Romanian Wild-Growing Chelidonium majus—An Emerging Approach to a Potential Antimicrobial Engineering Carrier System Based on AuNPs: In Vitro Investigation and Evaluation
Abstract
:1. Introduction
2. Results and Discussion
2.1. Mass Spectrometry Analysis of Chelidonium majus Sample
2.2. Screening and Classification of the Differential Phytoconstituents
2.3. Phyto-Nanocarrier System
2.4. FT-IR and Raman Spectroscopy
2.5. Raman Spectroscopy
2.6. X-Ray-Diffraction Spectroscopy (XRD)
2.7. Scanning Electron Microscopy (SEM)
2.8. Dynamic Light Scattering (DLS)
2.9. Thermal Properties
2.10. In Vitro Dissolution Testing
2.11. Screening of Antioxidant Activity
3. Materials and Methods
3.1. Plant Samples’ Preparation for Chemical Screening
3.1.1. GC-MS Analysis
GC–MS Separation Conditions
3.1.2. Mass Spectrometry
3.2. CG-AuNPs Carrier System Preparation
3.2.1. The synthesis of AuNPs was achieved according to the procedure described in our earlier publication [18]
3.2.2. CG-AuNPs Carrier System
3.3. Characterization of Novel Carrier System and Raw Materials
3.3.1. Fourier Transform Infrared (FT-IR) Spectroscopy
3.3.2. XRD Spectroscopy
3.3.3. Scanning Electron Microscopy (SEM)
3.3.4. Dynamic Light Scattering (DLS) Particle Size Distribution Analysis
3.3.5. Thermal Analysis
3.4. Antioxidant Activity
3.4.1. Folin–Ciocalteu Assay
3.4.2. The Flavonoid Content Assay
3.4.3. Ferric Reducing Antioxidant Power Assay (FRAP)
3.4.4. DPPH Radical Scavenging Assay
3.5. In Vitro Dissolution Test
Preparation of the Curves of the Concentrations for the Compound Dissolution Profile
3.6. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tutin, T.G.; Burges, N.A.; Chater, A.O.; Edmonson, J.R.; Heywood, V.H.; Moore, D.M.; Valentine, D.H.; Walters, S.M.; Webb, D.A. Flora Europaea; Cambridge University Press: Cambridge, UK, 1996; Volume 1. [Google Scholar]
- Biswas, S. Chelidonium majus L.—A Review on pharmacological activities and clinical effects. J. Med. Plants 2013, 2, 238–245. [Google Scholar]
- Dumitru, M.G.; Gănescu, A. Antioxidant activity of alcoholic extract of Chelidonium majus L. flowers. Ann. Univ. Craiova Chem. Ser. 2022, XLVIII, 63–69. [Google Scholar] [CrossRef]
- Salavastru, C.M. Traditional and ethnobotanical dermatology practices in Romania and other Eastern European countries. Clin. Dermatol. 2018, 36, 338–352. [Google Scholar]
- Dumitriu Buzia, O.; Ion, G.M.; Earar, K.; Gurau, G.; Mardare, N. Antimicrobial activity of Chelidonium species majus L. Med. Mater. 2022, 2, 31–38. [Google Scholar] [CrossRef]
- Krizhanovska, V.; Sile, I.; Kronberga, A.; Nakurte, I.; Mezaka, I.; Dambrova, M.; Pugovics, O.; Grinberga, S. The cultivation of Chelidonium majus L. increased the total alkaloid content and cytotoxic activity compared with those of wild-grown plants. Plants 2021, 10, 1971. [Google Scholar] [CrossRef]
- Musidlak, O.; Warowicka, A.; Broniarczyk, J.; Adamczyk, D.; Goździcka-Józefiak, A.; Nawrot, R. The activity of Chelidonium majus L. latex and its components on HPV reveal insights into the antiviral molecular mechanism. Int. J. Mol. Sci. 2022, 23, 9241. [Google Scholar] [CrossRef]
- Parsania, A.; Pouriayevali, M.H.; Parsania, M.; Ghorbani, M. Chelidonium majus L. alkaloid extract enhances TRAIL-induced apoptosis in HeLa cell line through death receptors 4 and 5 upregulation. Gene Rep. 2021, 25, 101311. [Google Scholar] [CrossRef]
- Palombo, E.A. Traditional medicinal plant extracts and natural products with activity against oral bacteria: Potential application in the prevention and treatment of oral diseases. Evid. Based Complement. Altern. Med. 2011, 2011, 680354. [Google Scholar] [CrossRef]
- Krzyżek, P.; Junka, A.; Słupski, W.; Dołowacka-Jóźwiak, A.; Płachno, B.J.; Sobiecka, A.; Matkowski, A.; Chodaczek, G.; Płusa, T.; Gościniak, G.; et al. Antibiofilm and antimicrobial-enhancing activity of Chelidonium majus and Corydalis cheilanthifolia extracts against multidrug-resistant Helicobacter pylori. Pathogens 2021, 10, 1033. [Google Scholar] [CrossRef]
- Arora, D.; Sharma, A. A review on phytochemical and pharmacological potential of genus Chelidonium. Pharmacogn. J. 2013, 5, 184–190. [Google Scholar] [CrossRef]
- Choi, H.A.; Ahn, S.O.; Lim, H.D.; Kim, G.J. Growth suppression of a gingivitis and skin pathogen Cutibacterium (Propionibacterium) acnes by medicinal plant extracts. Antibiotics 2021, 10, 1092. [Google Scholar] [CrossRef]
- Madjeed Haddao, K.; Dawood Saleem, H.; Hameed, N.M.; Mahdi Rheima, A.; Alkhafaje, W.K.; Abood, E.S.; Hussein, H.A.; Al-Aboudy, F.K.H.; Alwan, N.H.; Al-Dahy, L.B. Investigation of in vitro cytotoxicity of Chelidonium majus against Leishmania major. Arch. Razi Inst. 2022, 77, 1211–1214. [Google Scholar]
- Zielińska, S.; Jezierska-Domaradzka, A.; Wójciak-Kosior, M.; Sowa, I.; Junka, A.; Matkowski, A.M. Greater Celandine’s ups and downs—21 centuries of medicinal uses of Chelidonium majus from the viewpoint of today’s pharmacology. Front. Pharmacol. 2018, 9, 299. [Google Scholar] [CrossRef]
- Maji, A.; Banerji, P. Chelidonium majus L. (Greater celandine)—A review on its phytochemical and therapeutic perspectives. Int. J. Herb. Med. 2015, 3, 10–27. [Google Scholar] [CrossRef]
- Dewi, M.K.; Chaerunisaa, A.Y.; Muhaimin, M.; Joni, I.M. Improved activity of herbal medicines through nanotechnology. Nanomaterials 2022, 12, 4073. [Google Scholar] [CrossRef]
- Nasim, N.; Sandeep, I.S.; Mohanty, S. Plant-derived natural products for drug discovery: Current approaches and prospects. Nucleus 2022, 65, 399–411. [Google Scholar] [CrossRef]
- Segneanu, A.-E.; Marin, C.N.; Herea, D.D.; Stanusoiu, I.; Muntean, C.; Grozescu, I. Romanian Viscum album L.—Untargeted low-molecular metabolomic approach to engineered viscum–AuNPs carrier assembly. Plants 2022, 11, 1820. [Google Scholar] [CrossRef]
- Huang, H.; Liu, R.; Yang, J.; Dai, J.; Fan, S.; Pi, J.; Wei, Y.; Guo, X. Gold nanoparticles: Construction for drug delivery and application in cancer immunotherapy. Pharmaceutics 2023, 15, 1868. [Google Scholar] [CrossRef]
- Timoszyk, A.; Grochowalska, R. Mechanism and antibacterial activity of gold nanoparticles (AuNPs) functionalized with natural compounds from plants. Pharmaceutics 2022, 14, 2599. [Google Scholar] [CrossRef]
- Al-Fahham, B.; Mohamed, R.; Al-Talqani, J.; Fahad, A.; Haider, J. Evaluating antimicrobial effectiveness of gold nanoparticles against Streptococcus oralis. Int. J. Dent. 2023, 2023, 1–8. [Google Scholar] [CrossRef]
- Boomi, P.; Ganesan, R.; Prabu Poorani, G.; Jegatheeswaran, S.; Balakumar, C.; Gurumallesh Prabu, H.; Anand, K.; Marimuthu Prabhu, N.; Jeyakanthan, J.; Saravanan, M. Phyto-engineered gold nanoparticles (AuNPs) with potential antibacterial, antioxidant, and wound healing activities under in vitro and in vivo conditions. Int. J. Nanomed. 2020, 15, 7553–7568. [Google Scholar] [CrossRef]
- Dong, Z.; Lin, Y.; Xu, S.; Chang, L.; Zhao, X.; Mei, X.; Gao, X. NIR-triggered tea polyphenol-modified gold nanoparticles-loaded hydrogel treats periodontitis by inhibiting bacteria and inducing bone regeneration. Mater. Des. 2023, 225, 111487. [Google Scholar] [CrossRef]
- Martínez-Cuazitl, A.; Gómez-García, M.d.C.; Pérez-Mora, S.; Rojas-López, M.; Delgado-Macuil, R.J.; Ocampo-López, J.; Vázquez-Zapién, G.J.; Mata-Miranda, M.M.; Pérez-Ishiwara, D.G. Polyphenolic compounds nanostructurated with gold nanoparticles enhance wound repair. Int. J. Mol. Sci. 2023, 24, 17138. [Google Scholar] [CrossRef]
- Chang, L.; Dong, S.; Wang, X.; Xu, H.; Liu, C.; Yang, X.; Wu, S.; Jiang, X.; Kan, M.; Xu, C. Research progress of polyphenols in nanoformulations for antibacterial application. Mater. Today Bio 2023, 21, 100729. [Google Scholar]
- Majeric, P.; Jovic, Z.; Švarc, T.; Jelen, Ž.; Horvat, A.; Koruga, D.; Rudolf, R. Physicochemical properties of gold nanoparticles for skin care creams. Materials 2023, 16, 3011. [Google Scholar] [CrossRef]
- Ahari, H.; Fakhrabadipour, M.; Paidari, S.; Goksen, G.; Xu, B. Role of AuNPs in active food packaging improvement: A review. Molecules 2022, 27, 8027. [Google Scholar] [CrossRef]
- Teschke, R.; Glass, X.; Schulze, J. Herbal hepatotoxicity by greater celandine (Chelidonium majus): Causality assessment of 22 spontaneous reports. Regul. Toxicol. Pharmacol. 2011, 61, 282–291. [Google Scholar] [CrossRef]
- Pantano, F.; Mannocchi, G.; Marinelli, E.; Gentili, S.; Graziano, S.; Busardò, F.; Luca, N. Hepatotoxicity induced by greater celandine (Chelidonium majus L.): A review of the literature. Eur. Rev. Med. Pharmacol. Sci. 2017, 21, 46–52. [Google Scholar]
- Guo, Z.; Su, H.; Cai, R.; Ma, X. Determination of isoquinoline alkaloids in extracts of Chelidonium majus L. using emulsion liquid membrane extraction and GC/MS. Med. E Investig. 2016, 4, 3–9. [Google Scholar] [CrossRef]
- Fik, E.; Dalgalarrondo, M.; Haertlé, T.; Goździcka-Józefiak, A. Comparative biochemical analysis of lectin and nuclease from Chelidonium majus L. Acta Biochim. Pol. 2000, 47, 413–420. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Z.; Xu, M.; Xiao, Z.; Liu, C.; Du, B.; Xu, D.; Li, L. Signal molecules regulate the synthesis of secondary metabolites in the interaction between endophytes and medicinal plants. Processes 2023, 11, 849. [Google Scholar] [CrossRef]
- Zielińska, S.; Czerwińska, M.E.; Dryś, A.; Kucharski, M.; Płachno, B.J.; Matkowski, A. Modulatory effect of Chelidonium majus extract and its alkaloids on LPS-stimulated cytokine secretion in human neutrophils. Molecules 2020, 25, 842. [Google Scholar] [CrossRef]
- Segneanu, A.-E.; Damian, D.; Hulka, I.; Grozescu, I.; Salifoglou, A. A simple and rapid method for calixarene-based selective extraction of bioactive molecules from natural products. Amino Acids 2016, 48, 849–858. [Google Scholar] [CrossRef]
- Segneanu, A.E.; Grozescu, I.; Sfirloaga, P. The influence of extraction process parameters of some biomaterials precursors from Helianthus annuus. Dig. J. Nanomater. Biostruct. 2013, 8, 1423–1433. [Google Scholar]
- Segneanu, A.E.; Grozescu, I.; Cziple, F.; Berki, D.; Damian, D.; Niculite, C.M.; Florea, A.; Leabu, M. Helleborus purpurascens—Amino acid and peptide analysis linked to the chemical and antiproliferative properties of the extracted compounds. Molecules 2015, 20, 22170–22218. [Google Scholar] [CrossRef]
- Harmănescu, M.A.; Moisuc, F.R.; Drăgan, S.; Gergen, I. Total polyphenols content determination in complex matrix of medicinal plants from Romania by NIR spectroscopy. Bull. UASVM Agric. 2008, 65, 123–128. [Google Scholar]
- Parvu, M.; Vlase, L.; Fodorpataki, L.; Parvu, O.; Rosca-Casian, O.; Bartha, C.; Barbu-Tudoran, L.; Parvu, A.E. Chemical composition of celandine (Chelidonium majus L.) extract and its effects on Botrytis tulipae (Lib.) Lind fungus and the tulip. Not. Bot. Horti Agrobot. Cluj-Napoca 2013, 41, 414–426. [Google Scholar] [CrossRef]
- Omari, K.W.; Besaw, J.E.; Kerton, F.M. Hydrolysis of chitosan to yield levulinic acid and 5-hydroxymethylfurfural in water under microwave irradiation. Green Chem. 2012, 14, 1480. [Google Scholar] [CrossRef]
- Hesami, S.; Safi, S.; Larijani, K.; Badi, H.N.; Abdossi, V.; Hadidi, M. Synthesis and characterization of chitosan nanoparticles loaded with greater celandine (Chelidonium majus L.) essential oil as an anticancer agent on MCF-7 cell line. Int. J. Biol. Macromol. 2022, 194, 974–981. [Google Scholar] [CrossRef]
- Pantami, H.A.; Ahamad Bustamam, M.S.; Lee, S.Y.; Ismail, I.S.; Mohd Faudzi, S.M.; Nakakuni, M.; Shaari, K. Comprehensive GC-MS and LC-MS/MS metabolite profiling of Chlorella vulgaris. Mar. Drugs 2020, 18, 367. [Google Scholar] [CrossRef]
- Gutierrez, R.M.P.; Vargas Solis, R.; Gutierrez, G.D.; Martinez-Martinez, F.J. Identification of benzophenanthridine alkaloids from Bocconia arborea by gas chromatography-mass spectrometry. Phytochem. Anal. 2002, 13, 177–180. [Google Scholar] [CrossRef]
- Naglaa, R.A.; Kasem, F.A.; Mannaa, K.G.; Abdel-Wahhab, H.H.; Gomaa, H.F. Preventive efficiency of Chelidonium majus ethanolic extract against aflatoxin B1 induced neurochemical deteriorations in Rats. Pak. J. Biol. Sci. 2022, 25, 234–244. [Google Scholar]
- Debnath, B.; Singh, W.S.; Das, M.; Goswami, S.; Singh, M.K.; Maiti, D.; Manna, K. Role of plant alkaloids on human health: A review of biological activities. Mater. Today Chem. 2018, 9, 56–72. [Google Scholar] [CrossRef]
- Aryal, B.; Raut, B.K.; Bhattarai, S.; Bhandari, S.; Tandan, P.; Gyawali, K.; Sharma, K.; Ranabhat, D.; Thapa, R.; Aryal, D.; et al. Potential therapeutic applications of plant-derived alkaloids against inflammatory and neurodegenerative diseases. Evid. -Based Complement. Altern. Med. 2022, 2022, 7299778. [Google Scholar] [CrossRef]
- Gu, C.; Mao, X.; Chen, D.; Yu, B.; Yang, Q. Isoleucine plays an important role for maintaining immune function. Curr. Protein Pept. Sci. 2019, 20, 644–651. [Google Scholar] [CrossRef]
- Dhama, K.; Karthik, K.; Khandia, R.; Munjal, A.; Tiwari, R.; Rana, R.; Khurana, S.K.; Ullah, S.; Khan, R.U.; Alagawany, M.; et al. Medicinal and therapeutic potential of herbs and plant metabolites/Extracts countering viral pathogens-current knowledge and future prospects. Curr. Drug Metab. 2018, 19, 236–263. [Google Scholar] [CrossRef]
- Wei, Z.; Liu, X.; Cheng, C.; Yu, W.; Yi, P. Metabolism of amino acids in cancer. Front. Cell Dev. Biol. 2021, 8, 603837. [Google Scholar] [CrossRef]
- Pant, A.; Yang, Z. Asparagine: An Achilles heel of virus replication? ACS Infect. Dis. 2020, 6, 2301–2303. [Google Scholar] [CrossRef]
- Melano, I.; Kuo, L.; Lo, C.; Sung, W.; Tien, N.; Su, C. Effects of basic amino acids and their derivatives on SARS-CoV-2 and influenza-a virus infection. Viruses 2021, 13, 1301. [Google Scholar] [CrossRef]
- Ji, Y.; Hou, Y.; Blachier, F.; Wu, Z. Editorial: Amino acids in intestinal growth and health. Front. Nutr. 2023, 10, 1172548. [Google Scholar] [CrossRef]
- Cheng, J.; Tang, J.; Pan, M.; Chen, S.; Zhao, D.; Zhang, Y.; Lei, R.X.; Wang, S.; Liu, A.C.; Chen, J.; et al. L-lysine confers neuroprotection by suppressing inflammatory response via microRNA-575/PTEN signaling after mouse intracerebral hemorrhage injury. Exp. Neurol. 2020, 327, 113214. [Google Scholar] [CrossRef]
- Theodosis-Nobelos, P.; Papagiouvannis, G.; Tziona, P.; Kourounakis, P.N.; Rekka, E.A. Antioxidant serine-(NSAID) hybrids with anti-inflammatory and hypolipidemic potency. Molecules 2021, 26, 4060. [Google Scholar] [CrossRef]
- Zhang, Y.; Cai, P.; Cheng, G.; Zhang, Y. A brief review of phenolic compounds identified from plants: Their extraction, analysis, and biological activity. Nat. Prod. Commun. 2022, 17, 1–14. [Google Scholar] [CrossRef]
- Ntalouka, F.; Tsirivakou, A. Luteolin: A promising natural agent in the management of pain in chronic conditions. Front. Pain Res. 2023, 4, 1114428. [Google Scholar] [CrossRef]
- Aghababaei, F.; Hadidi, M. Recent advances in potential health benefits of quercetin. Pharmaceuticals 2023, 16, 1020. [Google Scholar] [CrossRef]
- Alqudah, A.; Qnais, E.Y.; Wedyan, M.A.; Altaber, S.; Bseiso, Y.; Oqal, M.; AbuDalo, R.; Alrosan, K.; Alrosan, A.Z.; Melhim, S.B.; et al. Isorhamnetin reduces glucose level, inflammation, and oxidative stress in high-fat diet/Streptozotocin diabetic mice model. Molecules 2023, 28, 502. [Google Scholar] [CrossRef]
- Xu, S.; Chen, S.; Xia, W.; Sui, H.; Fu, X. Hyperoside: A review of its structure, synthesis, pharmacology, pharmacokinetics and toxicity. Molecules 2022, 27, 3009. [Google Scholar] [CrossRef]
- Liga, S.; Paul, C.; Péter, F. Flavonoids: Overview of biosynthesis, biological activity, and current extraction techniques. Plants 2023, 12, 2732. [Google Scholar] [CrossRef]
- Ullah, A.; Munir, S.; Badshah, S.L.; Khan, N.; Ghani, L.; Poulson, B.G.; Emwas, H.; Jaremko, M. Important flavonoids and their role as a therapeutic agent. Molecules 2020, 25, 5243. [Google Scholar] [CrossRef]
- Crupi, P.; Faienza, M.F.; Naeem, M.Y.; Corbo, F.; Clodoveo, M.L.; Muraglia, M. Overview of the potential beneficial effects of carotenoids on consumer health and well-being. Antioxidants 2023, 12, 1069. [Google Scholar] [CrossRef]
- Martins, T.; Barros, A.N.; Rosa, E.; Antunes, L. Enhancing health benefits through chlorophylls and chlorophyll-rich agro-food: A comprehensive review. Molecules 2023, 28, 5344. [Google Scholar] [CrossRef]
- Das, K.; Gezici, S. Secondary plant metabolites, their separation and identification, and role in human disease prevention. Ann. Phytomed. Int. J. 2018, 7, 13–24. [Google Scholar] [CrossRef]
- He, M.; Ding, N. Plant unsaturated fatty acids: Multiple roles in stress response. Front. Plant Sci. 2020, 11, 562785. [Google Scholar] [CrossRef]
- Salehi, B.; Quispe, C.; Sharifi-Rad, J.; Cruz-Martins, N.; Nigam, M.; Mishra, A.P.; Konovalov, D.A.; Orobinskaya, V.; Abu-Reidah, I.M.; Zam, W.; et al. Phytosterols: From preclinical evidence to potential clinical applications. Front. Pharmacol. 2021, 11, 599959. [Google Scholar] [CrossRef]
- Ribeiro, A.D.; Cardoso, M.N.A.; Freire, J.C.P.; Figueirêdo, E.C., Jr.; Costa, M.M.A.; Silva, P.G.; Gomes, D.Q.d.C.; de Brito, E.M.M.; Pereira, J.V. Antimicrobial activity of limonene: Integrative review. Bol. Latinoam. Y Del Caribe De Plantas Med. Aromat. 2023, 22, 581–593. [Google Scholar] [CrossRef]
- Eddin, L.B.; Jha, N.K.; Meeran, M.F.N.; Kesari, K.K.; Beiram, R.; Ojha, S. Neuroprotective potential of limonene and limonene containing natural products. Molecules 2021, 26, 4535. [Google Scholar] [CrossRef]
- Zong, Z.; Tian, G.; Wang, J.; Fan, C.; Yang, F.; Guo, F. Recent advances in metal–organic-framework-based nanocarriers for controllable drug delivery and release. Pharmaceutics 2022, 14, 2790. [Google Scholar] [CrossRef]
- Baranska, M.; Schulz, H. Chapter 4 Determination of alkaloids through infrared and Raman spectroscopy. Alkaloids Chem. Biol. 2008, 67, 217–255. [Google Scholar]
- Segneanu, A.; Velciov, S.M.; Olariu, S.; Cziple, F.; Damian, D.; Grozescu, I. Bioactive molecules profile from natural compounds. In Amino Acid—New Insights and Roles in Plant and Animal; Asao, T., Asaduzzaman, M., Eds.; IntechOpen: Rijeka, Croatia, 2017. [Google Scholar]
- Bensemmane, N.; Bouzidi, N.; Daghbouche, Y.; Garrigues, S.; Guardia, M.; El Hattab, M. Quantification of phenolic acids by partial least squares Fourier-transform infrared (PLS-FTIR) in extracts of medicinal plants. Phytochem. Anal. 2021, 32, 206–221. [Google Scholar] [CrossRef]
- Krysa, M.; Szymańska-Chargot, M.; Zdunek, A. FT-IR and FT-Raman fingerprints of flavonoids—A review. Food Chem. 2022, 393, 133430. [Google Scholar] [CrossRef]
- Filopoulou, A.; Vlachou, S.; Boyatzis, S.C. Fatty acids and their metal salts: A review of their Infrared spectra in light of their presence in cultural heritage. Molecules 2021, 26, 6005. [Google Scholar] [CrossRef]
- Nirlipta, S.; Amit, S.; Surabhi, C.; Debjani, D. Characterization and antioxidant potential of a carotenoid from a newly isolated yeast. Food Sci. Biotechnol. 2015, 24, 117–124. [Google Scholar]
- Pang, M.; Jiang, S.; Cao, L.; Pan, L. Novel synthesis of steryl esters from phytosterols and amino acid. J. Agric. Food Chem. 2011, 59, 10732–10736. [Google Scholar] [CrossRef]
- Khichar, M.K.; Sharma, M.; Agrawal, R.D. Isolation and identification of phytosterols from leaves of Maytenus emarginata plant. Int. J. Educ. Mod. Manag. Appl. Sci. Soc. Sci. 2021, 3, 291–296. [Google Scholar]
- Tao, C. Antimicrobial activity and toxicity of gold nanoparticles: Research progress, challenges and prospects. Lett. Appl. Microbiol. 2018, 67, 537–543. [Google Scholar] [CrossRef]
- Hu, X.; Zhang, Y.; Ding, T.; Liu, J.; Zhao, H. Multifunctional gold nanoparticles: A novel nanomaterial for various medical applications and biological activities. Front. Bioeng. Biotechnol. 2020, 8, 990. [Google Scholar] [CrossRef]
- Yeh, Y.C.; Creran, B.; Rotello, V.M. Gold nanoparticles: Preparation, properties, and applications in bionanotechnology. Nanoscale 2012, 4, 1871–1880. [Google Scholar] [CrossRef]
- Carbajal Morán, H. Raman Spectroscopy analysis of the morphology of gold nanoparticles produced by laser ablation in aqueous proteinogenic amino acid for the detection of mercury in water. J. Ecol. Eng. 2023, 24, 169–175. [Google Scholar] [CrossRef]
- Ali, A.; Chiang, Y.W.; Santos, R.M. X-ray diffraction techniques for mineral characterization: A review for engineers of the fundamentals, applications, and research directions. Minerals 2022, 12, 205. [Google Scholar] [CrossRef]
- Vera-Baquero, F.L.; Morante-Zarcero, S.; Sierra, I. Evaluation of thermal degradation of tropane and opium alkaloids in gluten-free corn breadsticks samples contaminated with Stramonium seeds and baked with poppy seeds under different conditions. Foods 2022, 11, 2196. [Google Scholar] [CrossRef]
- Fernandes, F.H.A.; Santana, C.P.; Santos, R.L.; Correia, L.P.; Conceição, M.M.; Macêdo, R.O.; Medeiros, A.C.D. Thermal characterization of dried extract of medicinal plant by DSC and analytical techniques. J. Therm. Anal. Calorim. 2012, 113, 443–447. [Google Scholar] [CrossRef]
- Disch, L.; Drewe, J.; Fricker, G. Dissolution Testing of Herbal Medicines: Challenges and regulatory standards in Europe, the United States, Canada, and Asia. Dissolut. Technol. 2017, 5, 6–12. [Google Scholar] [CrossRef]
- Gusev, P.A.; Andrews, K.W.; Savarala, S.; Tey, P.-T.; Han, F.; Oh, L.; Pehrsson, P.R.; Dwyer, J.T.; Betz, J.M.; Kuszak, A.J.; et al. Disintegration and dissolution testing of green tea dietary supplements: Application and evaluation of United States Pharmacopeial standards. J. Pharm. Sci. 2020, 109, 1933–1942. [Google Scholar] [CrossRef]
- Dinkova-Kostova, A.T.; Talalay, P. Direct and indirect antioxidant properties of inducers of cytoprotective proteins. Mol. Nutr. Food Res. 2008, 52, S128–S138. [Google Scholar] [CrossRef]
- Gulcin, İ. Antioxidants and antioxidant methods: An updated overview. Arch. Toxicol. 2020, 94, 651–715. [Google Scholar] [CrossRef]
- Milanezi, F.G.; Meireles, L.M.; de Christo Scherer, M.M.; de Oliveira, J.P.; da Silva, A.R.; de Araujo, M.L.; Endringer, D.C.; Fronza, M.; Guimarães, M.C.C.; Scherer, R. Antioxidant, antimicrobial and cytotoxic activities of gold nanoparticles capped with quercetin. Saudi Pharm. J. 2019, 27, 968–974. [Google Scholar] [CrossRef]
- Khalil, I.; Yehye, W.A.; Etxeberria, A.E.; Alhadi, A.A.; Dezfooli, S.M.; Julkapli, N.B.M.; Basirun, W.J.; Seyfoddin, A. Nanoantioxidants: Recent trends in antioxidant delivery applications. Antioxidants 2019, 9, 24. [Google Scholar] [CrossRef]
- Paczkowska, M.; Chanaj-Kaczmarek, J.; Romaniuk-Drapała, A.; Rubiś, B.; Szymanowska, D.; Kobus-Cisowska, J.; Szymańska, E.; Winnicka, K.; Cielecka-Piontek, J. Mucoadhesive chitosan delivery system with Chelidonii Herba lyophilized extract as a promising strategy for vaginitis treatment. J. Clin. Med. 2020, 9, 1208. [Google Scholar] [CrossRef]
- Segneanu, A.E.; Vlase, G.; Lukinich-Gruia, A.T.; Herea, D.D.; Grozescu, I. Untargeted Metabolomic Approach of Curcuma longa to Neurodegenerative Phytocarrier System Based on Silver Nanoparticles. Antioxidants 2022, 11, 2261. [Google Scholar] [CrossRef]
- Kumar, S.; Kumar, D.; Manjusha, S.K.; Singh, N.; Vashishta, B. Antioxidant and free radical scavenging potential of Citrullus colocynthis (L.) Schrad. methanolic fruit extract. Acta Pharm. 2008, 58, 215–220. [Google Scholar] [CrossRef]
- Segneanu, A.E.; Vlase, G.; Vlase, T.; Sicoe, C.A.; Ciocalteu, M.V.; Herea, D.D.; Ghirlea, O.F.; Grozescu, I.; Nanescu, V. Wild-grown Romanian Helleborus purpurascens approach to novel chitosan phyto-nanocarriers—Metabolite profile and antioxidant properties. Plants 2023, 12, 3479. [Google Scholar] [CrossRef]
- Surat, P. pH in the Human Body. News-Medical, 10 October 2022. Available online: https://www.news-medical.net/health/pH-in-the-Human-Body.aspx (accessed on 16 November 2023).
- Anumolu, P.D.; Gurrala, S.; Venkata Satya, S.C.; Polisetty, S.V.; Ravindran, A.; Achanta, R. Development of a discriminative and biorelevant dissolution test method for atorvastatin/fenofibrate combination with appliance of derivative spectrophotometry. Turk. J. Pharm. Sci. 2019, 16, 62–68. [Google Scholar] [CrossRef]
- Mureşan, M.; Olteanu, D.; Filip, G.A.; Clichici, S.; Baldea, I.; Jurca, T.; Pallag, A.; Marian, E.; Frum, A.; Gligor, F.G.; et al. Comparative study of the pharmacological properties and biological effects of Polygonum aviculare L. herba extract-entrapped liposomes versus quercetin-wntrapped liposomes on doxorubicin-induced toxicity on HUVECs. Pharmaceutics 2021, 13, 1418. [Google Scholar] [CrossRef]
No | Compound Name | Retention Time (RT) | Area% | Ref. |
---|---|---|---|---|
1 | 5-hydroxymethylfurfural | 6.72 | 0.52 | [39] |
2 | limonene | 10.16 | 0.32 | [40] |
3 | neoxanthin | 15.42 | 18.44 | [41] |
4 | anethole | 18.91 | 11.13 | [40] |
5 | sanguinarine | 20.02 | 0.49 | [42] |
6 | beta-carotene | 21.06 | 0.51 | [41] |
7 | dihydroberbine | 24.53 | 0.36 | [30] |
8 | chelidonine | 25.12 | 23.48 | [30] |
9 | dihydrosanguinarine | 26.77 | 0.58 | [30] |
10 | dihydrochelerythrine | 29.01 | 2.43 | [30] |
11 | chelerythrine | 30.78 | 1.12 | [42] |
12 | oxysanguinarine | 31.67 | 27.35 | [42] |
13 | angoline | 35.89 | 0.47 | [36] |
No | Tentative of Identification | Formula | Category | m/z Detected | Theoretic m/z | Ref. |
---|---|---|---|---|---|---|
1 | acetic acid | C2H4O2 | organic acid | 61.07 | 60.05 | [43] |
2 | glycine | C2H5NO2 | amino acids | 76.05 | 75.07 | [31] |
3 | alanine | C3H7NO2 | amino acids | 90.10 | 89.09 | [31] |
4 | dihydroxyacetone | C3H6O3 | ketones | 91.09 | 90.08 | [43] |
5 | choline | C5H14NO+ | cholines | 105.16 | 104.17 | [11] |
6 | serine | C3H7NO3 | amino acids | 106.09 | 105.09 | [31] |
7 | histamine | C5H9N3 | amines | 112.14 | 111.15 | [11] |
8 | proline | C5H9NO2 | amino acids | 116.14 | 115.13 | [31] |
9 | valine | C5H11NO2 | amino acids | 118.16 | 117.15 | [31] |
10 | succinic acid | C4H6O4 | organic acids | 119.08 | 118.09 | [15] |
11 | threonine | C4H9NO3 | amino acids | 120.13 | 119.12 | [31] |
12 | nicotinic acid | C6H5NO2 | organic acids | 124.11 | 123.11 | [15] |
13 | 5-hydroxymethylfurfural | C6H6O3 | furans | 127.12 | 126.11 | [42] |
14 | isoleucine | C6H13NO2 | amino acids | 132.18 | 131.17 | [31] |
15 | asparagine | C4H8N2O3 | amino acids | 133.13 | 132.12 | [31] |
16 | aspartic acid | C4H7NO4 | amino acids | 134.11 | 133.10 | [31] |
17 | malic acid | C4H6O5 | organic acids | 135.08 | 134.09 | [33] |
18 | limonene | C10H16 | terpenoids | 137.23 | 136.23 | [40] |
19 | tyramine | C8H11NO | amines | 138.19 | 137.18 | [11] |
20 | salicylic acid | C7H6O3 | organic acids | 139.11 | 138.12 | [33] |
21 | glutamic acid | C5H9NO4 | amino acids | 148.14 | 147.13 | [31] |
22 | anethole | C10H12O | anisoles | 149.21 | 148.20 | [40] |
23 | vanillin | C8H8O3 | aldehydes | 153.14 | 152.15 | [33] |
24 | gentisic acid | C7H6O4 | phenolic acids | 155.11 | 154.12 | [33] |
25 | p-coumaric acid | C9H8O3 | phenolic acids | 165.15 | 164.16 | [33,38] |
26 | vanillic acid | C8H8O4 | phenolic acids | 169.16 | 168.15 | [33] |
27 | gallic acid | C7H6O5 | phenolic acids | 171.13 | 170.12 | [11,15] |
28 | trans-aconitic acid | C6H6O6 | organic acids | 175.12 | 174.11 | [33] |
29 | caffeic acid | C9H8O4 | phenolic acids | 181.15 | 180.16 | [15] |
30 | tyrosine | C9H11NO3 | amino acids | 182.19 | 181.19 | [31] |
31 | chelidonic acid | C7H4O6 | organic acids | 185.11 | 184.10 | [15] |
32 | quinic acid | C7H12O6 | phenolic acids | 193.18 | 192.17 | [15,33] |
33 | ferulic acid | C10H10O4 | phenolic acids | 195.19 | 194.18 | [15,39] |
34 | aporphine | C17H17N | alkaloids | 236.33 | 235.32 | [33] |
35 | linoleic acid | C18H32O2 | fatty acids | 281.41 | 280.40 | [11] |
36 | oleic acid | C18H34O2 | fatty acids | 283.51 | 282.50 | [11] |
37 | luteolin | C15H10O6 | flavonoids | 297.23 | 286.24 | [11] |
38 | sparteine | C15H26N2 | alkaloids | 235.39 | 234.38 | [11] |
39 | palmitic acid | C16H32O2 | fatty acids | 257.43 | 256.42 | [43] |
40 | 9-octadecenoic acid | C18H34O2 | fatty acids | 283.49 | 282.50 | [43] |
41 | quercetin | C15H10O7 | flavonoids | 303.23 | 302.23 | [11] |
42 | isorhamnetin | C16H12O7 | flavonoids | 317.25 | 316.26 | [33] |
43 | coptisine | C19H14NO4+ | alkaloids | 321.29 | 320.30 | [6] |
44 | stylopine | C19H17NO4 | alkaloids | 324.31 | 323.30 | [7,11] |
45 | scoulerine | C19H21NO4 | alkaloids | 328.41 | 327.40 | [11] |
46 | sanguinarine | C20H14NO4+ | alkaloids | 333.31 | 332.30 | [6,11] |
47 | dihydrosanguinarine | C20H15NO4 | alkaloids | 334.29 | 333.30 | [11] |
48 | berberine | C20H18NO4+ | alkaloids | 337.41 | 336.40 | [6,11] |
49 | canadine | C20H21NO4 | alkaloids | 340.39 | 339.40 | [6,11] |
50 | corydine | C20H23NO4 | alkaloids | 342.41 | 341.40 | [11] |
51 | magnoflorine | C20H24NO4+ | alkaloids | 343.41 | 342.40 | [11] |
52 | oxysanguinarine | C20H13NO5 | alkaloids | 348.29 | 347.30 | [11] |
53 | chelerythrine | C21H18NO4+ | alkaloids | 349.39 | 348.40 | [11,33] |
54 | dihydrochelerythrine | C21H19NO4 | alkaloids | 350.41 | 349.40 | [11] |
55 | chelidonine | C20H19NO5 | alkaloids | 354.39 | 353.40 | [6,11] |
56 | rosmarinic acid | C18H16O8 | phenolic acids | 361.29 | 360.30 | [33] |
57 | dihydrochelirubine | C21H17NO5 | alkaloids | 364.41 | 363.40 | [11] |
58 | allocryptopine | C21H23NO5 | alkaloids | 370.39 | 369.40 | [6,11] |
59 | angoline | C22H21NO5 | alkaloids | 380.41 | 379.40 | [11] |
60 | 1-hexacosanol | C26H54O | alcohols | 383.69 | 382.70 | [15] |
61 | sanguilutine | C23H24NO5+ | alkaloids | 395.39 | 394.40 | [11] |
62 | dihydroberbine | C20H19NO4 | alkaloids | 338.41 | 337.40 | [15] |
63 | chlorogenic acid | C16H18O9 | phenolic acids | 355.32 | 354.31 | [11] |
64 | quercetol C | C22H24O5 | flavonoids | 369.39 | 368.40 | [38] |
65 | ergosterol | C28H44O | sterols | 397.61 | 396.60 | [15] |
66 | stigmasterol | C29H48O | sterols | 413.71 | 412.70 | [38] |
67 | β sitosterol | C29H50O | sterols | 415.69 | 414.70 | [38] |
68 | nonacosanol | C29H60O | alcohols | 425.81 | 424.80 | [15] |
69 | hyperoside | C21H20O12 | flavonoids | 465.39 | 464.40 | [11] |
70 | beta-carotene | C40H56 | carotenoids | 537.91 | 536.90 | [11] |
71 | zeaxanthin | C40H56O2 | carotenoids | 569.89 | 568.90 | [11] |
72 | neoxanthin | C40H56O4 | carotenoids | 601.91 | 600.90 | [11] |
73 | chlorophyll a | C55H72MgN4O5 | carotenoids | 894.49 | 893.50 | [11] |
74 | chlorophyll b | C55H70MgN4O6 | carotenoids | 908.51 | 907.50 | [11] |
Biomolecule Category | Characteristic Vibrational Bands (cm −1) | Ref. |
---|---|---|
alkaloids | 3362; 1598; 1646; 1402; 1375; 741; 663 | [69] |
amino acids | 3380; 2358, 2128; 1751; 1675; 1665; 1649; 1632 | [70] |
phenolic acids | 1662; 1727; 1640; 1521; 1410; 1363; 1262; 1168; 1091; 947 | [18,71] |
flavonoids | 3234; 3082; 1655; 1618; 1583; 1465; 1415; 1372; 1274; 1079; 771; 536 | [72] |
fatty acids | 3601; 3018; 2959; 2922; 2874; 1703; 1352; 1247; 723 | [73] |
carotenoids | 2922; 1632; 1385; 965 | [74] |
phytosterols | 3427; 2940; 2838; 1752; 1467; 1382; 1188; 1065; 990; 883; 742 | [75,76] |
Sample | Diameters (µm) | Width (µm) |
---|---|---|
greater celandine | 0.9610 | 0.3190 |
0.2555 | 0.1089 | |
AuNPs | 0.01675 | 0.0641 |
GC-AuNPs carrier system | 1.4530 | 0.5040 |
0.3250 | 0.1413 | |
0.0892 | 0.0579 |
Sample Name | Total Phenolic Content (mg/g GAE) | Flavonoid Content (mg QE/g) | FRAP (mmol Trolox/100g dw) | IC50 (mg/mL) |
---|---|---|---|---|
GC | 93.87 ± 0.028 | 18.48 ± 0.034 | 55.57 ± 0.011 | 53.23 ± 0.012 |
GC-AuNPs system | 93.32 ± 0.033 | 19.18 ± 0.062 | 73.74 ± 0.014 | 42.78 ± 0.036 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Segneanu, A.-E.; Vlase, G.; Vlase, T.; Ciocalteu, M.-V.; Bejenaru, C.; Buema, G.; Bejenaru, L.E.; Boia, E.R.; Dumitru, A.; Boia, S. Romanian Wild-Growing Chelidonium majus—An Emerging Approach to a Potential Antimicrobial Engineering Carrier System Based on AuNPs: In Vitro Investigation and Evaluation. Plants 2024, 13, 734. https://doi.org/10.3390/plants13050734
Segneanu A-E, Vlase G, Vlase T, Ciocalteu M-V, Bejenaru C, Buema G, Bejenaru LE, Boia ER, Dumitru A, Boia S. Romanian Wild-Growing Chelidonium majus—An Emerging Approach to a Potential Antimicrobial Engineering Carrier System Based on AuNPs: In Vitro Investigation and Evaluation. Plants. 2024; 13(5):734. https://doi.org/10.3390/plants13050734
Chicago/Turabian StyleSegneanu, Adina-Elena, Gabriela Vlase, Titus Vlase, Maria-Viorica Ciocalteu, Cornelia Bejenaru, Gabriela Buema, Ludovic Everard Bejenaru, Eugen Radu Boia, Andrei Dumitru, and Simina Boia. 2024. "Romanian Wild-Growing Chelidonium majus—An Emerging Approach to a Potential Antimicrobial Engineering Carrier System Based on AuNPs: In Vitro Investigation and Evaluation" Plants 13, no. 5: 734. https://doi.org/10.3390/plants13050734