Wounding and Phospholipase C Inhibition: Evaluation of the Alkaloid Profiling in Opium Poppy
Abstract
:1. Introduction
2. Results and Discussion
2.1. The Impact of Wounding on BIA Biosynthetic Pathway Gene Expression and Alkaloid Content
2.1.1. The S-Reticuline Pathway
2.1.2. The Noscapine and Sanguinarine Branch Pathway
2.1.3. The Papaverine Pathway
2.1.4. The Morphinan Pathway
2.2. Inhibition of PLC Down-Regulates BIA-Related Genes and Drives Changes in Alkaloid Content
2.3. Response of BIA-Related Genes to Exogenous Application of MeJA
2.4. Transcriptional Regulation of BIA Pathway
3. Materials and Methods
3.1. Plant Material and Growth Conditions
3.2. Experimental Treatments and Wounding
3.3. Gene Expression Analysis by Real-Time PCR
3.4. Alkaloid HPLC-MS Analysis
3.4.1. Alkaloid Extraction
3.4.2. HPLC-MS Analysis
Instrumentation
Chemicals
HPLC-MS Operating Conditions
3.5. Statistic Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
4-HPAA | 4-hydroxyphenylacetaldehyde |
4-HPP | 4-hydroxyphenylpyruvate |
4-OMT | (R,S)-3′-hydroxy-N-methylcoclaurine 4′-O-methyltransferase |
6-OMT | norcoclaurine 6-O-methyltransferase |
7-OMT | (R,S)-reticuline 7-O-methyltransferase |
AP2/ERF | APETALA2/ethylene responsive factor |
BBE | berberine bridge enzyme |
BIA(s) | benzylisoquinoline alkaloid(s) |
CFS | cheilanthifoline synthase |
CNMT | (R,S)-coclaurine N-methyltransferase |
CODM | codeine O-demethylase |
COR | codeinone reductase |
DAG | diacylglycerol |
HPLC-MS | High-performance liquid chromatography-mass spectrometry |
IP3 | inositol 1,4,5-trisphosphate |
JA | jasmonic acid |
MAPK(s) | mitogen-activated protein kinase(s) |
MeJA | methyl jasmonate |
N7OMT | (R,S)-norreticuline 7-O-methyltransferase |
NAC | NACNAM/ATAF1,2/CUC2 family protein |
NCS | norcoclaurine synthase |
NISO | neopinone isomerase |
NMCH | (S)-N-methylcoclaurine 3-hydroxylase |
PA | phosphatidic acid |
PI-PLC | phosphoinositide-specific phospholipase |
PIP2 | phosphatidylinositol bisphosphate |
PLA2 | phospholipase A2 |
PLC | phospholipase C |
PLD | phospholipase D |
Ps175C3H | C3H transcription factor from Papaver somniferum L. |
PsAP2 | APETALA2/ethylene responsive factor from Papaver somniferum L. |
RT-qPCR | real-time quantitative polymerase chain reaction |
SalAT | salutaridinol 7-O-acetyltransferase |
SalR | salutaridine reductase |
SalSyn | salutaridine synthase |
STORR | STORR fusion protein |
STSY | stylopine synthase |
T6ODM | thebaine 6-O-demethylase |
TF(s) | transcription factor(s) |
THS | thebaine synthase |
TYDC | tyrosine decarboxylase |
TyrAT | tyrosine aminotransferase |
References
- Yucebilgili Kurtoglu, K.; Unver, T. Integrated Omics Analysis of Benzylisoquinoline Alkaloid (BIA) Metabolism in Opium Poppy (Papaver somniferum L.). In Oil Crop Genomics; Tombuloglu, H., Unver, T., Tombuloglu, G., Hakeem, K.R., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 291–315. ISBN 978-3-030-70420-9. [Google Scholar]
- Agarwal, P.; Pathak, S.; Lakhwani, D.; Gupta, P.; Asif, M.H.; Trivedi, P.K. Comparative Analysis of Transcription Factor Gene Families from Papaver somniferum: Identification of Regulatory Factors Involved in Benzylisoquinoline Alkaloid Biosynthesis. Protoplasma 2016, 253, 857–871. [Google Scholar] [CrossRef] [PubMed]
- Yamada, Y.; Nishida, S.; Shitan, N.; Sato, F. Genome-Wide Identification of AP2/ERF Transcription Factor-Encoding Genes in California Poppy (Eschscholzia californica) and Their Expression Profiles in Response to Methyl Jasmonate. Sci. Rep. 2020, 10, 18066. [Google Scholar] [CrossRef]
- Deng, X.; Zhao, L.; Fang, T.; Xiong, Y.; Ogutu, C.; Yang, D.; Vimolmangkang, S.; Liu, Y.; Han, Y. Investigation of Benzylisoquinoline Alkaloid Biosynthetic Pathway and Its Transcriptional Regulation in Lotus. Hortic. Res. 2018, 5, 29. [Google Scholar] [CrossRef] [PubMed]
- Stranska, I.; Skalicky, M.; Novak, J.; Matyasova, E.; Hejnak, V. Analysis of Selected Poppy (Papaver somniferum L.) Cultivars: Pharmaceutically Important Alkaloids. Ind. Crops Prod. 2013, 41, 120–126. [Google Scholar] [CrossRef]
- Ashrafi, S.; Alam, S.; Sultana, A.; Raj, A.; Emon, N.U.; Richi, F.T.; Sharmin, T.; Moon, M.; Park, M.N.; Kim, B. Papaverine: A Miraculous Alkaloid from Opium and Its Multimedicinal Application. Molecules 2023, 28, 3149. [Google Scholar] [CrossRef]
- Nourbakhsh, F.; Askari, V.R. Biological and Pharmacological Activities of Noscapine: Focusing on Its Receptors and Mechanisms. BioFactors 2021, 47, 975–991. [Google Scholar] [CrossRef]
- Dang, T.T.T.; Onoyovwi, A.; Farrow, S.C.; Facchini, P.J. Chapter Eleven—Biochemical Genomics for Gene Discovery in Benzylisoquinoline Alkaloid Biosynthesis in Opium Poppy and Related Species. In Methods in Enzymology; Hopwood, D.A., Ed.; Academic Press: Cambridge, MA, USA, 2012; Volume 515, pp. 231–266. ISBN 0076-6879. [Google Scholar]
- Hong, U.V.T.; Tamiru-Oli, M.; Hurgobin, B.; Lewsey, M.G. Genomic and Cell-Specific Regulation of Benzylisoquinoline Alkaloid Biosynthesis in Opium Poppy. J. Exp. Bot. 2025, 76, 35–51. [Google Scholar] [CrossRef]
- Kakeshpour, T.; Nayebi, S.; Rashidi Monfared, S.; Moieni, A.; Karimzadeh, G. Identification and Expression Analyses of MYB and WRKY Transcription Factor Genes in Papaver somniferum L. Physiol. Mol. Biol. Plants 2015, 21, 465–478. [Google Scholar] [CrossRef]
- Pathak, S.; Mishra, B.K.; Misra, P.; Misra, P.; Joshi, V.K.; Shukla, S.; Trivedi, P.K. High Frequency Somatic Embryogenesis, Regeneration and Correlation of Alkaloid Biosynthesis with Gene Expression in Papaver somniferum. Plant Growth Regul. 2012, 68, 17–25. [Google Scholar] [CrossRef]
- Singh, A.; Menéndez-Perdomo, I.M.; Facchini, P.J. Benzylisoquinoline Alkaloid Biosynthesis in Opium Poppy: An Update. Phytochem. Rev. 2019, 18, 1457–1482. [Google Scholar] [CrossRef]
- Ozber, N.; Facchini, P.J. Phloem-Specific Localization of Benzylisoquinoline Alkaloid Metabolism in Opium Poppy. J. Plant Physiol. 2022, 271, 153641. [Google Scholar] [CrossRef] [PubMed]
- Farrow, S.C.; Hagel, J.M.; Beaudoin, G.A.W.; Burns, D.C.; Facchini, P.J. Stereochemical Inversion of (S)-Reticuline by a Cytochrome P450 Fusion in Opium Poppy. Nat. Chem. Biol. 2015, 11, 728–732. [Google Scholar] [CrossRef] [PubMed]
- Winzer, T.; Kern, M.; King, A.J.; Larson, T.R.; Teodor, R.I.; Donninger, S.L.; Li, Y.; Dowle, A.A.; Cartwright, J.; Bates, R.; et al. Morphinan Biosynthesis in Opium Poppy Requires a P450-Oxidoreductase Fusion Protein. Science 2015, 349, 309–312. [Google Scholar] [CrossRef]
- Chen, X.; Hagel, J.M.; Chang, L.; Tucker, J.E.; Shiigi, S.A.; Yelpaala, Y.; Chen, H.Y.; Estrada, R.; Colbeck, J.; Enquist-Newman, M.; et al. A Pathogenesis-Related 10 Protein Catalyzes the Final Step in Thebaine Biosynthesis Article. Nat. Chem. Biol. 2018, 14, 738–743. [Google Scholar] [CrossRef]
- Nielsen, B.; Röe, J.; Brochmann-Hanssen, E. Oripavine—A New Opium Alkaloid. Planta Med. 1983, 48, 205–206. [Google Scholar] [CrossRef]
- Hagel, J.M.; Facchini, P.J. Benzylisoquinoline Alkaloid Metabolism: A Century of Discovery and a Brave New World. Plant Cell Physiol. 2013, 54, 647–672. [Google Scholar] [CrossRef]
- Dastmalchi, M.; Chang, L.; Torres, M.A.; Ng, K.K.S.; Facchini, P.J. Codeinone Reductase Isoforms with Differential Stability, Efficiency and Product Selectivity in Opium Poppy. Plant J. 2018, 95, 631–647. [Google Scholar] [CrossRef]
- Beaudoin, G.A.W.; Facchini, P.J. Benzylisoquinoline Alkaloid Biosynthesis in Opium Poppy. Planta 2014, 240, 19–32. [Google Scholar] [CrossRef]
- Aghaali, Z.; Naghavi, M.R.; Zargar, M. Promising Approaches for Simultaneous Enhancement of Medicinally Significant Benzylisoquinoline Alkaloids in Opium Poppy. Front. Plant Sci. 2024, 15, 1377318. [Google Scholar] [CrossRef]
- Mishra, S.; Triptahi, V.; Singh, S.; Phukan, U.J.; Gupta, M.M.; Shanker, K.; Shukla, R.K. Wound Induced Tanscriptional Regulation of Benzylisoquinoline Pathway and Characterization of Wound Inducible PsWRKY Transcription Factor from Papaver somniferum. PLoS ONE 2013, 8, e52784. [Google Scholar] [CrossRef]
- Mishra, S.; Phukan, U.J.; Tripathi, V.; Singh, D.K.; Luqman, S.; Shukla, R.K. PsAP2 an AP2/ERF Family Transcription Factor from Papaver somniferum Enhances Abiotic and Biotic Stress Tolerance in Transgenic Tobacco. Plant Mol. Biol. 2015, 89, 173–186. [Google Scholar] [CrossRef] [PubMed]
- Pathak, S.; Lakhwani, D.; Gupta, P.; Mishra, B.K.; Shukla, S.; Asif, M.H.; Trivedi, P.K. Comparative Transcriptome Analysis Using High Papaverine Mutant of Papaver somniferum Reveals Pathway and Uncharacterized Steps of Papaverine Biosynthesis. PLoS ONE 2013, 8, e65622. [Google Scholar] [CrossRef] [PubMed]
- Jablonická, V.; Ziegler, J.; Vatehová, Z.; Lišková, D.; Heilmann, I.; Obložinský, M.; Heilmann, M. Inhibition of Phospholipases Influences the Metabolism of Wound-Induced Benzylisoquinoline Alkaloids in Papaver somniferum L. J. Plant Physiol. 2018, 223, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Sagar, S.; Biswas, D.K.; Singh, A. Genomic and Expression Analysis Indicate the Involvement of Phospholipase C Family in Abiotic Stress Signaling in Chickpea (Cicer arietinum). Gene 2020, 753, 144797. [Google Scholar] [CrossRef]
- Alexandra, J.; Lassalles, J.P.; Kado, R.T. Opening of Ca2+ Channels in Isolated Red Beet Root Vacuole Membrane by Inositol 1,4,5-Trisphosphate. Nature 1990, 343, 567–570. [Google Scholar] [CrossRef]
- Guo, H.; Feng, P.; Chi, W.; Sun, X.; Xu, X.; Li, Y.; Ren, D.; Lu, C.; David Rochaix, J.; Leister, D.; et al. Plastid-Nucleus Communication Involves Calcium-Modulated MAPK Signalling. Nat. Commun. 2016, 7, 12173. [Google Scholar] [CrossRef]
- Im, J.H.; Lee, H.; Kim, J.; Kim, H.B.; An, C.S. Soybean MAPK, GMK1 Is Dually Regulated by Phosphatidic Acid and Hydrogen Peroxide and Translocated to Nucleus during Salt Stress. Mol. Cells 2012, 34, 271–278. [Google Scholar] [CrossRef]
- Ishihama, N.; Yoshioka, H. Post-Translational Regulation of WRKY Transcription Factors in Plant Immunity. Curr. Opin. Plant Biol. 2012, 15, 431–437. [Google Scholar] [CrossRef]
- León, J.; Rojo, E.; Sánchez-Serrano, J.J. Wound Signalling in Plants. J. Exp. Bot. 2001, 52, 1–9. [Google Scholar] [CrossRef]
- Mosblech, A.; Thurow, C.; Gatz, C.; Feussner, I.; Heilmann, I. Jasmonic Acid Perception by COI1 Involves Inositol Polyphosphates in Arabidopsis thaliana. Plant J. 2011, 65, 949–957. [Google Scholar] [CrossRef]
- Mosblech, A.; Feussner, I.; Heilmann, I. Oxylipins: Structurally Diverse Metabolites from Fatty Acid Oxidation. Plant Physiol. Biochem. 2009, 47, 511–517. [Google Scholar] [CrossRef] [PubMed]
- Vergnolle, C.; Vaultier, M.-N.; Taconnat, L.; Renou, J.-P.; Kader, J.-C.; Zachowski, A.; Ruelland, E. The Cold-Induced Early Activation of Phospholipase C and D Pathways Determines the Response of Two Distinct Clusters of Genes in Arabidopsis Cell Suspensions. Plant Physiol. 2005, 139, 1217–1233. [Google Scholar] [CrossRef] [PubMed]
- Djafi, N.; Vergnolle, C.; Cantrel, C.; Wietrzyñski, W.; Delage, E.; Cochet, F.; Puyaubert, J.; Soubigou-Taconnat, L.; Gey, D.; Collin, S.; et al. The Arabidopsis DREB2 Genetic Pathway Is Constitutively Repressed by Basal Phosphoinositide-Dependent Phospholipase C Coupled to Diacylglycerol Kinase. Front. Plant Sci. 2013, 4, 307. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Jin, C.; Wu, L.; Hou, M.; Dou, S.; Pan, Y. Expression Analysis of a Stress-Related Phosphoinositide-Specific Phospholipase c Gene in Wheat (Triticum aestivum L.). PLoS ONE 2014, 9, e105061. [Google Scholar] [CrossRef]
- Facchini, P.J.; Park, S.U. Developmental and Inducible Accumulation of Gene Transcripts Involved in Alkaloid Biosynthesis in Opium Poppy. Phytochemistry 2003, 64, 177–186. [Google Scholar] [CrossRef]
- Bülow, L.; Schindler, M.; Hehl, R. PathoPlant®: A Platform for Microarray Expression Data to Analyze Co-Regulated Genes Involved in Plant Defense Responses. Nucleic Acids Res. 2007, 35, D841–D845. [Google Scholar] [CrossRef]
- Kanofsky, K.; Rusche, J.; Eilert, L.; Machens, F.; Hehl, R. Unusual DNA-Binding Properties of the Arabidopsis thaliana WRKY50 Transcription Factor at Target Gene Promoters. Plant Cell Rep. 2021, 40, 69–83. [Google Scholar] [CrossRef]
- Morimoto, S.; Suemori, K.; Moriwaki, J.; Taura, F.; Tanaka, H.; Aso, M.; Tanaka, M.; Suemune, H.; Shimohigashi, Y.; Shoyama, Y. Morphine Metabolism in the Opium Poppy and Its Possible Physiological Function. Biochemical Characterization of the Morphine Metabolite, Bismorphine. J. Biol. Chem. 2001, 276, 38179–38184. [Google Scholar] [CrossRef]
- Allen, R.S.; Miller, J.A.C.; Chitty, J.A.; Fist, A.J.; Gerlach, W.L.; Larkin, P.J. Metabolic Engineering of Morphinan Alkaloids by Over-Expression and RNAi Suppression of Salutaridinol 7-O-Acetyltransferase in Opium Poppy. Plant Biotechnol. J. 2008, 6, 22–30. [Google Scholar] [CrossRef]
- Kempe, K.; Higashi, Y.; Frick, S.; Sabarna, K.; Kutchan, T.M. RNAi Suppression of the Morphine Biosynthetic Gene SalAT and Evidence of Association of Pathway Enzymes. Phytochemistry 2009, 70, 579–589. [Google Scholar] [CrossRef]
- Gurkok, T.; Ozhuner, E.; Parmaksiz, I.; Özcan, S.; Turktas, M.; İpek, A.; Demirtas, I.; Okay, S.; Unver, T. Functional Characterization of 4′OMT and 7OMT Genes in BIA Biosynthesis. Front. Plant Sci. 2016, 7, 98. [Google Scholar] [CrossRef] [PubMed]
- Gurkok, T.; Turktas, M.; Parmaksiz, I.; Unver, T. Transcriptome Profiling of Alkaloid Biosynthesis in Elicitor Induced Opium Poppy. Plant Mol. Biol. Rep. 2015, 33, 673–688. [Google Scholar] [CrossRef]
- Huang, F.-C.; Kutchan, T.M. Distribution of Morphinan and Benzo[c]Phenanthridine Alkaloid Gene Transcript Accumulation in Papaver somniferum. Phytochemistry 2000, 53, 555–564. [Google Scholar] [CrossRef]
- Ruiz-May, E.; Galaz-Ávalos, R.M.; Loyola-Vargas, V.M. Differential Secretion and Accumulation of Terpene Indole Alkaloids in Hairy Roots of Catharanthus roseus Treated with Methyl Jasmonate. Mol. Biotechnol. 2009, 41, 278–285. [Google Scholar] [CrossRef]
- Winzer, T.; Gazda, V.; He, Z.; Kaminski, F.; Kern, M.; Larson, T.R.; Li, Y.; Meade, F.; Teodor, R.; Vaistij, F.E.; et al. A Papaver somniferum 10-Gene Cluster for Synthesis of the Anticancer Alkaloid Noscapine. Science 2012, 336, 1704–1708. [Google Scholar] [CrossRef]
- Gürkök Tan, T.; Türktaş, M.; Güçlü, G. In Silico comparative transcriptome analysis of Papaver somniferum cultivars. Acta Sci. Pol. Hortorum Cultus 2023, 22, 69–78. [Google Scholar] [CrossRef]
- Jiang, W.; Yin, Q.; Liu, J.; Su, X.; Han, X.; Li, Q.; Zhang, J.; Pang, Y. The APETALA2–MYBL2 Module Represses Proanthocyanidin Biosynthesis by Affecting Formation of the MBW Complex in Seeds of Arabidopsis thaliana. Plant Commun. 2024, 5, 100777. [Google Scholar] [CrossRef]
- Desgagné-Penix, I.; Farrow, S.C.; Cram, D.; Nowak, J.; Facchini, P.J. Integration of Deep Transcript and Targeted Metabolite Profiles for Eight Cultivars of Opium Poppy. Plant Mol. Biol. 2012, 79, 295–313. [Google Scholar] [CrossRef]
- Pauw, B.; Hilliou, F.A.O.; Martin, V.S.; Chatel, G.; De Wolf, C.J.F.; Champion, A.; Pré, M.; Van Duijn, B.; Kijne, J.W.; Van Der Fits, L.; et al. Zinc Finger Proteins Act as Transcriptional Repressors of Alkaloid Biosynthesis Genes in Catharanthus roseus. J. Biol. Chem. 2004, 279, 52940–52948. [Google Scholar] [CrossRef]
- Kumar, R.; Das, S.; Mishra, M.; Choudhury, D.R.; Sharma, K.; Kumari, A.; Singh, R. Emerging Roles of NAC Transcription Factor in Medicinal Plants: Progress and Prospects. 3 Biotech. 2021, 11, 425. [Google Scholar] [CrossRef]
- Matsuura, H.N.; Rau, M.R.; Fett-Neto, A.G. Oxidative Stress and Production of Bioactive Monoterpene Indole Alkaloids: Biotechnological Implications. Biotechnol. Lett. 2014, 36, 191–200. [Google Scholar] [CrossRef]
- Ahmed, J.; Sajjad, Y.; Gatasheh, M.K.; Ibrahim, K.E.; Huzafa, M.; Khan, S.A.; Situ, C.; Abbasi, A.M.; Hassan, A. Genome-Wide Identification of NAC Transcription Factors and Regulation of Monoterpenoid Indole Alkaloid Biosynthesis in Catharanthus roseus. Front. Plant Sci. 2023, 14, 1286584. [Google Scholar] [CrossRef] [PubMed]
- Rushton, P.J.; Somssich, I.E.; Ringler, P.; Shen, Q.J. WRKY Transcription Factors. Trends Plant Sci. 2010, 15, 247–258. [Google Scholar] [CrossRef] [PubMed]
- Seo, S.; Okamoto, M.; Seto, H.; Ishizuka, K.; Sano, H.; Ohashi, Y. Tobacco MAP Kinase: A Possible Mediator in Wound Signal Transduction Pathways. Science 1995, 270, 1988–1992. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Hirt, H.; Lee, Y. Phosphatidic Acid Activates a Wound-Activated MAPK in Glycine Max. Plant J. 2001, 26, 479–486. [Google Scholar] [CrossRef]
- Mao, G.; Meng, X.; Liu, Y.; Zheng, Z.; Chen, Z.; Zhang, S. Phosphorylation of a WRKY Transcription Factor by Two Pathogen-Responsive MAPKs Drives Phytoalexin Biosynthesis in Arabidopsis. Plant Cell 2011, 23, 1639–1653. [Google Scholar] [CrossRef]
- Hoagland, D.R.; Arnon, D.I. The Water-Culture Method for Growing Plants without Soil. Circ. Calif. Agric. Exp. Stn. 1950, 347, 32. [Google Scholar]
- Holková, I.; Bezáková, L.; Bilka, F.; Balažová, A.; Vanko, M.; Blanáriková, V. Involvement of Lipoxygenase in Elicitor-Stimulated Sanguinarine Accumulation in Papaver somniferum Suspension Cultures. Plant Physiol. Biochem. 2010, 48, 887–892. [Google Scholar] [CrossRef]
- Chomczynski, P.; Sacchi, N. Single-Step Method of RNA Isolation by Acid Guanidinium Thiocyanate-Phenol-Chloroform Extraction. Anal. Biochem. 1987, 162, 156–159. [Google Scholar] [CrossRef]
- Ruijter, J.M.; Ramakers, C.; Hoogaars, W.M.H.; Karlen, Y.; Bakker, O.; van den Hoff, M.J.B.; Moorman, A.F.M. Amplification Efficiency: Linking Baseline and Bias in the Analysis of Quantitative PCR Data. Nucleic Acids Res. 2009, 37, e45. [Google Scholar] [CrossRef]
Analyte | m/z for [M+H]+ | Analyte | m/z for [M+H]+ |
---|---|---|---|
Dextromethorphan | 272.2009 | Salutaridine | 328.1543 |
Morphine | 286.1448 | Reticuline | 330.1700 |
Oripavine | 298.1438 | Papaverine | 340.1530 |
Codeine | 300.1594 | Noscapine | 414.1547 |
Thebaine | 312.1594 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hans, B.; Balažová, E.; Dokupilová, S.; Mikuš, P.; Balažová, A.; Kubíková, R.; Obložinský, M. Wounding and Phospholipase C Inhibition: Evaluation of the Alkaloid Profiling in Opium Poppy. Plants 2025, 14, 1413. https://doi.org/10.3390/plants14101413
Hans B, Balažová E, Dokupilová S, Mikuš P, Balažová A, Kubíková R, Obložinský M. Wounding and Phospholipase C Inhibition: Evaluation of the Alkaloid Profiling in Opium Poppy. Plants. 2025; 14(10):1413. https://doi.org/10.3390/plants14101413
Chicago/Turabian StyleHans, Barbora, Ema Balažová, Svetlana Dokupilová, Peter Mikuš, Andrea Balažová, Renáta Kubíková, and Marek Obložinský. 2025. "Wounding and Phospholipase C Inhibition: Evaluation of the Alkaloid Profiling in Opium Poppy" Plants 14, no. 10: 1413. https://doi.org/10.3390/plants14101413
APA StyleHans, B., Balažová, E., Dokupilová, S., Mikuš, P., Balažová, A., Kubíková, R., & Obložinský, M. (2025). Wounding and Phospholipase C Inhibition: Evaluation of the Alkaloid Profiling in Opium Poppy. Plants, 14(10), 1413. https://doi.org/10.3390/plants14101413