N2 Fixation, N Transfer, and Land Equivalent Ratio (LER) in Grain Legume–Wheat Intercropping: Impact of N Supply and Plant Density
Abstract
1. Introduction
2. Results
2.1. Gas Exchange Parameters
2.2. Photosynthetic Pigments
2.3. Dry Matter and Land Equivalent Ratio (LER)
2.4. Proportion of Nitrogen Derived from Air (%Ndfa), N Transfer, and Equivalent N Uptake Ratio (LERN)
3. Discussion
3.1. Overall Aspects
3.2. Leaf Photosynthetic Traits
3.3. Dry Matter Production and Land Equivalent Ratio (LER)
3.4. N2 Fixation, N Transfer, and Land Equivalent Ratio for N (LERN)
4. Materials and Methods
4.1. Plant Growth Conditions and Experimental Design
4.2. Gas Exchange and Photosynthetic Pigment Content
4.3. Determination of Plant and Nodule Dry Matter
4.4. Determining the Proportion of N Derived from Air (%Ndfa)
4.5. Determination of the β Value
4.6. N Transfer from Legume to Cereal
4.7. Land Equivalent Ratio (LER)
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vance, C.P. Legume Symbiotic Nitrogen Fixation: Agronomic Aspects. In The Rhizobiaceae: Molecular Biology of Model Plant-Associated Bacteria; Spaink, H.P., Kondorosi, A., Hooykaas, P.J.J., Eds.; Springer: Dordrecht, The Netherlands, 1998; pp. 509–530. ISBN 978-94-011-5060-6. [Google Scholar]
- Gan, Y.; Liang, C.; Chai, Q.; Lemke, R.L.; Campbell, C.A.; Zentner, R.P. Improving Farming Practices Reduces the Carbon Footprint of Spring Wheat Production. Nat. Commun. 2014, 5, 5012. [Google Scholar] [CrossRef] [PubMed]
- Foyer, C.H.; Lam, H.-M.; Nguyen, H.T.; Siddique, K.H.M.; Varshney, R.K.; Colmer, T.D.; Cowling, W.; Bramley, H.; Mori, T.A.; Hodgson, J.M.; et al. Neglecting Legumes Has Compromised Human Health and Sustainable Food Production. Nat. Plants 2016, 2, 16112. [Google Scholar] [CrossRef] [PubMed]
- Didinger, C.; Thompson, H.J. The Role of Pulses in Improving Human Health: A Review. Legume Sci. 2022, 4, e147. [Google Scholar] [CrossRef]
- Gdala, J. Composition, Properties, and Nutritive Value of Dietary Fibre of Legume Seeds. A Review. J. Anim. Feed. Sci. 1998, 7, 131–150. [Google Scholar] [CrossRef]
- Fustec, J.; Lesuffleur, F.; Mahieu, S.; Cliquet, J.-B. Nitrogen Rhizodeposition of Legumes. A Review. Agron. Sustain. Dev. 2010, 30, 57–66. [Google Scholar] [CrossRef]
- Monti, M.; Pellicanò, A.; Pristeri, A.; Badagliacca, G.; Preiti, G.; Gelsomino, A. Cereal/Grain Legume Intercropping in Rotation with Durum Wheat in Crop/Livestock Production Systems for Mediterranean Farming System. Field Crops Res. 2019, 240, 23–33. [Google Scholar] [CrossRef]
- Lithourgidis, A.S.; Dhima, K.V.; Vasilakoglou, I.B.; Dordas, C.A.; Yiakoulaki, M.D. Sustainable Production of Barley and Wheat by Intercropping Common Vetch. Agron. Sustain. Dev. 2007, 27, 95–99. [Google Scholar] [CrossRef]
- Stomph, T.; Dordas, C.; Baranger, A.; de Rijk, J.; Dong, B.; Evers, J.; Gu, C.; Li, L.; Simon, J.; Jensen, E.S.; et al. Chapter One-Designing Intercrops for High Yield, Yield Stability and Efficient Use of Resources: Are There Principles? In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: Cambridge, MA, USA, 2020; Volume 160, pp. 1–50. [Google Scholar]
- Bedoussac, L.; Journet, E.-P.; Hauggaard-Nielsen, H.; Naudin, C.; Corre-Hellou, G.; Jensen, E.S.; Prieur, L.; Justes, E. Ecological Principles Underlying the Increase of Productivity Achieved by Cereal-Grain Legume Intercrops in Organic Farming. A Review. Agron. Sustain. Dev. 2015, 35, 911–935. [Google Scholar] [CrossRef]
- Yu, Y.; Stomph, T.-J.; Makowski, D.; Zhang, L.; van der Werf, W. A Meta-Analysis of Relative Crop Yields in Cereal/Legume Mixtures Suggests Options for Management. Field Crop Res. 2016, 198, 269–279. [Google Scholar] [CrossRef]
- Yu, L.; Tang, Y.; Wang, Z.; Gou, Y.; Wang, J. Nitrogen-Cycling Genes and Rhizosphere Microbial Community with Reduced Nitrogen Application in Maize/Soybean Strip Intercropping. Nutr. Cycl. Agroecosyst. 2019, 113, 35–49. [Google Scholar] [CrossRef]
- Kermah, M.; Franke, A.C.; Adjei-Nsiah, S.; Ahiabor, B.D.K.; Abaidoo, R.C.; Giller, K.E. Maize-Grain Legume Intercropping for Enhanced Resource Use Efficiency and Crop Productivity in the Guinea Savanna of Northern Ghana. Field Crops Res. 2017, 213, 38–50. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.; Yin, X.; Ren, J.; Zhang, M.; Tang, L.; Zheng, Y. Complementation Drives Higher Growth Rate and Yield of Wheat and Saves Nitrogen Fertilizer in Wheat and Faba Bean Intercropping. Field Crop Res. 2018, 221, 119–129. [Google Scholar] [CrossRef]
- Izaurralde, R.C.; McGill, W.B.; Juma, N.G. Nitrogen Fixation Efficiency, Interspecies N Transfer, and Root Growth in Barley-Field Pea Intercrop on a Black Chernozemic Soil. Biol. Fertil. Soils 1992, 13, 11–16. [Google Scholar] [CrossRef]
- Jensen, E.S. Grain Yield, Symbiotic N2 Fixation and Interspecific Competition for Inorganic N in Pea-Barley Intercrops. Plant Soil 1996, 182, 25–38. [Google Scholar] [CrossRef]
- Danso, S.K.A.; Zapata, F.; Hardarson, G.; Fried, M. Nitrogen Fixation in Fababeans as Affected by Plant Population Density in Sole or Intercropped Systems with Barley. Soil Biol. Biochem. 1987, 19, 411–415. [Google Scholar] [CrossRef]
- Rodriguez, C.; Carlsson, G.; Englund, J.-E.; Flöhr, A.; Pelzer, E.; Jeuffroy, M.-H.; Makowski, D.; Jensen, E.S. Grain Legume-Cereal Intercropping Enhances the Use of Soil-Derived and Biologically Fixed Nitrogen in Temperate Agroecosystems. A Meta-Analysis. Eur. J. Agron. 2020, 118, 126077. [Google Scholar] [CrossRef]
- Hauggaard-Nielsen, H.; Jensen, E.S. Evaluating Pea and Barley Cultivars for Complementarity in Intercropping at Different Levels of Soil N Availability. Field Crops Res. 2001, 72, 185–196. [Google Scholar] [CrossRef]
- Andersen, M.K.; Hauggaard-Nielsen, H.; Ambus, P.; Jensen, E.S. Biomass Production, Symbiotic Nitrogen Fixation and Inorganic N Use in Dual and Tri-Component Annual Intercrops. Plant Soil 2005, 266, 273–287. [Google Scholar] [CrossRef]
- Nguyen, C. Rhizodeposition of Organic C by Plant: Mechanisms and Controls. In Sustainable Agriculture; Lichtfouse, E., Navarrete, M., Debaeke, P., Véronique, S., Alberola, C., Eds.; Springer: Dordrecht, The Netherlands, 2009; pp. 97–123. ISBN 978-90-481-2666-8. [Google Scholar]
- Moyer-Henry, K.A.; Burton, J.W.; Israel, D.W.; Rufty, T.W. Nitrogen Transfer between Plants: A 15N Natural Abundance Study with Crop and Weed Species. Plant Soil 2006, 282, 7–20. [Google Scholar] [CrossRef]
- Zhang, T.; Yu, L.; Shao, Y.; Wang, J. Root and Hyphal Interactions Influence N Transfer by Arbuscular Mycorrhizal Fungi in Soybean/Maize Intercropping Systems. Fungal Ecol. 2023, 64, 101240. [Google Scholar] [CrossRef]
- Fujita, K.; Ogata, S.; Matsumoto, K.; Masuda, T.; Ofosu-Budu, G.K.; Kuwata, K. Nitrogen Transfer and Dry Matter Production in Soybean and Sorghum Mixed Cropping System at Different Population Densities. Soil Sci. Plant Nutr. 1990, 36, 233–241. [Google Scholar] [CrossRef]
- Chu, G.X.; Shen, Q.R.; Cao, J.L. Nitrogen Fixation and N Transfer from Peanut to Rice Cultivated in Aerobic Soil in an Intercropping System and Its Effect on Soil N Fertility. Plant Soil 2004, 263, 17–27. [Google Scholar] [CrossRef]
- Gungaabayar, A.; Jha, A.; Warkentin, T.; Knight, D.; Penner, G.; Biligetu, B. Forage Yield and Biological Nitrogen Fixation of Pea–Cereal Intercrops for Hay Production. Agron. J. 2023, 115, 607–619. [Google Scholar] [CrossRef]
- Corre-Hellou, G.; Fustec, J.; Crozat, Y. Interspecific Competition for Soil N and Its Interaction with N2 Fixation, Leaf Expansion and Crop Growth in Pea–Barley Intercrops. Plant Soil 2006, 282, 195–208. [Google Scholar] [CrossRef]
- Neumann, A.; Schmidtke, K.; Rauber, R. Effects of Crop Density and Tillage System on Grain Yield and N Uptake from Soil and Atmosphere of Sole and Intercropped Pea and Oat. Field Crops Res. 2007, 100, 285–293. [Google Scholar] [CrossRef]
- Hauggaard-Nielsen, H.; Gooding, M.; Ambus, P.; Corre-Hellou, G.; Crozat, Y.; Dahlmann, C.; Dibet, A.; von Fragstein, P.; Pristeri, A.; Monti, M.; et al. Pea–Barley Intercropping for Efficient Symbiotic N2-Fixation, Soil N Acquisition and Use of Other Nutrients in European Organic Cropping Systems. Field Crop Res. 2009, 113, 64–71. [Google Scholar] [CrossRef]
- Bedoussac, L.; Journet, E.-P.; Hauggaard-Nielsen, H.; Naudin, C.; Corre-Hellou, G.; Prieur, L.; Jensen, E.S.; Justes, E. Eco-Functional Intensification by Cereal-Grain Legume Intercropping in Organic Farming Systems for Increased Yields, Reduced Weeds and Improved Grain Protein Concentration. In Organic Farming, Prototype for Sustainable Agricultures; Springer: Dordrecht, The Netherlands, 2014; pp. 47–63. ISBN 978-94-007-7927-3. [Google Scholar]
- Voisin, A.-S.; Salon, C.; Munier-Jolain, N.G.; Ney, B. Quantitative Effects of Soil Nitrate, Growth Potential and Phenology on Symbiotic Nitrogen Fixation of Pea (Pisum sativum L.). Plant Soil 2002, 243, 31–42. [Google Scholar] [CrossRef]
- Naudin, C.; Corre-Hellou, G.; Voisin, A.-S.; Oury, V.; Salon, C.; Crozat, Y.; Jeuffroy, M.-H. Inhibition and Recovery of Symbiotic N2 Fixation by Peas (Pisum sativum L.) in Response to Short-Term Nitrate Exposure. Plant Soil 2011, 346, 275–287. [Google Scholar] [CrossRef]
- Zhao, F.; Sun, Z.; Feng, L.; Zhang, Y.; Feng, C.; Bai, W.; Zheng, J.; Zhang, Z.; Yang, N.; Cai, Q.; et al. Biological N Fixation but Not Mineral N Fertilization Enhances the Accumulation of N in Peanut Soil in Maize/Peanut Intercropping System. J. Agric. Food Res. 2022, 10, 100365. [Google Scholar] [CrossRef]
- Mead, R.; Willey, R.W. The Concept of a ‘Land Equivalent Ratio’ and Advantages in Yields from Intercropping. Exp. Agric. 1980, 16, 217–228. [Google Scholar] [CrossRef]
- Vandermeer, J.H. The Ecology of Intercropping; Cambridge University Press: Cambridge, UK, 1989; ISBN 978-0-521-34689-4. [Google Scholar]
- Fetene, M.; Feten, M. Intra- and Inter-Specific Competition between Seedlings of Acacia Etbaica and a Perennial Grass (Hyparrhenia hirta). J. Arid. Environ. 2003, 55, 441–451. [Google Scholar] [CrossRef]
- Kaci, G.; Ouaret, W.; Rahmoune, B. Wheat-Faba Bean Intercrops Improve Plant Nutrition, Yield, and Availability of Nitrogen (N) and Phosphorus (P) in Soil. Agron. Res. 2022, 20, 603–616. [Google Scholar] [CrossRef]
- Tavoletti, S.; Merletti, A. A Comprehensive Approach to Evaluate Durum Wheat–Faba Bean Mixed Crop Performance. Front. Plant Sci. 2022, 13, 733116. [Google Scholar] [CrossRef] [PubMed]
- Polthanee, A.; Trelo-ges, V. Growth, Yield and Land Use Efficiency of Corn and Legumes Grown under Intercropping Systems. Plant Prod. Sci. 2003, 6, 139–146. [Google Scholar] [CrossRef]
- Cowden, R.J.; Shah, A.N.; Lehmann, L.M.; Kiær, L.P.; Henriksen, C.B.; Ghaley, B.B. Nitrogen Fertilizer Effects on Pea–Barley Intercrop Productivity Compared to Sole Crops in Denmark. Sustainability 2020, 12, 9335. [Google Scholar] [CrossRef]
- Del Pozo, A.; Garnier, E.; Aronson, J. Contrasted Nitrogen Utilization in Annual C3 Grass and Legume Crops: Physiological Explorations and Ecological Considerations. Acta Oecol. 2000, 21, 79–89. [Google Scholar] [CrossRef]
- Del Pozo, A.; Pérez, P.; Gutiérrez, D.; Alonso, A.; Morcuende, R.; Martínez-Carrasco, R. Gas Exchange Acclimation to Elevated CO2 in Upper-Sunlit and Lower-Shaded Canopy Leaves in Relation to Nitrogen Acquisition and Partitioning in Wheat Grown in Field Chambers. Environ. Exp. Bot. 2007, 59, 371–380. [Google Scholar] [CrossRef]
- Yu-zheng, Z.; Han-qing, Z.; Ping, L.; Dong-sheng, Z.; Xing-yu, H.; Zhi-qiang, G. Leaf Nitrogen Have a Better Relationship with Photosynthesis Performance across Wheat Species under Elevated CO2 and Drought. Plant Physiol. Biochem. 2021, 166, 964–973. [Google Scholar] [CrossRef] [PubMed]
- Dordas, C.A.; Lithourgidis, A.S.; Matsi, T.; Barbayiannis, N. Application of Liquid Cattle Manure and Inorganic Fertilizers Affect Dry Matter, Nitrogen Accumulation, and Partitioning in Maize. Nutr. Cycl. Agroecosyst. 2008, 80, 283–296. [Google Scholar] [CrossRef]
- Lithourgidis, A.S.; Dordas, C.A. Forage Yield, Growth Rate, and Nitrogen Uptake of Faba Bean Intercrops with Wheat, Barley, and Rye in Three Seeding Ratios. Crop Sci. 2010, 50, 2148–2158. [Google Scholar] [CrossRef]
- Tosti, G.; Guiducci, M. Durum Wheat–Faba Bean Temporary Intercropping: Effects on Nitrogen Supply and Wheat Quality. Eur. J. Agron. 2010, 33, 157–165. [Google Scholar] [CrossRef]
- Suryapani, S.; Umar, S.; Malik, A.A.; Ahmad, A. Symbiotic Nitrogen Fixation by Lentil Improves Biochemical Characteristics and Yield of Intercropped Wheat Under Low Fertilizer Input. J. Crop Improv. 2013, 27, 53–66. [Google Scholar] [CrossRef]
- Amani Machiani, M.; Javanmard, A.; Morshedloo, M.R.; Maggi, F. Evaluation of Competition, Essential Oil Quality and Quantity of Peppermint Intercropped with Soybean. Ind. Crops Prod. 2018, 111, 743–754. [Google Scholar] [CrossRef]
- Duan, Y.; Shen, J.; Zhang, X.; Wen, B.; Ma, Y.; Wang, Y.; Fang, W.; Zhu, X. Effects of Soybean–Tea Intercropping on Soil-Available Nutrients and Tea Quality. Acta Physiol. Plant 2019, 41, 140. [Google Scholar] [CrossRef]
- Cartelat, A.; Cerovic, Z.G.; Goulas, Y.; Meyer, S.; Lelarge, C.; Prioul, J.-L.; Barbottin, A.; Jeuffroy, M.-H.; Gate, P.; Agati, G.; et al. Optically Assessed Contents of Leaf Polyphenolics and Chlorophyll as Indicators of Nitrogen Deficiency in Wheat (Triticum aestivum L.). Field Crops Res. 2005, 91, 35–49. [Google Scholar] [CrossRef]
- Wang, R.; Sun, Z.; Bai, W.; Wang, E.; Wang, Q.; Zhang, D.; Zhang, Y.; Yang, N.; Liu, Y.; Nie, J.; et al. Canopy Heterogeneity with Border-Row Proportion Affects Light Interception and Use Efficiency in Maize/Peanut Strip Intercropping. Field Crops Res. 2021, 271, 108239. [Google Scholar] [CrossRef]
- Pellicanò, A.; Romeo, M.; Pristeri, A.; Preiti, G.; Monti, M. Cereal-Pea Intercrops to Improve Sustainability in Bioethanol Production. Agron. Sustain. Dev. 2015, 35, 827–835. [Google Scholar] [CrossRef]
- Szumigalski, A.R.; Van Acker, R.C. Land Equivalent Ratios, Light Interception, and Water Use in Annual Intercrops in the Presence or Absence of In-Crop Herbicides. Agron. J. 2008, 100, 1145–1154. [Google Scholar] [CrossRef]
- Du, X.; Chen, B.; Shen, T.; Zhang, Y.; Zhou, Z. Effect of Cropping System on Radiation Use Efficiency in Double-Cropped Wheat–Cotton. Field Crops Res. 2015, 170, 21–31. [Google Scholar] [CrossRef]
- Liu, X.; Rahman, T.; Song, C.; Yang, F.; Su, B.; Cui, L.; Bu, W.; Yang, W. Relationships among Light Distribution, Radiation Use Efficiency and Land Equivalent Ratio in Maize-Soybean Strip Intercropping. Field Crops Res. 2018, 224, 91–101. [Google Scholar] [CrossRef]
- Jensen, E.S.; Carlsson, G.; Hauggaard-Nielsen, H. Intercropping of Grain Legumes and Cereals Improves the Use of Soil N Resources and Reduces the Requirement for Synthetic Fertilizer N: A Global-Scale Analysis. Agron. Sustain. Dev. 2020, 40, 5. [Google Scholar] [CrossRef]
- Boutagayout, A.; Belmalha, S.; Nassiri, L.; El Alami, N.; Jiang, Y.; Lahlali, R.; Bouiamrine, E.H. Weed Competition, Land Equivalent Ratio and Yield Potential of Faba Bean (Vicia faba L.)-Cereals (Triticum aestivum L. and/or Avena sativa L.) Intercropping under Low-Input Conditions in Meknes Region, Morocco. Vegetos 2023, 1–14. [Google Scholar] [CrossRef]
- Nurgi, N.; Tana, T.; Dechassa, N.; Tesso, B.; Alemayehu, Y. Effect of Spatial Arrangement of Faba Bean Variety Intercropping with Maize on Yield and Yield Components of the Crops. Heliyon 2023, 9, e16751. [Google Scholar] [CrossRef]
- Bedoussac, L.; Justes, E. A Comparison of Commonly Used Indices for Evaluating Species Interactions and Intercrop Efficiency: Application to Durum Wheat–Winter Pea Intercrops. Field Crops Res. 2011, 124, 25–36. [Google Scholar] [CrossRef]
- Sahota, T.S.; Malhi, S.S. Intercropping Barley with Pea for Agronomic and Economic Considerations in Northern Ontario. Agric. Sci. 2012, 3, 889–895. [Google Scholar] [CrossRef]
- Monti, M.; Pellicanò, A.; Santonoceto, C.; Preiti, G.; Pristeri, A. Yield Components and Nitrogen Use in Cereal-Pea Intercrops in Mediterranean Environment. Field Crop Res. 2016, 196, 379–388. [Google Scholar] [CrossRef]
- Dhima, K.V.; Vasilakoglou, I.B.; Keco, R.X.; Dima, A.K.; Paschalidis, K.A.; Gatsis, T.D. Forage Yield and Competition Indices of Faba Bean Intercropped with Oat. Grass Forage Sci. 2014, 69, 376–383. [Google Scholar] [CrossRef]
- Ghaley, B.B.; Hauggaard-Nielsen, H.; Høgh-Jensen, H.; Jensen, E.S. Intercropping of Wheat and Pea as Influenced by Nitrogen Fertilization. Nutr. Cycl. Agroecosyst. 2005, 73, 201–212. [Google Scholar] [CrossRef]
- Brooker, R.W.; Bennett, A.E.; Cong, W.-F.; Daniell, T.J.; George, T.S.; Hallett, P.D.; Hawes, C.; Iannetta, P.P.M.; Jones, H.G.; Karley, A.J.; et al. Improving Intercropping: A Synthesis of Research in Agronomy, Plant Physiology and Ecology. New Phytol. 2015, 206, 107–117. [Google Scholar] [CrossRef]
- Jensen, E.S.; Bedoussac, L.; Carlsson, G.; Journet, E.-P.; Justes, E.; Hauggaard-Nielsen, H. Enhancing Yields in Organic Crop Production by Eco-Functional Intensification. Sustain. Agric. Res. 2015, 4, 42–50. [Google Scholar] [CrossRef]
- Saia, S.; Urso, V.; Amato, G.; Frenda, A.S.; Giambalvo, D.; Ruisi, P.; Di Miceli, G. Mediterranean Forage Legumes Grown Alone or in Mixture with Annual Ryegrass: Biomass Production, N2 Fixation, and Indices of Intercrop Efficiency. Plant Soil 2016, 402, 395–407. [Google Scholar] [CrossRef]
- Bacchi, M.; Monti, M.; Calvi, A.; Lo Presti, E.; Pellicanò, A.; Preiti, G. Forage Potential of Cereal/Legume Intercrops: Agronomic Performances, Yield, Quality Forage and LER in Two Harvesting Times in a Mediterranean Environment. Agronomy 2021, 11, 121. [Google Scholar] [CrossRef]
- Guinet, M.; Nicolardot, B.; Revellin, C.; Durey, V.; Carlsson, G.; Voisin, A.-S. Comparative Effect of Inorganic N on Plant Growth and N2 Fixation of Ten Legume Crops: Towards a Better Understanding of the Differential Response among Species. Plant Soil 2018, 432, 207–227. [Google Scholar] [CrossRef]
- Liu, Y.; Yin, X.; Xiao, J.; Tang, L.; Zheng, Y. Interactive Influences of Intercropping by Nitrogen on Flavonoid Exudation and Nodulation in Faba Bean. Sci. Rep. 2019, 9, 4818. [Google Scholar] [CrossRef] [PubMed]
- Banik, P.; Sharma, R.C. Yield and Resource Utilization Efficiency in Baby Corn—Legume-Intercropping System in the Eastern Plateau of India. J. Sustain. Agric. 2009, 33, 379–395. [Google Scholar] [CrossRef]
- Li, Y.-Y.; Yu, C.-B.; Cheng, X.; Li, C.-J.; Sun, J.-H.; Zhang, F.-S.; Lambers, H.; Li, L. Intercropping Alleviates the Inhibitory Effect of N Fertilization on Nodulation and Symbiotic N2 Fixation of Faba Bean. Plant Soil 2009, 323, 295–308. [Google Scholar] [CrossRef]
- Hu, F.; Zhao, C.; Feng, F.; Chai, Q.; Mu, Y.; Zhang, Y. Improving N Management through Intercropping Alleviates the Inhibitory Effect of Mineral N on Nodulation in Pea. Plant Soil 2017, 412, 235–251. [Google Scholar] [CrossRef]
- Hauggaard-Nielsen, H.; Andersen, M.K.; Jørnsgaard, B.; Jensen, E.S. Density and Relative Frequency Effects on Competitive Interactions and Resource Use in Pea–Barley Intercrops. Field Crop Res. 2006, 95, 256–267. [Google Scholar] [CrossRef]
- Zhao, C.; Fan, Z.; Coulter, J.A.; Yin, W.; Hu, F.; Yu, A.; Fan, H.; Chai, Q. High Maize Density Alleviates the Inhibitory Effect of Soil Nitrogen on Intercropped Pea. Agronomy 2020, 10, 248. [Google Scholar] [CrossRef]
- Thilakarathna, M.S.; McElroy, M.S.; Chapagain, T.; Papadopoulos, Y.A.; Raizada, M.N. Belowground Nitrogen Transfer from Legumes to Non-Legumes under Managed Herbaceous Cropping Systems. A Review. Agron. Sustain. Dev. 2016, 36, 58. [Google Scholar] [CrossRef]
- Naudin, C.; Corre-Hellou, G.; Pineau, S.; Crozat, Y.; Jeuffroy, M.-H. The Effect of Various Dynamics of N Availability on Winter Pea–Wheat Intercrops: Crop Growth, N Partitioning and Symbiotic N2 Fixation. Field Crop Res. 2010, 119, 2–11. [Google Scholar] [CrossRef]
- Wang, X.; Gao, Y.; Zhang, H.; Shao, Z.; Sun, B.; Gao, Q. Enhancement of Rhizosphere Citric Acid and Decrease of NO3−/NH4+ Ratio by Root Interactions Facilitate N Fixation and Transfer. Plant Soil 2020, 447, 169–182. [Google Scholar] [CrossRef]
- Bedoussac, L.; Justes, E. The Efficiency of a Durum Wheat-Winter Pea Intercrop to Improve Yield and Wheat Grain Protein Concentration Depends on N Availability during Early Growth. Plant Soil 2010, 330, 19–35. [Google Scholar] [CrossRef]
- Jiao, N.; Wang, F.; Ma, C.; Zhang, F.; Jensen, E.S. Interspecific Interactions of Iron and Nitrogen Use in Peanut (Arachis hypogaea L.)-Maize (Zea mays L.) Intercropping on a Calcareous Soil. Eur. J. Agron. 2021, 128, 126303. [Google Scholar] [CrossRef]
- Zhu, S.-G.; Zhu, H.; Zhou, R.; Zhang, W.; Wang, W.; Zhou, Y.-N.; Wang, B.-Z.; Yang, Y.-M.; Wang, J.; Tao, H.-Y.; et al. Intercrop Overyielding Weakened by High Inputs: Global Meta-Analysis with Experimental Validation. Agric. Ecosyst. Environ. 2023, 342, 108239. [Google Scholar] [CrossRef]
- Li, C.; Hoffland, E.; Kuyper, T.W.; Yu, Y.; Zhang, C.; Li, H.; Zhang, F.; van der Werf, W. Syndromes of Production in Intercropping Impact Yield Gains. Nat. Plants 2020, 6, 653–660. [Google Scholar] [CrossRef]
- Unkovich, M.; Herridge, D.; Peoples, M.; Cadisch, G.; Boddey, B.; Giller, K.; Alves, B.; Chalk, P.M. Measuring Plant-Associated Nitrogen Fixation in Agricultural Systems; ACIAR Monograph; Australian Centre for International Agricultural Research: Canberra, ACT, Australia, 2008. [Google Scholar]
- Kohl, D.H.; Shearer, G. Isotopic Fractionation Associated with Symbiotic N2 Fixation and Uptake of NO3− by Plants. Plant Physiol. 1980, 66, 51–56. [Google Scholar] [CrossRef]
Factors | Variable | df | F-Value | p-Value |
---|---|---|---|---|
A: Plant density | V. faba shoot DM | 2 | 10.20 | <0.001 *** |
B: N dose | 2 | 3.11 | 0.06 | |
A × B | 4 | 0.23 | 0.92 | |
A: Plant density | P. sativum shoot DM | 2 | 11.17 | <0.001 *** |
B: N dose | 2 | 40.36 | <0.001 *** | |
A × B | 4 | 3.23 | 0.03 * | |
A: Plant density | V. faba nodule DM | 2 | 6.19 | 0.006 ** |
B: N dose | 2 | 1.44 | 0.25 | |
A × B | 4 | 0.39 | 0.81 | |
A: Plant density | P. sativum nodule DM | 2 | 3.08 | 0.12 |
B: N dose | 2 | 0.95 | 0.40 | |
A × B | 4 | 2.03 | 0.12 | |
A: Plant density | LER for V. faba | 1 | 0.94 | 0.35 |
B: N dose | 2 | 38.3 | <0.001 *** | |
A × B | 2 | 0.09 | 0.91 | |
A: Plant density | LER for P. sativum | 1 | 0.93 | 0.35 |
B: N dose | 2 | 2.16 | 0.14 | |
A × B | 2 | 0.12 | 0.88 |
Factors | Variable | df | F-Value | p-Value |
---|---|---|---|---|
A: Plant density | %Ndfa V. faba | 2 | 9.96 | <0.001 *** |
B: N level | 2 | 57.5 | <0.001 *** | |
A × B | 4 | 0.32 | 0.86 | |
A: Plant density | %Ndfa P. sativum | 2 | 72.3 | <0.00 *** |
B: N level | 2 | 56.3 | <0.001 *** | |
A × B | 4 | 7.07 | <0.001 *** | |
A: Plant density | %N transferred V. faba | 1 | 0.87 | 0.36 |
B: N level | 2 | 3.74 | 0.04 * | |
A × B | 4 | 0.38 | 0.68 | |
A: Plant density | %N transferred P. sativum | 1 | 0.06 | 0.80 |
B: N level | 2 | 15.8 | <0.001 *** | |
A × B | 4 | 1.05 | 0.37 | |
A: Plant density | LERN V. faba | 1 | 2.22 | 0.15 |
B: N level | 2 | 8.02 | 0.004 ** | |
A × B | 2 | 2.60 | 0.10 | |
A: Plant density | LERN P. sativum | 1 | 0.008 | 0.93 |
B: N level | 2 | 0.93 | 0.41 | |
A × B | 2 | 0.03 | 0.96 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salinas-Roco, S.; Morales-González, A.; Espinoza, S.; Pérez-Díaz, R.; Carrasco, B.; del Pozo, A.; Cabeza, R.A. N2 Fixation, N Transfer, and Land Equivalent Ratio (LER) in Grain Legume–Wheat Intercropping: Impact of N Supply and Plant Density. Plants 2024, 13, 991. https://doi.org/10.3390/plants13070991
Salinas-Roco S, Morales-González A, Espinoza S, Pérez-Díaz R, Carrasco B, del Pozo A, Cabeza RA. N2 Fixation, N Transfer, and Land Equivalent Ratio (LER) in Grain Legume–Wheat Intercropping: Impact of N Supply and Plant Density. Plants. 2024; 13(7):991. https://doi.org/10.3390/plants13070991
Chicago/Turabian StyleSalinas-Roco, Sebastian, Amanda Morales-González, Soledad Espinoza, Ricardo Pérez-Díaz, Basilio Carrasco, Alejandro del Pozo, and Ricardo A. Cabeza. 2024. "N2 Fixation, N Transfer, and Land Equivalent Ratio (LER) in Grain Legume–Wheat Intercropping: Impact of N Supply and Plant Density" Plants 13, no. 7: 991. https://doi.org/10.3390/plants13070991
APA StyleSalinas-Roco, S., Morales-González, A., Espinoza, S., Pérez-Díaz, R., Carrasco, B., del Pozo, A., & Cabeza, R. A. (2024). N2 Fixation, N Transfer, and Land Equivalent Ratio (LER) in Grain Legume–Wheat Intercropping: Impact of N Supply and Plant Density. Plants, 13(7), 991. https://doi.org/10.3390/plants13070991