi, J.G.; Tundisi, T.M. Limnology; CRC Press: Boca Raton, FL, USA, 2012. [Google Scholar] [CrossRef]
- Urrea-Clos, G.; Sabater, S. Identifying reference benthic diatom communities in an agricultural watershed (Guadiana River, SW Spain). Hydrobiologia 2012, 695, 171–184. [Google Scholar] [CrossRef]
- Virtanen, L.K.; Köngäs, P.; Aitto-Oja, S.; Soininen, J. Is temporal occurrence of diatoms related to speciestraits, local abundance, and regional distribution? J. Phycol. 2011, 47, 1445–1453. [Google Scholar] [CrossRef]
- Wetzel, R.G. Limology Lake and River Ecosystems, 3rd ed.; Academic Press: Cambridge, MA, USA, 2001. [Google Scholar]
- Wu, N.; Schmalz, B.; Fohrer, N. Development and testing of a phytoplankton index of biotic integrity (P-IBI) for a German lowland river. Ecol. Indic. 2012, 13, 158–167. [Google Scholar] [CrossRef]
- Wu, N.; Tang, T.; Zhou, S.; Jia, X.; Li, D.; Liu, R.; Cai, Q. Changes in benthic algal communities following construction of a run-of-river dam. J. N. Am. Benthol. Soc. 2009, 28, 69–79. [Google Scholar] [CrossRef]
- Yadala, S.; Cremaschi, S. Design and optimization of artificial cultivation units for algae production. Energy 2014, 78, 23–39. [Google Scholar] [CrossRef]
- Zelnik, I.; Čatorič, D.; Toman, M.J. Distribution of epilithic diatoms in the Savinja River flowing through an urban landscap. Acta Biol. Slov. 2016, 59, 57–72. [Google Scholar] [CrossRef]
- Zelnik, I.; Germ, M.; Kuhar, U.; Gaberščik, A. Waterbodies in the Floodplain of the Drava River Host Species-Rich Macrophyte Communities despite Elodea Invasions. Diversity 2022, 14, 870. [Google Scholar] [CrossRef]
- Zelnik, I.; Kuhar, U.; Holcar, M.; Germ, M.; Gaberščik, A. Distribution of vascular plant communities in Slovenian watercourses. Water 2021, 13, 1071. [Google Scholar] [CrossRef]
- Zelnik, I.; Sušin, T. Epilithic diatom community shows a higher vulnerability of the river sava to pollution during the winter. Diversity 2020, 12, 465. [Google Scholar] [CrossRef]
- Zepernick, B.N.; Gann, E.R.; Martin, R.M.; Pound, H.L.; Krausfeldt, L.E.; Chaffin, J.D.; Wilhelm, S.W. Elevated pH Conditions Associated with Microcystis spp. Blooms Decrease Viability of the Cultured Diatom Fragilaria crotonensis and Natural Diatoms in Lake Erie. Front. Microbiol. 2021, 12, 598736. [Google Scholar] [CrossRef]
- Zhai, H.; Cui, B.; Hu, B.; Zhang, K. Prediction of river ecological integrity after cascade hydropower dam construction on the mainstream of rivers in Longitudinal Range-Gorge Region (LRGR), China. Ecol. Eng. 2010, 36, 361–372. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, J.; Xiao, Y.; Zhang, Y.; Yu, Y.; Zheng, Z.; Liu, Y.; Li, Q. The Impact of Cyanobacteria Blooms on the Aquatic Environment and Human Health. Toxins 2022, 14, 658. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.; Fang, X.; Zhao, Z.; Chai, X. Effects of Water Level Fluctuations on the Growth Characteristics and Community Succession of Submerged Macrophytes: A Case Study of Yilong Lake, China. Water 2021, 13, 2900. [Google Scholar] [CrossRef]
- Zhou, C.; Peng, Y.; Yu, M.; Deng, Y.; Chen, L.; Zhang, L.; Xu, X.; Zhang, S.; Yan, Y.; Wang, G. Severe cyanobacteria accumulation potentially induces methylotrophic methane producing pathway in eutrophic lakes. Environ. Pollut. 2022, 292, 118443. [Google Scholar] [CrossRef]
Sampling Site | VR | BO | BL | KK | BR | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Taxon/Sampling Season | W | S | W | S | W | S | W | S | W | S | |
Cyanophyta | |||||||||||
Phormidium sp. | 1.1 | 8.8 | 0 | 2.5 | 0 | 2.2 | 0 | 2.9 | 9.9 | 2.0 | |
Chlorophyta | |||||||||||
Coelastrum sp. | 1.1 | 8.8 | 2.8 | 3.3 | 1.2 | 26.7 | 9.9 | 10.1 | 7.0 | 2.0 | |
Microspora sp. | 16.1 | 12.8 | 11.1 | 0 | 28.1 | 11.1 | 8.6 | 10.1 | 45.1 | 2.6 | |
Pediastrum duplex | 0 | 0 | 0 | 15.8 | 0 | 0 | 0 | 11.6 | 0 | 21.1 | |
Scenedesmus sp. | 0 | 3.9 | 0 | 3.3 | 0 | 11.9 | 0 | 11.6 | 0 | 21.1 | |
Scenedesmus quadricauda | 0 | 11.8 | 0 | 26.7 | 0 | 11.9 | 0 | 8.7 | 0 | 10.5 | |
Bacillariophyta | |||||||||||
Cyclotella sp. | 2.2 | 16.7 | 0 | 13.3 | 4.9 | 8.2 | 3.7 | 13.0 | 2.1 | 16.5 | |
Diatoma vulgaris | 15.1 | 9.80 | 0 | 15.8 | 4.9 | 7.4 | 16.1 | 5.8 | 4.9 | 2.0 | |
Navicula sp. | 31.2 | 7.8 | 9.7 | 1.7 | 18.3 | 0.7 | 18.5 | 0.7 | 7.8 | 0.7 | |
Nitzschia sp. | 7.5 | 3.9 | 23.6 | 3.3 | 19.5 | 3.7 | 7.4 | 2.9 | 4.2 | 3.3 | |
Surirella sp. | 5.4 | 3.9 | 29.2 | 0 | 1.2 | 0 | 0 | 1.45 | 0.7 | 0.7 |
VR | BO | BL | KK | BR | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Taxon/Season | W | S | W | S | W | S | W | S | W | S | |
Cyanophyta | |||||||||||
Lyngbya sp. | 2.9 | 0 | 7.0 | 4.5 | 3.9 | 1.0 | 5.8 | 5.5 | 14.2 | 5.6 | |
Oscillatoria sp. | 12.2 | 20.9 | 21.9 | 17 | 33.9 | 9.3 | 29.2 | 13.2 | 30.6 | 14.8 | |
Chlorophyta | |||||||||||
Microspora sp. | 39.6 | 4.7 | 47.7 | 6.3 | 29.9 | 9.3 | 6.7 | 12.1 | 38.8 | 1.9 | |
Scenedesmus quadricauda | 0 | 0 | 0 | 3,6 | 0 | 4.1 | 0 | 0 | 0 | 11.1 | |
Bacillariophyta | |||||||||||
Diatoma ehrenbergii | 1.4 | 15.1 | 0.8 | 9.8 | 0 | 12.4 | 0 | 6.6 | 0 | 3.7 | |
Navicula sp. | 7.2 | 18.6 | 4.7 | 15.2 | 3.1 | 9.3 | 25.8 | 15.4 | 3.7 | 4.6 | |
Nitzschia sp. | 12.9 | 17.4 | 3.1 | 8.9 | 5.5 | 11.3 | 7.5 | 8.8 | 1.5 | 13.0 |
VR_W | BO_W | BL_W | KK_W | BR_W | VR_S | BO_S | BL_S | KK_S | BR_S | |
---|---|---|---|---|---|---|---|---|---|---|
Consecutive position of the reservoir downstream | 1 | 2 | 3 | 4 | 5 | 1 | 2 | 3 | 4 | 5 |
T of water [°C] | 8.1 | 7.8 | 9.0 | 8.6 | 10.2 | 24.2 | 25.0 | 22.1 | 21.0 | 24.4 |
pH | 8.0 | 8.0 | 8.1 | 8.1 | 8.1 | 7.7 | 7.5 | 7.8 | 8.2 | 8.4 |
O2 [mg/L] | 14.0 | 12.7 | 13.5 | 13.8 | 12.4 | 8.0 | 8.1 | 8.4 | 8.5 | 9.7 |
saturation with O2 [%] | 116 | 105 | 114 | 117 | 109 | 92 | 93 | 86 | 92 | 112 |
EC [µS/cm] | 430 | 432 | 424 | 417 | 422 | 320 | 311 | 244 | 382 | 378 |
NO3− [mg/L] | 7.4 | 6.6 | 6.1 | 5.7 | 4.6 | 5.2 | 5.6 | 5.8 | 5.4 | 5.1 |
PO43− [mg/L] | 0.08 | 0.08 | 0.05 | 0.04 | 0.03 | 0.02 | 0.02 | 0.02 | 0.02 | 0.01 |
SI value | 2.03 | 1.85 | 1.94 | 2.05 | 1.90 | 1.86 | 1.93 | 1.84 | 1.89 | 1.87 |
TI value | 2.98 | 2.77 | 2.96 | 2.88 | 2.84 | 2.82 | 2.90 | 2.71 | 2.79 | 2.72 |
Community | Phytoplankton—Diatoms | Phytobenthos—Diatoms | Phytobenthos | Phytoplankton | ||||
---|---|---|---|---|---|---|---|---|
Gradient Analysis | RDA | RDA | RDA | CCA | ||||
Parameter | p Value | % TVE | p Value | % TVE | p Value | % TVE | p Value | % TVE |
Water temperature | 0.002 | 65 | 0.002 | 42 | 0.002 | 36 | 0.002 | 26 |
pH | 0.036 | 12 | ||||||
NO3− | 0.004 | 15 | ||||||
Order of the reservoir downstream | 0.044 | 12 | ||||||
PO43− | 0.044 | 15 |
Reservoir | VR | BO | BL | KK | BR |
---|---|---|---|---|---|
turbidity | moderate | moderate | moderate | moderate | low |
Substrate on the bottom | silt and clay, gravel | boulders, cobbles, silt and clay | boulders, rocks, silt and clay, | cobbles, silt and clay | cobbles, silt and clay |
Substrate on the bank | boulders, rocks | boulders, rocks, concrete | boulders, rocks | boulders, rocks | boulders, rocks |
Nr. of Species | 5 | 4 | 4 | 10 | 7 |
Myriophyllum spicatum | 2 | 2 | 2 | 1 | 1 |
Elodea nuttallii | 1 | 2 | 2 | ||
Potamogeton crispus | 1 | ||||
Potamogeton nodosus | 1 | ||||
Potamogeton perfoliatus | 1 | 1 | |||
Potamogeton trichoides | 1 | 1 | |||
Lemna minuta | 1 | 1 | |||
Agrostis stolonifera | 1 | ||||
Iris pseudacorus | 1 | 1 | |||
Leersia oryzoides | 1 | ||||
Phalaris arundinacea | 1 | 1 | 1 | ||
Phragmites australis | 1 | ||||
Polygonum mite | 1 | 1 | 1 | ||
Polygonum hydrolapathum | 1 | ||||
Rorippa amphibia | 1 | 1 |
Name of the HHP Reservoir | Abbreviation | N (° Latitude) | E (° Longitude) |
---|---|---|---|
HHP Brežice | BR | 45.90242 | 15.58350 |
HHP Krško | KK | 45.97958 | 15.48027 |
HHP Blanca | BL | 45.99400 | 15.36078 |
HHP Boštanj | BO | 46.02005 | 15.27643 |
HHP Vrhovo | VR | 46.04599 | 15.21470 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zelnik, I.; Vodopivec, L.; Germ, M. Communities of Primary Producers in the Series of Reservoirs on the Sava River (Slovenia). Plants 2025, 14, 1665. https://doi.org/10.3390/plants14111665
Zelnik I, Vodopivec L, Germ M. Communities of Primary Producers in the Series of Reservoirs on the Sava River (Slovenia). Plants. 2025; 14(11):1665. https://doi.org/10.3390/plants14111665
Chicago/Turabian StyleZelnik, Igor, Larisa Vodopivec, and Mateja Germ. 2025. "Communities of Primary Producers in the Series of Reservoirs on the Sava River (Slovenia)" Plants 14, no. 11: 1665. https://doi.org/10.3390/plants14111665
APA StyleZelnik, I., Vodopivec, L., & Germ, M. (2025). Communities of Primary Producers in the Series of Reservoirs on the Sava River (Slovenia). Plants, 14(11), 1665. https://doi.org/10.3390/plants14111665