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Abstract: Novel nanotechnology based on herbal products aspires to be a high-performing therapeutic
platform. This study reports the development of an original engineering carrier system that jointly
combines the pharmacological action of Chelidonium majus and AuNPs, with unique properties that
ensure that the limitations imposed by low stability, toxicity, absorption, and targeted and prolonged
release can be overcome. The metabolite profile of Romanian wild-grown Chelidonium majus contains
a total of seventy-four phytochemicals belonging to eight secondary metabolite categories, including
alkaloids, amino acids, phenolic acids, flavonoids, carotenoids, fatty acids, sterols, and miscellaneous
others. In this study, various techniques (XRD, FTIR, SEM, DLS, and TG/DTG) were employed to
investigate his new carrier system’s morpho-structural and thermal properties. In vitro assays were
conducted to evaluate the antioxidant potential and release profile. The results indicate 99.9% and
94.4% dissolution at different pH values for the CG-AuNPs carrier system and 93.5% and 85.26%
for greater celandine at pH 4 and pH 7, respectively. Additionally, three in vitro antioxidant assays
indicated an increase in antioxidant potential (flavonoid content 3.8%; FRAP assay 24.6%; and DPPH
24.4%) of the CG-AuNPs carrier system compared to the herb sample. The collective results reflect
the system’s promising perspective as a new efficient antimicrobial and anti-inflammatory candidate
with versatile applications, ranging from target delivery systems, oral inflammation (periodontitis),
and anti-age cosmetics to extending the shelf lives of products in the food industry.

Keywords: great celandine; AuNPs; carrier system; secondary metabolites; antioxidant activity;
dissolution profile
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1. Introduction

Chelidonium majus (Papaveraceae family) is the sole representative of the Chelidonium
genus in the Romanian flora and, respectively, in that of Europe [1]. Its common names
include greater celandine, swallow-wort, rostopască, negelarită in Romanian, and bai-qu-
cai in Chinese. Greater celandine (GC) has been recognized as a plant with both medicinal
and toxic properties since ancient times, with mentions dating back to ancient Europe and
in Chinese traditional medicine [2]. From Dioscorides, Pliny the Elder, and Galenus until
the XIV century, greater celandine was recommended for ocular ailments. In medieval
Europe, the plant was used also for treating ulcers, cutaneous eczema, jaundice, and
colic. Paracelsus mentioned the benefits of this plant for treating hepato-biliary conditions.
Currently, greater celandine is appreciated in traditional European medicine, especially in
the central and eastern regions, being recognized for its exceptional therapeutic properties,
especially in dermatological conditions (e.g., eczema, verrucae, circumscribed cutaneous
carcinomas), hepato-biliary (anti-jaundice) conditions, chole cytopathies, biliary lithiasis,
gastrointestinal spasms, eye infections, and inflammation [3–6]. Modern research has
reported the presence of a large variety of biomolecules (alkaloids, flavonoids, carotenoids,
lectins, phenolic acids, volatile oils, and others) and, thus, remarkable biological activity
(antibacterial, antimicrobial, antifungal, antiviral, anti-inflammatory, antitumoral, anti-
spasmodic, hepato-protective, analgesic, and immunomodulatory) [7–15].

Cutting-edge nanotechnology-based phytochemical carriers have emerged as promis-
ing candidates with highly improved in vivo activity due to the overcoming of the draw-
backs (low bioavailability, chemical, and thermally stability, and selectivity) of conventional
herbal formulations [16]. Engineering phytochemical carriers are the most successful ap-
proaches, with highly improved in vivo activity. These carriers effectively overcome all
the challenges posed by conventional herbal formulations, including low bioavailability,
selectivity, and chemical and thermal stability [17].

Of all the metallic nanoparticles, gold nanoparticles are particularly well-suited for
various biomedical applications thanks to their unique properties, such as versatile tailored
surfaces, excellent stability, easy cellular uptake, and minimal toxicity. As a result, current
research addresses the design of novel drug delivery systems that can mitigate drug
resistance in cancer therapy, bacterial resistance antibiotics, etc. [18–27].

On the other hand, it is noteworthy that, despite the outstanding therapeutic activity of
Chelidonium majus, its overdose due to self-medication with various market herbal supple-
ments can induce severe outcomes on liver physiological function. Therefore, avoiding this
liability requires advanced herbal formulations and safety and control of dosage, leading
to increased efficacity [28,29].

Accordingly, in this study, our approach to plant-derived natural products moves to
a different level, using the renowned medicinal plant Chelidonium majus and AuNPs to
achieve an innovative engineering carrier system with unique pharmacological activity.

The chemical, morpho-structural, and thermal properties; antioxidant potential; and
in vitro release profile were studied systematically.

2. Results and Discussion

Numerous research studies have been conducted on the chemical composition and
pharmacological activity of Chelidonium majus. Most of these studies have focused on
specific phytoconstituent categories found in certain parts of the plant [3–8,10,30–32].

However, the plant’s origin has an essential role in increasing the development of
plants, as well as in triggering different defense mechanisms against various biotic factors
in their environments. Among the most dominant defense systems of plants against
environmental stress factors is a plant’s ability to produce varied secondary metabolites
and signaling molecules. Accordingly, discrepancies occur in the metabolic profiles of
particular plants of different origins [17,33]. Furthermore, extraction parameters, such
as solvent polarity, temperature, and pH, have a decisive impact on the phytochemical
composition [34–36].
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To this end, establishing a correlation between the biomolecules found in a plant and
its therapeutic activity is an arduous task.

Moreover, few studies have been performed, and only on the alkaloid or phenolic
contents of the Romanian Chelidonium majus wild plant [37,38]. Therefore, this study
investigates the low metabolic profile of greater celandine using gas-chromatography
coupled with mass spectroscopy (GC-MS) and electrospray ionization–quadrupole time-of-
flight mass spectrometry (ESI-QTOF-MS) analysis. The phytochemicals were identified on
the retention indices, in the Mass Spectral Library 2.0 database, and in the literature.

The biomolecules separated via GC-MS are presented in Figure S1 and Table 1.

Table 1. Main biomolecules identified by GC–MS analysis of Chelidonium majus sample.

No Compound Name Retention Time (RT) Area% Ref.

1 5-hydroxymethylfurfural 6.72 0.52 [39]

2 limonene 10.16 0.32 [40]

3 neoxanthin 15.42 18.44 [41]

4 anethole 18.91 11.13 [40]

5 sanguinarine 20.02 0.49 [42]

6 beta-carotene 21.06 0.51 [41]

7 dihydroberbine 24.53 0.36 [30]

8 chelidonine 25.12 23.48 [30]

9 dihydrosanguinarine 26.77 0.58 [30]

10 dihydrochelerythrine 29.01 2.43 [30]

11 chelerythrine 30.78 1.12 [42]

12 oxysanguinarine 31.67 27.35 [42]

13 angoline 35.89 0.47 [36]

Table 1 shows the main phytoconstituents identified via GC-MS analysis from the
greater celandine sample.

The GC-MS analysis displays thirteen compounds, accounting for about 87% of the
total peak area in the greater celandine sample (Figure S1).

2.1. Mass Spectrometry Analysis of Chelidonium majus Sample

The MS spectra (Figure S2) indicate the presence of numerous molecules, some of
which were detected and assigned to different chemical classes (alkaloids, amino acids,
phenolic acids, flavonoids, carotenoids, organic acids, fatty acids, sterols, and others) that
corroborate the literature results [6,7,11,15,31,33,38,40,42,43].

The phytoconstituents identified via ESI–QTOF–MS analysis are presented in Table 2.

Table 2. Biomolecules identified in Chelidonium majus sample through MS analysis.

No Tentative of Identification Formula Category m/z Detected Theoretic m/z Ref.

1 acetic acid C2H4O2 organic acid 61.07 60.05 [43]

2 glycine C2H5NO2 amino acids 76.05 75.07 [31]

3 alanine C3H7NO2 amino acids 90.10 89.09 [31]

4 dihydroxyacetone C3H6O3 ketones 91.09 90.08 [43]

5 choline C5H14NO+ cholines 105.16 104.17 [11]

6 serine C3H7NO3 amino acids 106.09 105.09 [31]

7 histamine C5H9N3 amines 112.14 111.15 [11]

8 proline C5H9NO2 amino acids 116.14 115.13 [31]
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Table 2. Cont.

No Tentative of Identification Formula Category m/z Detected Theoretic m/z Ref.

9 valine C5H11NO2 amino acids 118.16 117.15 [31]

10 succinic acid C4H6O4 organic acids 119.08 118.09 [15]

11 threonine C4H9NO3 amino acids 120.13 119.12 [31]

12 nicotinic acid C6H5NO2 organic acids 124.11 123.11 [15]

13 5-hydroxymethylfurfural C6H6O3 furans 127.12 126.11 [42]

14 isoleucine C6H13NO2 amino acids 132.18 131.17 [31]

15 asparagine C4H8N2O3 amino acids 133.13 132.12 [31]

16 aspartic acid C4H7NO4 amino acids 134.11 133.10 [31]

17 malic acid C4H6O5 organic acids 135.08 134.09 [33]

18 limonene C10H16 terpenoids 137.23 136.23 [40]

19 tyramine C8H11NO amines 138.19 137.18 [11]

20 salicylic acid C7H6O3 organic acids 139.11 138.12 [33]

21 glutamic acid C5H9NO4 amino acids 148.14 147.13 [31]

22 anethole C10H12O anisoles 149.21 148.20 [40]

23 vanillin C8H8O3 aldehydes 153.14 152.15 [33]

24 gentisic acid C7H6O4 phenolic acids 155.11 154.12 [33]

25 p-coumaric acid C9H8O3 phenolic acids 165.15 164.16 [33,38]

26 vanillic acid C8H8O4 phenolic acids 169.16 168.15 [33]

27 gallic acid C7H6O5 phenolic acids 171.13 170.12 [11,15]

28 trans-aconitic acid C6H6O6 organic acids 175.12 174.11 [33]

29 caffeic acid C9H8O4 phenolic acids 181.15 180.16 [15]

30 tyrosine C9H11NO3 amino acids 182.19 181.19 [31]

31 chelidonic acid C7H4O6 organic acids 185.11 184.10 [15]

32 quinic acid C7H12O6 phenolic acids 193.18 192.17 [15,33]

33 ferulic acid C10H10O4 phenolic acids 195.19 194.18 [15,39]

34 aporphine C17H17N alkaloids 236.33 235.32 [33]

35 linoleic acid C18H32O2 fatty acids 281.41 280.40 [11]

36 oleic acid C18H34O2 fatty acids 283.51 282.50 [11]

37 luteolin C15H10O6 flavonoids 297.23 286.24 [11]

38 sparteine C15H26N2 alkaloids 235.39 234.38 [11]

39 palmitic acid C16H32O2 fatty acids 257.43 256.42 [43]

40 9-octadecenoic acid C18H34O2 fatty acids 283.49 282.50 [43]

41 quercetin C15H10O7 flavonoids 303.23 302.23 [11]

42 isorhamnetin C16H12O7 flavonoids 317.25 316.26 [33]

43 coptisine C19H14NO4
+ alkaloids 321.29 320.30 [6]

44 stylopine C19H17NO4 alkaloids 324.31 323.30 [7,11]

45 scoulerine C19H21NO4 alkaloids 328.41 327.40 [11]

46 sanguinarine C20H14NO4
+ alkaloids 333.31 332.30 [6,11]

47 dihydrosanguinarine C20H15NO4 alkaloids 334.29 333.30 [11]

48 berberine C20H18NO4
+ alkaloids 337.41 336.40 [6,11]

49 canadine C20H21NO4 alkaloids 340.39 339.40 [6,11]

50 corydine C20H23NO4 alkaloids 342.41 341.40 [11]

51 magnoflorine C20H24NO4
+ alkaloids 343.41 342.40 [11]

52 oxysanguinarine C20H13NO5 alkaloids 348.29 347.30 [11]

53 chelerythrine C21H18NO4
+ alkaloids 349.39 348.40 [11,33]

54 dihydrochelerythrine C21H19NO4 alkaloids 350.41 349.40 [11]

55 chelidonine C20H19NO5 alkaloids 354.39 353.40 [6,11]

56 rosmarinic acid C18H16O8 phenolic acids 361.29 360.30 [33]

57 dihydrochelirubine C21H17NO5 alkaloids 364.41 363.40 [11]

58 allocryptopine C21H23NO5 alkaloids 370.39 369.40 [6,11]

59 angoline C22H21NO5 alkaloids 380.41 379.40 [11]

60 1-hexacosanol C26H54O alcohols 383.69 382.70 [15]
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Table 2. Cont.

No Tentative of Identification Formula Category m/z Detected Theoretic m/z Ref.

61 sanguilutine C23H24NO5
+ alkaloids 395.39 394.40 [11]

62 dihydroberbine C20H19NO4 alkaloids 338.41 337.40 [15]

63 chlorogenic acid C16H18O9 phenolic acids 355.32 354.31 [11]

64 quercetol C C22H24O5 flavonoids 369.39 368.40 [38]

65 ergosterol C28H44O sterols 397.61 396.60 [15]

66 stigmasterol C29H48O sterols 413.71 412.70 [38]

67 β sitosterol C29H50O sterols 415.69 414.70 [38]

68 nonacosanol C29H60O alcohols 425.81 424.80 [15]

69 hyperoside C21H20O12 flavonoids 465.39 464.40 [11]

70 beta-carotene C40H56 carotenoids 537.91 536.90 [11]

71 zeaxanthin C40H56O2 carotenoids 569.89 568.90 [11]

72 neoxanthin C40H56O4 carotenoids 601.91 600.90 [11]

73 chlorophyll a C55H72MgN4O5 carotenoids 894.49 893.50 [11]

74 chlorophyll b C55H70MgN4O6 carotenoids 908.51 907.50 [11]

2.2. Screening and Classification of the Differential Phytoconstituents

A total of seventy-four biomolecules were identified and assigned to several categories
of secondary metabolites: alkaloids (28.38%), amino acids (about 15%), phenolic acids
(12.16%), flavonoids (6.75%), carotenoids (6.75%), fatty acids (5.4%), phytosterols (about
4%), terpenoids (1.75%), and miscellaneous others.

Figure 1 shows the phytochemical classification chart from the Chelidonium majus
sample based on the data analysis reported in Table 2.
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According to Figure 1, alkaloids, the largest category of phytoconstituents, exhibited
outstanding therapeutic activities: sedative, analgesic, antitumoral, antimicrobial, antifun-
gal, anti-inflammatory, antidiabetic, antiemetic, antioxidant, neuroprotective, etc. [44,45].

In the greater celandine sample, eleven amino acids were identified, of which the
largest percent (72.7%) was represented by non-essential amino acids (glycine, alanine,
serine, proline, asparagine, aspartic acid, glutamic acid, and tyrosine). Essential amino acids
(isoleucine, valine, and threonine) were present in a minor proportion (27.3%). Various
research has reported the exceptional pharmacological activities of these phytochemicals
(anti-inflammatory, neuroprotective, antiproliferative, cytotoxic, and immunomodulating
activities [46–53]).

Phenolic acids made up about 12% of the biomolecules from the greater celandine
sample, being involved in antioxidant, antimicrobial, cardioprotective, anti-inflammatory,
neuroprotective, antitumor, and antidiabetic mechanisms [54].
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Flavonoids (hyperoside, luteolin, quercetol, isorhamnetin, quercetin) are another
secondary metabolite class with significant beneficial effects on human health (antioxidant,
antimicrobial, antiviral, anti-inflammatory, antitumoral, antidiabetic, cardioprotective,
hepatoprotective, and neuroprotective). In addition, luteolin is involved in the management
of pain caused by anti-inflammatory disorders [55–60].

Recent research has shown that carotenoids exhibit antioxidant, anti-inflammatory,
neuroprotective, cardioprotective, skin and eye protection, anti-obesity, antitumoral, and
antimutagen activities [61,62].

Fatty acids represented 5.4% of the total phytoconstituents from the greater celandine
sample. These secondary metabolites act as anti-inflammatory, antioxidant, cardioprotec-
tive, and neuroprotective agents [63,64].

Phytosterols represented 4.05% of the total phytochemicals from the greater celandine
sample. These are involved in antioxidant, anti-inflammatory, immunomodulatory, an-
tiatherosclerotic, neuroprotective, and antitumoral mechanisms [65].

The terpenoid limonene displays antitumoral, antimicrobial, antifungal, antidiabetic, anti-
inflammatory, antiallergenic, antitumoral (breast tumor), and neuroprotective activities [66,67].

2.3. Phyto-Nanocarrier System

Advanced nanotechnology is the key to overcoming the limitations of biomedical
applications of medicinal plant preparations with high therapeutic activity. The reduced
stability, permeability, and bioavailability of some specific secondary metabolites in bi-
ological environments pose significant challenges [16,17,32]. However, the engineering
nanocarriers based on metallic nanoparticles offer a highly effective solution by improving
biocompatibility, reducing harmful side effects, and exhibiting higher therapeutic efficiency
through the synergistic effect of both components, namely, drugs and metallic nanoparticles.
Moreover, these tailored nanocarriers enhance stability, permeability, targeting control, and
release. Therefore, the engineering nanocarriers used in biomedical applications represent a
significant advancement and are poised to have promising potential in personalized thera-
peutic strategies [16,68]. Accordingly, a novel phyto-carrier based on preparation of AuNPs
will synergically merge the biological activities of the Chelidonium majus biomolecules and
metallic nanoparticles, which will achieve a higher therapeutic yield.

2.4. FT-IR and Raman Spectroscopy

Fourier transform infrared (FTIR) spectroscopy is a widely analytical technique used to
obtain findings regarding molecular structure and chemical composition from complex matrices.

Hence, the preparation of the GC-AuNPs carrier system was studied using FT-IR spec-
troscopy to emphasize the bonding mechanism between herbs and metallic nanoparticles.
FT-IR spectra are presented in Figure 2.
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The functional groups assigned to Chelidonium majus phytochemicals are shown in
Table 3.

Table 3. The characteristic vibrational bands attributed to various biomolecule categories from the
Chelidonium majus sample.

Biomolecule
Category Characteristic Vibrational Bands (cm −1) Ref.

alkaloids 3362; 1598; 1646; 1402; 1375; 741; 663 [69]

amino acids 3380; 2358, 2128; 1751; 1675; 1665; 1649; 1632 [70]

phenolic acids 1662; 1727; 1640; 1521; 1410; 1363; 1262; 1168; 1091; 947 [18,71]

flavonoids 3234; 3082; 1655; 1618; 1583; 1465; 1415; 1372; 1274; 1079; 771; 536 [72]

fatty acids 3601; 3018; 2959; 2922; 2874; 1703; 1352; 1247; 723 [73]

carotenoids 2922; 1632; 1385; 965 [74]

phytosterols 3427; 2940; 2838; 1752; 1467; 1382; 1188; 1065; 990; 883; 742 [75,76]

The FTIR spectra of the GC-AuNPs carrier system display the characteristic absorp-
tion bands of Chelidonium majus (3430 cm−1 (-OH group), 3293 cm−1 (O-H stretching
carboxylic acid), 1709 cm−1 (C=O stretching vibration), 1609 cm−1 (C=C of carotenoids),
1601 cm−1 (C=C and C=N stretching vibrations of alkaloids), 1240 cm−1 (C-N of amine),
1032 cm−1 (NH stretching of amines), and 872 cm−1 (C-H bending vibration of aromatic
rings)), as well as the AuNPs coated with trisodium citrate (2915 cm−1 (OH stretching
vibration); 2848 cm−1 (corresponding to CH- asymmetric and symmetric stretching vibra-
tions); 1596 cm−1 (COO- stretching vibration); and 1392 cm−1 (assigned to C–H bending)),
thus pointing to the successful preparation of the CG-AuNPs carrier system [18,20,69,77].

Nonetheless, the changes in the intensity of the absorption bands and the shift toward
higher wavenumbers in the corresponding regions (O-H, N-H, and C-H) are noticeable and
indicate their involvement in the preparation of the GC-AuNPs carrier system [20,78,79].

2.5. Raman Spectroscopy

Raman spectroscopy is an important technique that is often used to study the vibra-
tional modes of both molecules and hybrid nanomaterials.

Figure 3 shows the characteristic Raman spectrum of the GC-AuNPs carrier system.
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The Raman spectrum displayed in Figure 3 indicates the presence of two peak shifts
identified at 886 cm−1 and 1560 cm−1, respectively. When gold nanoparticles are subjected
to Raman analysis, certain specific shifts are expected to appear in the spectrum in the
ranges of 200–400 cm−1 and 500–580 cm−1 [80]. In the present case, no spectral information
could be identified in the previously mentioned intervals, but the presence in the spectrum
of the two Raman shifts of significantly high intensity at 886 cm−1 and 1560 cm−1, respec-
tively, can most probably be attributed to the vibrational modes specific to the interactions
and the strong bonds between the surfaces of the AuNPs and the phytochemicals from
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the greater celandine sample [7]. It is important to note that the precise shifts in the Ra-
man spectra may vary depending on the size, morphology, and surface chemistry of the
AuNPs (single or hybrid), as well as on the experimental conditions. In addition, Raman
spectroscopy is often used in combination with other complementary characterization
techniques, so that a more detailed understanding of the properties of gold nanoparticles
and how they interact with compounds in the plant extract of celandine can be obtained.

2.6. X-Ray-Diffraction Spectroscopy (XRD)

X-Ray-Diffraction Spectroscopy (XRD) is a simple, fast, and non-destructive technique
used to determine the phase composition and crystallographic data of materials [81].

Overlapped XRD patterns of the greater celandine, AuNPs, and GC-AuNPs carrier
system are presented in Figure 4.
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Figure 4. Powder XRD patterns of greater celandine, AuNPs, and CG-AuNPs carrier system.

The XRD spectrum of AuNPs depicts defined peaks, evidencing a well-crystalline struc-
ture, with a crystallite mean size of 17 nm, as determined using the Scherrer equation [18].

The greater celandine pattern shows amorphous phases with poorly defined peaks
in the (17–43◦) range, associated with minerals and plant fibers. The XRD pattern of the
GC-AuNPs carrier system exhibits, even if moderately weaker, peaks of herb components
and AuNPs (Figure 4), thus confirming the formation of a new carrier system.

2.7. Scanning Electron Microscopy (SEM)

The comparative analysis of morpho-structural features was carried out using the
SEM-EDX method.

It appears that the SEM image of the greater celandine (Figure 5A, low magnification
(×850)) indicates the presence of a fibrous structure with large pores and irregular shape
agglomerations of different-sized particles (average size: ~30 nm). The CG-AuNPs carrier
system micrograph (Figure 5B,C low magnification (×850)) indicates that AuNPs and clusters
of AuNPs (spherical shape, average size ~17 nm) were loaded in the herb particle pores.
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Figure 5. SEM images of the greater celandine (A) and CG-AuNPs carrier system (B,C).

The EDX analysis was carried out comparatively on the greater celandine sample and
the CG-AuNPs carrier system. The EDX spectra of the new carrier system are displayed
beside the peaks corresponding to greater celandine (Figure 6A) and AuNPs (Figure 6B),
indicating the achievement of the CG-AuNPs carrier system.
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2.8. Dynamic Light Scattering (DLS)

Dynamic light scattering is a routine, accurate analytic method for the mean and distri-
bution determination of nano- and micro-scale particles in dispersion. The hydrodynamic
size, distribution, and stability of the GC-AuNPs carrier system were investigated via the
DLS technique. The obtained results are shown in Table 4.

Table 4. The DLS mean hydrodynamic diameter values of the GC-AuNPs carrier system and components.

Sample Diameters (µm) Width (µm)

greater celandine 0.9610 0.3190

0.2555 0.1089

AuNPs 0.01675 0.0641

GC-AuNPs carrier system

1.4530 0.5040

0.3250 0.1413

0.0892 0.0579

The distribution of particles in solution for all samples is presented in Figure 7.
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In the DLS pattern of the greater celandine sample (Figure 7A), there are two distinctive
peaks corresponding to different hydrodynamic diameter values, which can be attributed
to the fibrous structures and particles from the herb. According to the DLS analysis, the
mean diameter of AuNPs is about 16 nm.

Conversely, the pattern of the CG-AuNPs carrier system (Figure 7C) exhibits three
separate peaks, well-dispersed into a narrow range, indicating high stability. These peaks
can be assigned to the presence of herb components (fibrous structures and particles) and
AuNPs. It is worth noting that there was a significant shift in the sizes of AuNPs and herb
components, which suggests that AuNPs were loaded into the herb pores. These findings
agree with the results of the SEM study.

2.9. Thermal Properties

A comparative evaluation was conducted to determine the thermal stability of the
novel carrier system and greater celandine and to identify the chemical changes. The results
are presented in Figure 8.
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Figure 7. DLS patterns of the greater celandine (A), AuNPs (B), and CG-AuNPs carrier system (C).

The data reveal that greater celandine demonstrated an endothermic process, resulting
in a substantial weight loss (55%) in the temperature range of 150–180 ◦C due to moisture loss
and decomposition of volatile compounds, carotenoids, alkaloids, and phenolics [82,83].

Similarly, the thermogravimetric curve of the novel carrier system indicated a notice-
able weight loss (46%) at 190–220 ◦C, assigned to phytochemical decomposition. These
changes in the differential thermogravimetric curve of the new carrier system may be linked
to the loading of AuNPs in the herb particles, indicating a visible increase in the thermal
stability of the CG-AuNPs carrier system. The findings provide valuable insight into the
behavior of these samples, and could contribute to further research and development in
this field.
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2.10. In Vitro Dissolution Testing

In vitro dissolution assays are a ubiquitous technique in pharmacological development
and quality control to predict the dissolution behavior and biological efficiency of drugs in
the gastrointestinal tract [84,85]. However, due to the complex chemical composition, the
bioavailability and performance assays for herbal formulations can be more challenging
than for single compound products [84,85].

The pH value and time are key physiological factors with significant effects on the
absorption of active biomolecules. Hence, a comparison study was performed between the
dissolution profile of greater celandine and a newly prepared carrier system at pH values
of 4 and 7 as a function of time.

The correlation between the pH value and dissolution rate is presented in Figure 9.
The results indicate that both samples exhibited, at pH 4, similar dissolution profiles

and increased release (Figure 9A) within 30 min (over 81% for GC and over 89% for carrier
system), subsequently reaching a maximum value of 93.56% for the greater celandine
(Figure 9B) and 99.99% for the CG-AuNPs carrier system at 60 min. Nevertheless, at pH 7, a
notable difference appeared, specifically on the dissolution profile (Figure 9C). Furthermore,
even though both samples still displayed a rapid release within 30 min, these values were
significantly lower than at an acidic pH (about 71% for greater celandine and 83% for
CG-AuNPs carrier system) (Figure 9D). The maximum release value was reached at 60 min
for the greater celandine (85.26%) and the new carrier system (94.39%).

According to the results, the novel carrier system showed notably improved bioavail-
ability compared to the greater celandine at both pH values investigated. This enhancement
can be attributed to the specific surface modification under the employed experimental
conditions. Additionally, a visible reduction in the dissolution rate (approximately 5% for
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the new carrier system and 8% for greater celandine) in a neutral environment (pH = 7) was
observed. These unequivocal observations suggest that an acidic pH is more appropriate
for the absorption of biomolecules. The findings of this study are highly significant and of-
fer valuable insights that could significantly impact future studies on efficacy enhancement,
as well as optimize the therapeutic outcome.
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2.11. Screening of Antioxidant Activity

The evaluation of antioxidant potential for a specific herb formulation necessitates
the selection of at least three appropriate antioxidant assays [86]. In vitro, non-competitive
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assays are widely acknowledged for their simplicity and accuracy in estimating the antioxi-
dant potential of natural products [86,87].

The antioxidant activity of a novel carrier system is attributed to a combination of
collective bioactive phytochemicals from the greater celandine and the biological activity
of the AuNPs. Consequently, four assays, namely, total polyphenolic contents (TPCs)—Folin–
Ciocalteu, flavonoid content, FRAP, and DPPH were deemed adequate for estimating the
antioxidant potential of the CG-AuNPs carrier system. The results are presented in Table 5
and Figure 10.

Table 5. The result of the selected antioxidant assay for the greater celandine and CG-AuNPs carrier system.

Sample Name
Total Phenolic

Content
(mg/g GAE)

Flavonoid
Content

(mg QE/g)

FRAP (mmol
Trolox/100g dw) IC50 (mg/mL)

GC 93.87 ± 0.028 18.48 ± 0.034 55.57 ± 0.011 53.23 ± 0.012

GC-AuNPs
system 93.32 ± 0.033 19.18 ± 0.062 73.74 ± 0.014 42.78 ± 0.036

No significant differences were found in the TPCs or flavonoid assays for the novel
carrier system compared to the greater celandine. However, in FRAP and DPPH tests, the
CG-AuNPs carrier system exhibited higher antioxidant activity than the herb plant sample.
Thus, the maximum value of the FRAP assay indicated an increase (up to 24%) for the
carrier system. Similarly, the IC50 value was lower than that of the greater celandine by
over 24%. These results can be attributed to modifications in the surface electric charge of
metallic nanoparticles loaded into herb particles, as well as the synergistic action of AuNPs
and the bioactive phytoconstituents [88,89].

This assay selection offers a comprehensive evaluation of the antioxidant potential
of the carrier system, which is vital for the development of effective and safe antioxidant
formulations [20,90].
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3. Materials and Methods

All reagents were of analytical grade, purchased from commercial sources (Merck
Millipore (Darmstadt, Germany), Sigma-Aldrich (München, Germany)), and used without
further purification.

Chelidonium majus (greater celandine) samples (whole plant) were harvested in August
2023 from the area of Hunedoara County, Romania (geographic coordinates 45◦43′04′′N
22◦53′13′′E), and taxonomically authenticated at the University of Medicine and Pharmacy
Craiova, Romania.

3.1. Plant Samples’ Preparation for Chemical Screening

The greater celandine samples underwent milling via a planetary Fritsch Pulverisette
mill (Idar-Oberstein, Germany) (700 rpm for 10 min at 22 ◦C), followed by sieving through
ASTM sieves. Only particles that passed through a 0.25 mm mesh sift were used in this
study. Then, the plant samples were subjected to ultrasonic-assisted extraction (Elmasonic,
Singen, Germany) under specific temperature, time, and ratio conditions (25 min, at 40 ◦C
and 50 Hz, in methanol: chloroform = 1:1, v/v). The resulting extract was concentrated
using a rotary evaporator, dissolved in MeOH (10 mL), centrifuged, and filtered. Subse-
quently, the extract samples were stored in a freezer until further use. All experiments were
prepared in triplicate.

3.1.1. GC-MS Analysis

Gas chromatography was carried out using a GCMS-QP2020NX Shimadzu apparatus
with a ZB-5MS capillary column (30 m × 0.25 mm id × 0.25 µm) (Agilent Technologies,
Santa Clara, CA, USA) and helium (flow rate of 1 mL/min.)

GC–MS Separation Conditions

The oven temperature was increased from 50 ◦C (kept for 2 min) to 300 ◦C (rate of
4 ◦C/min, hold for 5 min). The temperature of the injector was 290 ◦C, and the temperature
at the interface was 217 ◦C. The mass of the compounds was registered at 70 eV of ionization
energy. The mass spectrometer was source-heated at 225 ◦C, and the MS Quad was heated
at 155 ◦C. Phytochemicals were identified based on their mass spectra compared to the
NIST0.2 mass spectra library database (USA National Institute of Science and Technology
software, (NIST, Gaithersburg, MD, USA) and the literature review.
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3.1.2. Mass Spectrometry

The MS experiments were performed using an EIS-QTOF-MS (Bruker Daltonics, Bre-
men, Germany). The mass spectra were acquired in positive ion mode in a mass range of
50–3000 m/z. The scan speed was 2.1 scans/s, the collision energy was 10 ÷ 85 eV, and
the temperature of the source block was 80 ◦C. Compounds were identified based on their
mass spectra, then compared to the NIST 3.0 database mass spectra library database (USA
National Institute of Science and Technology software) (NIST, Gaithersburg, MD, USA) and
the literature review.

3.2. CG-AuNPs Carrier System Preparation
3.2.1. The synthesis of AuNPs was achieved according to the procedure described in our
earlier publication [18]
3.2.2. CG-AuNPs Carrier System

The greater celandine sample (whole plant dried) and AuNPs solution were mixed
(1:2.5 mass ratio) under continuous stirring for 6 h at room temperature (22 ◦C). The
emerging suspension was centrifuged, filtered, and then dried at 40 ◦C for 6 h. Each
experiment was repeated three times.

3.3. Characterization of Novel Carrier System and Raw Materials
3.3.1. Fourier Transform Infrared (FT-IR) Spectroscopy

FT-IR spectra of the CG-AuNPs carrier system and its components in the solid phase
were recorded on a Fourier transform infrared spectrometer (Shimadzu AIM-9000 with
ATR devices).

3.3.2. XRD Spectroscopy

Data on the phase composition were obtained on a Bruker AXS D8-Advance X-ray
diffractometer (Bruker AXS GmbH, Karlsruhe, Germany) equipped with a rotating sample
stage; an Anton Paar TTK low-temperature cell (−180 ◦C ÷ 450 ◦C); a high-vacuum, inert
atmosphere; and relative humidity control. The average crystallite size and phase content
were determined using the whole-pattern profile-fitting method (WPPF).

3.3.3. Scanning Electron Microscopy (SEM)

Morpho-structural investigations were carried out using an SEM-EDS system (JEOL JSM-
IT200 Field Emission, Nieuw-Vennep, The Netherlands) equipped with a high-resolution
electron gun and an energy-dispersive X-ray spectrometer (EDS).

3.3.4. Dynamic Light Scattering (DLS) Particle Size Distribution Analysis

The DLS analysis was conducted with a scattering angle of 172 ◦C at room temperature
(22 ◦C) using a Microtrac/Nanotrac 252 (Montgomeryville, PA, USA) instrument. Each
experiment was repeated three times.

3.3.5. Thermal Analysis

The thermal stability study of the novel carrier system and herb sample was per-
formed in a dynamic air atmosphere (20 mL/min, synthetic air) at a temperature range of
25 ÷ 400 ◦C and a heating rate of 10 ◦ C/min using a Thermal Analyzer produced by
METTLER TOLEDO, model TGA/DSC3+ STARe System. The DSC analysis was performed
in an air atmosphere (50 mL/min), at a temperature range of 25–400 ◦C, on a DSC 3+
Mettler Toledo.

3.4. Antioxidant Activity

In vitro antioxidant potential screening of the novel carrier system and herb sam-
ple were examined using four distinct tests: Folin–Ciocalteu assay; flavonoid content
assay; 2,2-diphenyl-1-picrylhydrazyl; (DPPH) radical scavenging assay; and ferric reducing
antioxidant power assay (Frap).
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3.4.1. Folin–Ciocalteu Assay

The antioxidant activity of Chelidonium majus and GC-AuNPs was determined using
UV-VIS spectrophotometry (DLAB SP-UV1000, Penjuru, Singapore), according to the
experimental procedure described in the literature [91]. The results are expressed in gallic
acid equivalents (mg GAE/g sample). Sample concentrations were calculated based on the
linear equation obtained from the standard curve (y = 0.0015x + 0.2134) and the correlation
coefficient (R2 = 0.9971).

3.4.2. The Flavonoid Content Assay

The flavonoid contents from both samples were determined according to the experi-
mental procedure adapted from the literature [92].

The absorbance was measured at 510 nm using a UV-Vis spectrometer (DLAB SP-
UV1000). The flavonoid content was expressed in quercetin equivalents (mg QE/g) using a
quercetin standard calibration curve between 12.5 mg/mL and 100 mg/mL in methanol.
Sample concentrations were calculated based on the linear equation obtained from the
standard curve (y = 0.0083x + 0.1114) and the correlation coefficient (R2 = 0.9961).

3.4.3. Ferric Reducing Antioxidant Power Assay (FRAP)

The ferric reducing/antioxidant activity (FRAP) of the sample was determined spec-
trophotometrically using a Ferric Reducing Antioxidant Power (FRAP) Assay Kit (MAK369-
1KT, Sigma-Aldrich). The absorbance was measured at 594 nm using a UV-Vis spectrometer
(Elabscience®, Houston, TX, USA). The results were expressed in Trolox equivalents (mmol
Trolox equivalents/100 g dry weight (dw)).

3.4.4. DPPH Radical Scavenging Assay

The radical scavenging properties of the novel carrier system and herb sample were
assessed according to the procedure described in our earlier publication [93]. The results
were used to calculate and obtain the IC50 (mg/mL).

All experiments for antioxidant activity screening were performed in triplicate.

3.5. In Vitro Dissolution Test

The dissolution profiles of the greater celandine (0.5 g ± 0.012) and CG-AuNps carrier
system (0.5 g ± 0.016) were determined using a 708-DS Dissolution-Agilent Technologies
(Santa Clara, CA, USA). The tests were conducted under strict conditions: a temperature
of 37 ± 0.25 ◦C, a speed of 100 rpm, and two buffers of pH 4 and pH 7, respectively, to
simulate the gastric and intestinal fluids [94].

Sink conditions were rigorously maintained throughout the test.
During the experiment, samples of dissolution medium (5 mL) were collected at different

times (15–120 min). The cumulative drug released against time was determined spectrophoto-
metrically (UV-Vis Perkin-Elmer Lambda 35 (Perkin Elmer, Waltham, MA, USA).

Triplicate samples were analyzed at each time point. The mean values of the samples
and the standard deviation were calculated [95].

Preparation of the Curves of the Concentrations for the Compound Dissolution Profile

Different solution concentrations (in the range of 0.00 and 0.30 mg/mL) were prepared
from each sample (greater celandine and CG-AuNP carrier system, respectively). Then,
calibration curves were plotted. The amount of compound released was obtained from the
standard curve of the concentration versus its absorbency. The correlation coefficients at
pH = 4 were: R2 = 0.9978 (greater celandine) and R2 = 0.9986 (CG-Au NPs carrier system),
and at pH = 7, R2 = 0.9991 (greater celandine) and R2 = 0.99984 (CG-Au NPs carrier system).
This demonstrates the good linear relationship of the data.

The compound release was calculated according to Equation (1) [96]:
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CDR (%) =
amount o f released compund at time n (g)

amount compound used as raw materials (g)
× 100 (1)

3.6. Statistical Analysis

Statistical analysis was conducted using IBM SPSS Statistics 21.0 for Windows (SPSS
Inc.). Each experimental set was performed in triplicate, using one-way analysis of variance
(ANOVA) without replication with Scheffe’s post hoc test for comparison; p < 0.05 was
taken as statistically significant. Data are presented as the means ± SD.

4. Conclusions

This study presents the low-molecular-mass-metabolite profiling of Chelidonium majus
growing wild in Romania, followed by the development and in vitro evaluation of the
antioxidant and release of a novel carrier system prepared using this medicinal plant and
AuNPs. Various analytical methods, including FTIR, Raman, XRD, DLS, and SEM-EDX,
were employed to confirm the preparation of the carrier system. The TG/DTG study results
demonstrated that the GC-AuNPs carrier system had superior thermal behavior compared
to the herb sample. The study indicates that this novel carrier system had significantly
enhanced antioxidant activity and an improved release rate. These results suggest its
auspicious potential as a promising candidate for various applications.

Supplementary Materials: The following supporting information can be downloaded at:
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